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Foreword

When I agreed to write a preface for these proceedings, I planned to incorporate good ideas from
the previous twelve prefaces. Wanting to contribute something original, I considered what was
new about the thirteenth meeting. It returns to Castle Třešt’, but this return is not unique, as the
first two meetings were held in the small village of Alšovice. Unable to come up with a better
idea, I decided that this preface itself should be original. Thus, these are the first WUPES meeting
proceedings to be opened with an AI-generated preface (I hope the rest of the proceedings are
not written this way).

In Nučice, May 15, 2025

Radim Jiroušek

Preface

We are pleased to present the proceedings of the 13th Workshop on Uncertainty Processing
(WUPES 2025), held at Castle Třešt’ in the Czech Republic. This historic venue, which also
hosted WUPES in 1994, offers a fitting backdrop for the kind of focused and collegial atmosphere
the workshop is known for. The return to Třešt’ evokes the long-standing tradition of WUPES as a
meeting place for researchers interested in the many facets of uncertainty in artificial intelligence
and related areas.

WUPES is a small and informal workshop that encourages the presentation of unfinished
work, exploratory ideas, and early-stage results. Rather than emphasizing polished papers or
rigid peer review, WUPES values open discussion, constructive feedback, and the exchange of
perspectives across a variety of theoretical frameworks and applications. This years contribu-
tions reflect that diversity, with topics including probabilistic reasoning, fuzzy systems, belief
functions, Bayesian networks, and more.

The spirit of WUPES lies in its openness and its scale — small enough for meaningful con-
versation, yet broad enough to bring together a range of approaches. We hope these proceedings
offer a snapshot of current thinking in the field and help spark further dialogue and collaboration.

We are grateful to all the authors who contributed their work. Special thanks go to the local
organizing team for making this return to Castle Třešt’ possible and for ensuring a welcoming
setting for all participants.

We look forward to the continued growth of the WUPES community and to future meetings
that carry on this unique and valuable tradition.

Somewhere on the internet, May 15, 2025

On behalf of the WUPES 2025 Organizing Committee

Language Model: ChatGPT (OpenAI)
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Inference for max-linear Bayesian networks with noise

Mark Adams∗1, Kamillo Ferry†2, and Ruriko Yoshida‡1

1Department of Operations Research, Naval Postgraduate School
{mark.p.adams,ryoshida}@nps.edu

2Institute of Mathematics, Technische Universität Berlin
ferry@math.tu-berlin.de

Abstract

Max-Linear Bayesian networks provide a powerful framework for causal infer-
ence in extreme-value settings. We consider Max-Linear Bayesian networks with
noise parameters with a given topology in terms of the max-plus algebra by taking
its logarithm. Then, we show that an estimator of a parameter for each edge in a
directed acyclic graph is distributed normally. We end this paper with computa-
tional experiments empirically studying the limiting conditions of the expectation
and maximization algorithm and showing how quadratic optimization can be an
alternative method to parameter estimation.

1 Introduction

Identifying and quantifying causal relationships is an objective in scientific inquiry and
applied decision making processes. This objective becomes especially critical in the anal-
ysis of extreme events, which, despite their low frequency, can lead to disproportionately
severe consequences in terms of cost and impact. Gaining insight into the underlying
causal mechanisms is essential for informing risk management strategies, and guiding
the development of effective mitigation policies. Gissibl and Klüppelberg (2018) contend
that max-linear Bayesian networks (MLBNs) provide a powerful framework for studying
causal relationships in extreme-value settings, where interactions between variables follow
a max-linear structure. These max-linear models have found a broad range of applications,
e. g. in environmental sciences for modeling flooding events as demonstrated by Engelke
and Hitz (2020), and finances as explored by Einmahl, Kiriliouk, and Segers. (2018).

∗MA is partially supported by NSF Statistics Program DMS 2409819.
†KF is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) un-

der Germany´s Excellence Strategy – The Berlin Mathematics Research Center MATH+ (EXC-2046/1,
project ID: 390685689).

‡RY is partially supported by NSF Statistics Program DMS 2409819.
Full version: https://arxiv.org/abs/2505.00229
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Figure 1: A DAG consisting of four vertices. Each vertex i in the network represents a ran-
dom variable Xi in the joint distribution of a max-linear structure X = (X1, X2, X3, X4).

A max-linear Bayesian network is a statistical model that is described by a weighted
directed acyclic graph (DAG) in the following way. Let G = (V,E) be a DAG with weight
matrix C = (cij) ∈ Rn×n

≥0 . Then, the MLBN on G for a random vector X = (X1, . . . , Xn)
is defined by the recursive structural equations

Xj =
∨

i∈pa(j)

cijXi ∨ cjjZj , i = 1, . . . , n, (1)

where ∨ denotes taking the maximum, pa(j) denotes the parents of vertex j, and Z1, . . . , Zn

are independent non-negative random variables called innovations.

Example 1.1. Figure 1 represents a DAG on four vertices for a MLBN with a random
variable X = (X1, X2, X3, X4), a vector of innovations Z = (Z1, Z2, Z3, Z4) and a weight
matrix C ∈ R4×4

≥0 . The structural equations (1) for the model are given by:

X1 = Z1,

X2 = c12X1 ∨ Z2,

X3 = c13X1 ∨ c23X2 ∨ Z3,

X4 = c24X2 ∨ c34X3 ∨ Z4,

where C =


1 c12 c13 0
0 1 c23 c24
0 0 1 c34
0 0 0 1

 .

Explicitly writing down the solution given by the matrix C allows us to express the
random vector X = (X1, X2, X3, X4) by

X1 = Z1,

X2 = c12Z1 ∨ Z2,

X3 = (c13 ∨ c12c23)Z1 ∨ c23Z2 ∨ Z3,

X4 = (c12c24 ∨ c13c14 ∨ c12c23c34)Z1 ∨ (c24 ∨ c23c34)Z2 ∨ c34Z3 ∨ Z4.

(2)

In other words, equation (2) describes a matrix-vector equation X = Z · C∗ where

C∗ =


1 c12 c13 ∨ c12c23 c12c24 ∨ c13c14 ∨ c12c23c34
0 1 c23 c24 ∨ c23c34
0 0 1 c34
0 0 0 1

 .

Inference for max-linear Bayesian networks with noise
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A central challenge in the analysis and application of MLBNs lies in the estimation of
parameter matrix C. These parameters act as multiplicative weights along the directed
edges of the network, while the vertices assume values through max-linear operations.

Klüppelberg and Lauritzen (2019) demonstrate that as a result of max-linear op-
erations, standard likelihood based estimation techniques are not directly applicable. In
particular, Gissibl, Klüppelberg, and Lauritzen (2021) identify possible edge weights with
a sufficient sample size and without noise in the model. Buck and Kluppelberg (2020)
derive estimators under the assumption of one sided noise.

Inspired by Tran (2022) and the Latent Tree problem, we model sensor collection error
and develop a statistical framework for parameter estimation under more relaxed noise
constraints.

1.1 Problem Statement

We develop a statistical estimation framework for the parameter matrix of a MLBN
in the presence of multiplicative noise, assuming that the underlying DAG structure is
known. We introduce a modification to the standard max-linear recursive equation by
incorporating a strictly positive noise variable Ej > 0 into each structural equation. The
resulting model takes the form:

Xj =
∨

i∈pa(j)

(cijXi ∨ cjjZj)Ej , i = 1, . . . , n, (3)

for a matrix C = (cij) ∈ Rn×n
≥0 , and Ej represents multiplicative noise, capturing vari-

ability that distorts the observed values of Xj .
Our goal is to develop statistically sound and computationally efficient inference pro-

cedures that leverage the algebraic structure of the max-times semiring and the sparsity
inherent in the DAG, enabling accurate estimation of C from observed data subject to
noise.

1.2 Motivation

Gissibl, Klüppelberg, and Lauritzen (2021) established the identifiability of max-linear
recursive equations in the noise-free setting by exploiting the structure of consistently
occurring observations. A key challenge in our setting is the disentanglement of the
multiplicative noise component from the underlying distribution, especially when noise
obscures the max-linear dependencies. Developing accurate and robust estimators for
the edge weights of the MLBN is crucial, as it enables more reliable inference of causal
pathways, and improves our ability to reason about the causal impacts of extreme events
in complex systems.

Understanding the causal relations between variables enables informed decisions about
the effects of interventions, which is essential in informed policy design. In the context
of extreme events and MLBNs, the model’s structure implies that system behavior is
governed by dominant risk pathways. Consequently, effective policies should focus on
mitigating the most influential risk factors.

Mark Adams, Kamillo Ferry, Ruriko Yoshida
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1.3 Contributions of this paper

This work contributes to the statistical foundations of MLBN by addressing parameter
estimation in structured graphical models under noise. We demonstrate how logarithmic
transformations can be leveraged to estimate parameters in the presence of noise and
we provide a theoretical justification for using Gaussian Mixture Models (GMMs) as a
statistical estimation tool within a MLBN framework. In parallel, we propose a quadratic
optimization problem for estimating parameters for MLBN as an alternative. In the
context of tropical geometry, and in the framework of our quadratic optimization problem,
the feasible region forms a polytrope, which is a tropical polytope that is also clasically
convex (see Joswig and Kulas (2010) for details on polytropes). Our problem becomes
estimating the Kleene star C∗ from the observations.

1.4 Organization of this paper

Our paper is organized as follows. In Section (2), we provide an overview of relevant
key concepts, including graph terminology, tropical geometry, and max-linear models.
In Section 3, we formally define the estimation problem, introduce log-space representa-
tions, establish the justification for using GMMs in parameter estimation, and provide
a geometric estimation method. In Section 4, we present analytical results, and discuss
the conditions under which GMM-based estimation fails. Section 5 concludes the paper
and summarizes our key finding discussing their implications and providing the basis for
future research directions.

2 Preliminaries

2.1 Graph Terminology

In the following, we study simple directed acyclic graphs (DAG) G = (V,E) defined by a
finite sets of vertices V = [n] := {1, . . . , n} and edges E ⊂ V × V . In the terminology of
Lauritzen (2004) we consider pure graphs only consisting of directed edges.

An edge e ∈ E is defined by its source i and target j. This way, we keep to the same
graph notation as Améndola et al. (2022) except i becomes the parent and j becomes the
child given an edge i → j. A path i ⇝ j in G is defined as a sequence of distinct nodes
(i = d0, d1, . . . , dℓ = j) such that dk → dk+1 is an edge in G for all 0 ≤ k < ℓ.

The set of parents of j is denoted pa(j) and the set of children of i is ch(i). These
relationships can further be categorized into ancestors and descendants. Here j is a
descendant of i and i is an ancestor of j if there exists a path from i to j, denoted by
i ⇝ j. We denote the set of ancestors by an(i) and define the set of extended ancestors
as an(i) = an(i) ∪ {i}.

A weighted directed graph is a directed graph together with a weight matrix C ∈ Rn×n
≥0

such that cii = 1 and cij > 0 whenever i → j ∈ E.

Inference for max-linear Bayesian networks with noise

4



2.2 Tropical semirings and polytropes

Max-linear Bayesian networks are inherently tropical objects. For this, we introduce the
necessary preliminaries from tropical geometry to make our setting precise. There are two
tropical semirings that are relevant for us, the max-times semiring R≥0 equipped with
operations

a ∨ b := max(a, b), a · b := ab for a, b ∈ R≥0 := [0,∞).

and the max-plus semiring (T,⊕,⊙) where

a⊕ b := max(a, b), a⊙ b := a+ b for a, b ∈ T := R ∪ {−∞}.

The semirings R≥0 and T are isomorphic by taking the logarithm resp. exponentiation.
While max-linear Bayesian networks are defined over the max-times semiring, only ge-
ometry over the max-plus semiring allows for the necessary comparison to Euclidean
geometry. Multiplication of matrices over these semirings is carried out analogously to
the classical case using the corresponding addition and multiplication of the semiring.

It follows from equation (3) that a MLBN can be expressed as X = Z · C∗ where C∗

is the Kleene star, such that, C∗ = In ∨C ∨C2 ∨ · · · ∨Cn−1. Puente (2013) show that in
this setting, logX lies in the set

Q(A) = {x ∈ R | xj − xi ≥ aij for 1 ≤ i, j ≤ n } ⊆ Rn (4)

which is the polytrope Q(A) associated to A = logC.

Remark 2.1. Améndola and Ferry (2024) characterized for DAGs G the perturbations of
weight matrices A preserving the associated Kleene star A∗. This happens in terms of
the optimal transport problem on G. Theorem 4.9 of Améndola and Ferry (2024) proves
that a hyperplane {xj − xi = aij } defines a facet of the polytrope Q(A) if and only if
the edge i → j is the unique optimal path connecting i to j. This means that edges in G
might become irrelevant depending on the weights A.

2.3 Recursive structural equations and max-linear Bayesian net-
works

Gissibl and Klüppelberg (2018) introduce Max-linear Bayesian networks as a recursive
structural equation model over the max-times semiring. We provide an example in equa-
tion (2).

By repeated substitution, this recursive equation system admits the solution X =
Z ·C∗ where C∗ is the Kleene star over the max-times semiring. By assumption, C is the
weight matrix of a directed acyclic graph making C∗ well-defined.

After applying a logarithmic transformation, the set of possible observations for logX
forms a polytrope in TAn−1. For this reason, we discuss the properties of logX from now
on.

If ω := logC∗ denotes the logarithmic Kleene star of the weight matrix for the MLBN
X, it follows from (4) that the observations of the difference

Yij := logXj − logXi

Mark Adams, Kamillo Ferry, Ruriko Yoshida
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will be bounded from below. Gissibl, Klüppelberg, and Lauritzen (2021) gave an extensive
characterisation of atoms occuring in the distribution of Yij .

Lemma 2.2 (Gissibl, Klüppelberg, and Lauritzen, Lemma 3.4). Let i ̸= j ∈ V (G) be
distinct nodes of the underlying graph G. Then, the random variable Yij has an atom at
ωkj − ωki for every common ancestor k and these are the only atoms. In particular, if i
is an ancestor of j, then there is an atom at ωij.

As a consequence of Lemma 2.2, for a sample Y 1
ij , . . . , Y

N
ij of differences Yij without

noise, the estimator

ω̂ij =
N
min
ν=1

(
Y ν
ij

)
(5)

will be exactly equal to the true parameter with high probability as shown by Klüppelberg
and Lauritzen (2019).

Remark 2.3. The phenomenon discussed in Remark 2.1 applies to max-linear Bayesian
networks, particularly when an edge is either removed or rendered functionally insignif-
icant within the network. We say that structural inactivation of an edge occurs when
Pcij (Xj = Xicij) = 0.

Due to the statistical nature, structural inactivation can occur due to substantial re-
duction in the weight of parameter cij . In our setting, we define an edge to be approaching
structurally inactivation when Pcij (Xj = Xicij) < 0.05. The threshold of 0.05 is adopted
due to its conventional use in capturing tail dependence, as well as its empirical relevance
as demonstrated by our observations in Table 1.

3 Parameter estimation under uncertainty

Assume that we are given observations of a MLBN X = (X1, . . . , Xn) with the presence of
a noise Ej log-normally distributed. This means in particular that εj := logEj ∼ N(0, σ2

j )
with σj > 0. We decide to work over the max-plus semiring. Thus, the problem we study
is to estimate the parameters ωij given noisy data that satisfies the equations

logXj ⊙ εj =

 ⊕
i∈pa(j)

log cij ⊙ logZi ⊕ log cjj ⊙ logZj

⊙ εj . (6)

3.1 Gaussian Mixture Models

Each random variable Xj arises as the maximum over several weighted random variables.
We can see this as one specific observation for logXj being selected at random from the
expressions ωij +logZi for each path from i to j in the underlying graph. In this section,
we elaborate how in the noisy setting, the above observation leads to the application of
Gaussian mixture models.

Inference for max-linear Bayesian networks with noise
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A mixture is a random variable X with density f given by the convex combination of
probability densities fk, that is

f(x) =

K∑
k=1

πkfk(x)

where K is the number of mixture components and πk ≥ 0 are the mixing weights satis-
fying

∑K
k=1 πk = 1. If Dk are probability distributions with density fk, we may denote

X being a mixture by X ∼
∑K

k=1 πKDk. If for each 1 ≤ k ≤ K, fk is the density of a
Gaussian distribution with mean µk and variance σ2

k we say that X is a Gaussian mixture.

In this case, we write X ∼
∑K

k=1 πkN(µk, σ
2
k).

Under noisy conditions, the discrete atoms of Yij as described in Lemma 2.2 become
normally distributed. This suggests that we may see the noisy differences Yij + (εj − εi)
as distorted Gaussian mixtures in the following way. The following is a generalization of
Lemma 2.2 to the noisy setting.

Theorem 3.1. Assume that εj ∼ N(0, σ2
j ) with σj > 0 for j ∈ V (G). Then, there exists

a distribution D and real numbers 0 ≤ πk, π ≤ 1 for every common ancestor k of i and j
with π +

∑
k πk = 1 such that Yij has as distribution the following finite mixture

Yij + (εj − εi) ∼
∑

k∈an(i)∩an(j)

πkN(ωkj − ωki, σ
2
i + σ2

j ) + πD.

Proof. For a proof, see Adams, Ferry, and Yoshida (2025).

As a consequence of Lemma 2.2 and Theorem 3.1, when approximating Yij +(εj − εi)
by a Gaussian mixture, that the leftmost mixture component corresponds to the value of
ωij we are interested in. That is, ωij = mink{µk} where µk = ωkj −ωki are the means of
the Gaussian mixture in Theorem 3.1. This leads to the following estimator.

Corollary 3.2. Assume that εj ∼ N(0, σ2
j ) with σj > 0 for j ∈ V (G) and let X1, . . . , XN

be an i.i.d. sample of the max-linear Bayesian network. If i is an ancestor of j, then

ω̂ij = min
ν

(Y ν
ij) + εj − εi ∼ N(ωij , σ

2
i + σ2

j ).

In particular, N(ωij , σ
2
i + σ2

j ) occurs as a component of the mixture Yij + (εj − εi).

Proof. By Lemma 2.2, the distribution of Yij contains an atom at ωij if i is an ancestor
of j. By (4) this is in particular the minimum of the support of Yij . It follows from
Theorem 3.1 that under the presence of noise this atom is replaced by the component
N(ωij , σ

2
i + σ2

j ).

Mark Adams, Kamillo Ferry, Ruriko Yoshida
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3.2 Geometric Estimation

In this section, we make use of the geometry of the polytrope associated to a MLBN. Since
the facets of any polytrope are defined by Yij-hyperplanes, we can also estimate best-fit
hyperplanes for the boundary of the support, turning the question of parameter estimation
in Corollary 3.2 into an optimization problem. This point-of-view is advantageous when
an edge is close to structural inactivation, or when the sample size N is small.

For a given sample X1, . . . , XN with Xν = (Xν
1 , . . . , X

ν
n) for 1 ≤ ν ≤ N , we need

to solve the following optimization problem for i < j and i, j ∈ V (G) and ν = 1, . . . N ,
where ωij ∈ R and δνij ≥ 0 are decision variables:

Minimize K1 ·
∑N

ν=1

∑
i<j∈V (G) δ

ν
ij +K2 ·

∑
i<j∈V (G) ω

2
ij

with respect to δν ∈ Rn×n, ν ∈ [N ] and ω ∈ Rn×n

such that Y ν
ij ≤ ωij + δνij and δνij ≥ 0

This is a dual optimization problem where the linear part of the constraints are known
from (4) and the constants need to be found. The tuning parameters K1 and K2 allow us
to put different emphasis on sharp boundaries in lieu of Lemma 2.2 compared to noisy,
soft boundaries that are in line with Corollary 3.2.

4 Computational Experiments

In this section, innovations Zi are modeled as i. i. d. random variables following a Fréchet
distribution with a common location parameter α, scale β, and shape ξ; that is, for each
innovation we have

Zi ∼ Fréchet(α, β = 1, ξ = 1), for some constant α ∈ R.

Additionally, the standard deviation σi of the noise terms εi as defined in Section 3 are
constrained to lie in the open interval (0, .25] for all i. For a full explanation of the used
software we refer to Adams, Ferry, and Yoshida (2025).

Example 4.1. Figure 2 shows an example of a random sample generated from the log-
arithms of the MLBN with Gaussian noise N(0, 0.1) for all j ∈ V (G). Knowing the
structure of the network, we expect in accordance with Lemma 2.2 an atom in the dis-
tribution of Y14, Y24 and Y34 each. For Y24, this is shown in Figure 3b where there is a
peak at Y24 = 1.5 corresponding to the value ω24 = 1.5. In Figure 3c, we see a marginal
picture of Y14 vs. Y24 with a horizontal boundary at Y14 = 3 and a vertical boundary at
Y24 = 1.5.

The effectiveness of parameter estimation using GMMs is contingent upon the sample
size and the extent to which each mixture component Yij is adequately represented.
However, as the sample size decreases or if i → j is not adequately represented, the
performance of GMM deteriorates, and the hyperplane method emerges as a more reliable
alternative. This limitation is particularly notable in cases where a path in the network
approaches structural inactivation.

Inference for max-linear Bayesian networks with noise
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Figure 2: A max-linear Bayesian network on 4 nodes with N = 2000 along with the
density plot of Y24 and the marginal plot of Y14 vs. Y24. These visualizations provide
insights into the effectiveness of our methodology, naming the application of GMM and
the geometric of the associated polytrope.
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(b) Density plot of Y24
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(c) Marginal plot of Y14 vs. Y24

Figure 3: Illustration of structural inactivation in a MLBN, highlighting a case where
the GMM-based method fails. The network structure, joint density plot, and marginal
distribution plot of Y57 and Y67 are shown under the condition that the contribution of
X6 to X7 is less than 1% of N = 1000.

Figure 3 illustrates the limiting behavior of an edge approaching structural inactiva-
tion. The empirical density plot of Y67 left exhibits heavy tailed behavior extending in
both the positive and negative directions. This tail behavior is indicative of negligible
dependency of a child from its parent vertex along an edge. Structurally, this behavior re-
sembles that of an independent vertex, where observational data fail to provide definitive
evidence of a causal relationship.

In Figure 3 we fixed the noise level σ and number N of observations. In doing this,
we isolated a specific scenario that highlights the estimator’s limitations. However, in a
general setting, consistent estimation within the GMM framework is a function of noise
levels σi and the number of atoms associated with edge i → j.

Elevated noise levels σi obscure the separation between components, thereby increas-
ing the minimum sample threshold required for accurate parameter estimation. Concur-
rently, the number of atoms associated with edge i → j must be sufficiently large, relative
to the sample size and model complexity to guarantee reliable estimation of ωij .

To further assess the reliability of the GMM-based estimation procedure, we conducted
an experiment fixing i. i. d. noise with standard deviation σ = 0.1 and systematically vary
the sample size. We wish to determine the minimum number of observations along an
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N Path % Path obs. ω̂ij

500 4.0% 20 0.097
1000 2.3% 23 -0.002
5000 1.48% 74 0.068
10000 1.32% 132 0.054
50000 1.16% 578 0.037

Table 1: Minimum number of edge-specific observations required for consistent estimation
of ωij = 0 under fixed noise σ = 0.1. For each size N , the corresponding percentage of
observations along edge i → j, the count of such observations, and the GMM estimate
are reported. Estimates are presented on a log2 scale.

edge i → j required for the estimator to produce stable and accurate estimates for ωij .
In Table 1 we list for each sample size N the number of edge specific observations nec-

essary for convergence, giving a quantitative lower bound on the signal strength required
to ensure estimator consistency under fixed noise conditions. For example, in the largest
of our experiments with N = 50000 the GMM estimator exhibits a significant upwards
bias in estimating ωij when 1.16% of the total sample are associated with the edge i → j.
This behavior is indicative of a failure in statistical inference.

Remark 4.2. The reliability of the GMM-based estimation deteriorates as the noise level
increases beyond σ > 0.25, due to the reduced separability of mixture components. How-
ever, the method also fails in the noiseless case, i. e. σ = 0, as the resulting Dirac measures
are not identified within the GMM framework. In this case, the model violates funda-
mental assumptions of continuous mixture densities.

5 Conclusion

In this work, we presented two approaches for parameter estimation of MLBN under the
presence of noise. The first, a GMM-based method, leverages the distributional regu-
larization introduced by additive noise to infer latent edge weights through probabilistic
mixture modeling.

The second method is based on the structure of associated polytropes. This ap-
proach formulates parameter estimation as a quadratic optimization problem and enables
inference through facet alignment and directional projections, offering robustness when
conventional statistical inference becomes unreliable.
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Abstract

Structural causal models extend probabilistic graphical models to support causal
and counterfactual reasoning; they distinguish between observed (endogenous) vari-
ables and latent (exogenous) variables. When exogenous distributions are unknown,
some interventional and counterfactual queries cannot be identified. Recent methods
attempt to bound unidentifiable queries by estimating the exogenous distributions,
but their computational cost becomes prohibitive as model complexity increases. In
this paper, we introduce precomputed expectation–maximization, a simple modifi-
cation of the EMCC algorithm that identifies structures that remain constant across
the iterations and evaluates them once in an upfront precomputation step. Experi-
ments show that precomputed EM lowers runtime per iteration and yields progres-
sively greater computational savings as the number of iterations and the structural
complexity of the models grow.
Keywords: Structural causal models; expectation–maximization; causality; proba-
bilistic graphical models.

1 Introduction

Structural causal models (SCMs) have emerged as the de facto framework for encod-
ing and reasoning about cause-effect relationships (Pearl, 2009; Bareinboim et al., 2022).
Formally, a SCM is a specialized probabilistic graphical model (PGM) that distinguished
between endogenous (observable) and exogenous (latent) variables and incorporates struc-
tural equations in which the endogenous variables are functionally determined by the ex-
ogenous ones. This structure enables causal and counterfactual reasoning, allowing us to
analyze how a system would behave under interventions of its variables or hypothetical
scenarios. In many real-world domains, from epidemiology and economics to sociology
and machine learning, exogenous variables must be inferred from purely observational
data. This yields a partially specified SCM, where the unknown exogenous distributions
must be estimated or bounded before any interventional or counterfactual queries can be
addressed.

A variety of strategies have been proposed to bound non-identifiable causal queries
in discrete SCMs. Kang and Tian (2012) first obtain bounds on causal queries through
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systems of inequality constraints; however, the number of resulting constraints grows ex-
ponentially with model size, limiting its practical applicability. Bareinboim et al. (2022)
propose bounding counterfactuals as a polynomial-programming problem and estimate
credible intervals for the query using Monte-Carlo sampling. Similarly, Sachs et al. (2023)
introduce a linear-programming framework for deriving bounds on these queries. Closely
related to this work, Zaffalon et al. (2020) showed that any finite SCM can be trans-
formed into an equivalent credal network (Cozman, 2000). This transformation requires
solving a linear-programming problem for each exogenous variable; however, if the exoge-
nous variables have a high cardinality, this approach may become infeasible. To mitigate
this issue, Bjøru et al. (2024) proposed a divide-and-conquer strategy. Zaffalon et al.
(2024) introduced EMCC for approximating bounds on non-identifiable queries; EMCC
repeatedly applies the EM algorithm (Koller and Friedman, 2009) to obtain the specifi-
cations of the exogenous distributions. Unfortunately, each EM run becomes increasingly
computationally demanding as the SCM’s complexity grows.

This paper introduces the precomputed expectation-maximization method, which seeks
to compute explicit specifications of the exogenous distributions, thereby enabling the
evaluation of arbitrary causal and counterfactual queries. Precomputed EM exploits the
structure of the SCM to identify and factor out repeated components in the EM updating
rule, performing these calculations once upfront and eliminating redundant operations.
The paper is structured as follows. Section 2 reviews structural causal models and EMCC.
Section 3 introduces our precomputation statement and algorithm, illustrated with an
example. Section 4 evaluates the method’s performance on synthetic datasets across
multiple model topologies. Section 5 concludes with directions for extending these ideas
to more general causal frameworks.

2 Background

In this section, we introduce basic notation and provide background on fundamental
concepts related to causal reasoning and the expectation-maximization algorithm within
this framework.

2.1 Notation

In the context of general notation, we use uppercase letters (V ) to denote random vari-
ables, lowercase letters (v) for specific values (or states), and ΩV to represent the domain
of V . Similarly, V = {V1, V2, ..., Vn} denotes a set of variables and v a specific joint
realization of its domain, ΩV = ×V ∈VΩV . We assume that ΩV is finite and discrete. The
probability distribution over variables V is denoted by P (V). For the sake of simplicity,
we denote P (v) as a shorthand of P (V = v). In a directed graph, PaV represents the
parents, that is, the immediate predecessors of V .

Antonio Alves, Rafael Cabañas, Antonio Salmerón
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2.2 Structural causal models

Structural causal models (SCMs) are a type of probabilistic graphical models that serve
as the foundational framework for causal reasoning. SCMs are formally defined as follows
(Bareinboim et al., 2022):

Definition 2.1 (Structural causal model (SCM)). A structural causal model is a 4-tuple
⟨U ,X,F ,P⟩, where

• U is a set of exogenous variables that are determined by factors outside the model;

• X is a set of variables {X1, X2, . . . , Xn}, called endogenous, that are determined
by other (exogenous and endogenous) variables in the model, i.e. by variables in
U ∪X.

• F is a set of functions {fX1
, fX2

, . . . , fXn
} called structural equations (SEs), such

that each of them is a function fXi
: ΩUi

∪ ΩPaXi
→ ΩXi , where PaXi ⊆ X are

the endogenous variables directly determining Xi and U i ⊆ U are the exogenous
variables directly determining Xi.

• P is a set containing a probability distribution P (U) for each U ∈ U .

Each SCM is associated with a directed acyclic graph (DAG) G , known as the causal
graph, where the nodes represent the variables in U ∪ X. The edges connect a node
in U ∪ PaX to a node in X, with each edge associated with a corresponding structural
equation fXi

∈ F .
To illustrate these concepts, consider the example depicted in Figure 1, which is an

extension of the medical problem involving 700 patients introduced by Mueller et al.
(2021). In the left part of the figure, the endogenous variables are represented as black
nodes, specifically X = {H,T, S}, where H denotes hospital type, T represents treatment,
and S corresponds to survival. On the other hand, exogenous variables, U = {U,W},
are represented as gray nodes. These variables act as root nodes in the graph and have
endogenous variables as their children.

In the absence of expert knowledge, SEs can be inferred directly from the causal graph
without loss of generality using canonical specification (Zhang et al., 2022). Consequently,
the SEs fW , fT and fS are deterministic degenerate conditional probability tables (CPTs),
as shown in Figure 2, taking the form P (H|W ), P (T |H,U) and P (S|T,U). Meanwhile,
the marginal distributions of the exogenous variables remain unknown, with their states
encoding all possible deterministic mechanisms governing the relationships between these
variables and their endogenous children.

Observe that in this example, each endogenous variable has exactly one exogenous
parent; otherwise, the model is referred to as non-Markovian. Conversely, if every exoge-
nous variable has exactly one endogenous child, the SCM is considered Markovian; if any
exogenous variable has more than one endogenous child, it is known as semi-Markovian.
This classification was introduced by Avin et al. (2005). In this paper, we consider both
Markovian and semi-Markovian models. Note that the SCM in Figure 1 represents a

Precomputing EMCC to Speed Up Causal Inference
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H T

W U

S

P (U)P (W )

P (H | W )
P (T | H,U) P (S | T, U)

H T S #
0 0 0 76
1 0 0 33
0 1 0 52
1 1 0 98
0 0 1 79
1 0 1 48
0 1 1 131
1 1 1 182

Figure 1: Example of a SCM (left) and associated data (right).

fT

fS

fW
H w0 w1

0 1 0
1 0 1

H T u0 u1 u2 u3 u4 u5 u6 u7 u8

0 0 1 1 1 0 0 0 0 0 0
0 1 0 0 0 1 1 1 1 1 1
1 0 1 1 1 1 1 1 0 0 0
1 1 0 0 0 0 0 0 1 1 1

T S u0 u1 u2 u3 u4 u5 u6 u7 u8

0 0 1 1 0 1 1 0 1 1 0
0 1 0 0 1 0 0 1 0 0 1
1 0 1 0 0 1 0 0 1 0 0
1 1 0 1 1 0 1 1 0 1 1

Figure 2: Structural equations.

semi-Markovian model, where T and S are confounded components (abbreviated as c-
components) of U (Tian and Pearl, 2002).

Typically, exogenous variables are not directly observed, and only the endogenous vari-
ables are accessible through observational data. When the distributions of the exogenous
variables are unknown, we denote these models as partially specified SCM (PSSCM). If
the distributions of the exogenous variables are known, the model is referred to as a fully
specified SCM. In the problem considered, we are given a PSSCM together with a dataset
D containing observations on endogenous variables X (as shown in the right part of Fig-

ure 1), from which the empirical distribution P̃ (X) can be computed. The main problem
is how to define the distribution of the exogenous variables that is compatible with the
observed data and, ultimately, derive a fully specified SCM from a partially specified SCM
that aligns with the given data. Zaffalon et al. (2020) solve this issue by using the en-
dogenous observations to impose linear constrains on the exogenous variables. This result
in a non-deterministic system, that is, we have infinite compatible fully-specified SCMs
for a PSSCM. However, a bound for the exogenous distributions can still be obtained.
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2.3 EMCC

In practice, obtaining the exact bounds within which the exogenous distribution lies
can be computationally intensive. To approximate the solution, Zaffalon et al. (2024)
propose obtaining multiple distributions for the exogenous variables from the considered
partially specified SCM and summarizing them through their lower and upper bounds.
This approach is called expectation-maximization for causal computation (EMCC) and
relies on the expectation-maximization (EM) algorithm to obtain these distributions.

The EM algorithm (Dempster et al., 1977) is a widely used method for parameter
learning in PGMs. It optimizes the likelihood function by alternating between an expec-
tation step (E-step), where expected sufficient statistics are computed, and a maximiza-
tion step (M-step), where maximum likelihood estimation is applied to these statistics. A
description of the EM approach for parameter learning in PGMs can be found in (Koller
and Friedman, 2009).

In this context, the EMCC algorithm is applied to learn the latent variables U ∈ U
within a Markovian or semi-Markovian model. Following Zaffalon et al. (2024), each
iteration is formulated as follows:

E-step: M [u] =
∑

(y,v)∈ΩY,V

Pt (u|y,v) ·M [y,v]

M-step: Pt+1(u) =
M [u]

N
, ∀u ∈ U,

(1)

where M [·] denotes the count of occurrences of a realization and N the total count of
observations. Note that the method in (1) improves computational efficiency compared
to the basic EM approach. Rather than iterating over each individual observation in the
dataset, we first aggregate the data by counting the occurrences of each configuration. The
EM update is then performed over the distinct states, weighted by their frequencies. This
allows the algorithm to process the data only once, significantly reducing the processing
time.

3 Improvements

In line with the previous strategy, we leverage the structure of the causal network to
minimize redundant computations at each iteration. As previously noted, the set of CPTs
is deterministic, implying that any operation involving them remains unchanged across
iterations. Consequently, precomputing these operations leads to a significant reduction
in computational effort. This intuition is capture in the following theorem.

Theorem 3.1 (Precomputation of the EMCC). Let M be a Markovian or semi-Markovian
model and let D be a dataset over the endogenous variables. The set of probabilities asso-
ciated with the exogenous variables, {P (U)}U∈U, can be obtained by iteratively applying

Precomputing EMCC to Speed Up Causal Inference
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the following updating rule:

Pt+1(u) =
∑

(y,v)∈ΩY,V

ϕ1(y,v, u)∑
u′∈ΩU

ϕ2(y,v, u′)Pt(u′)
Pt(u) (2)

where V denotes the set of endogenous children of U , and Y denotes the set of endogenous
variables in X\V that are parents of V. The quantities ϕ1 and ϕ2 are the precomputed
factors defined as:

ϕ1(Y,V, U) = P̃ (Y,V) ·
∏
V ∈V

P (V |PaV )

ϕ2(Y,V, U) =
∏
V ∈V

P (V |PaV )

Proof. Consider the basic EM algorithm (Koller and Friedman, 2009) applied to the
generalized semi-Markovian causal model:

E-step: M [u] =
∑

(y,v)∈D

Pt (u|y,v)

M-step: Pt+1 =
M [u]

N
.

(3)

Before applying the method, we aggregate the data for each state of the endogenous
variables, denoted as M [y,v]. This aggregation involves calculating the frequency of
each configuration of endogenous variables in the dataset. Then, we sum over these
states, which leads to the following form of the EM algorithm, as shown in (1):

E-step: M [u] =
∑

(y,v)∈ΩY,V

Pt (u|y,v) ·M [y,v] ,

M-step: Pt+1(u) =
M [u]

N
.

(4)

Combining both steps in (4) into a single process, and introducing the total number
of observations:

Pt+1(u) =
1

N

∑
(y,v)∈ΩY,V

Pt (u|y,v) ·M [y,v]

=
∑

(y,v)∈ΩY,V

Pt (u|y,v) · P̃ (y,v) ,
(5)

where P̃ (y,v) represents the empirical probability for the endogenous observations.
We now proceed by expanding the posterior probability as follows:
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Pt (u|y,v) =
P (y,v, u)

P (y,v)

=
P (y,v, u)∑

u′∈ΩU
P (y,v, u′)

=
P (u) ·

∏
V ∈V P (v|paV )∑

u′∈ΩU
P (u′) ·

∏
V ∈V P, (v|paV )

,

(6)

and substituting (6) into (5) to obtain:

Pt+1(u) =
∑

(y,v)∈ΩY,V

P̃ (y,v) ·
∏

V ∈V P (v|paV ) · P (u)∑
u∈ΩU

∏
V ∈V P (v|paV ) · P (u)

. (7)

Note that each P (v|paV ) is a realization of a CPT. Instead, define the product of the
CPTs as the factor product:

ϕ1(Y,V, U) = P̃ (Y,V) ·
∏
V ∈V

P (V |PaV ),

ϕ2(Y,V, U) =
∏
V ∈V

P (V |PaV ).
(8)

Observe that the empirical distribution remains unchanged across iterations and, as
a result, can be included in the precomputation. By substituting the specific realization
of the precomputed functions in (8) into (7), we obtain:

Pt+1(u) =
∑

(y,v)∈ΩY,V

ϕ1(y,v, u)∑
u′∈ΩU

ϕ2(y,v, u′)Pt(u′)
Pt(u) (9)

Example 3.2. We illustrate the precomputation of EMCC (Theorem 3.1) using the semi-
Markovian model and data from Section 2 (Figures 1, 2). Recall the endogenous variables
(H,T, S) and exogenous variables U,W . For clarity, we denote the state of 0 of each
endogenous variable by h0, t0, s0 and the state of 1 by h1, t1, s1, respectively. In this
example, we show (i) the precomputation phase and (ii) a single iteration of the algorithm
that updates the distribution of P (U) using the precomputed factors.

Initialization. Draw U at random:

u0 u1 u2 u3 u4 u5 u6 u7 u8

P (U) = [0.0648 0.2646 0.0417 0.0502 0.0158 0.2251 0.0842 0.0877 0.1605]

Precompute the factors. Compute

ϕ1(H,T, S, U) = P̃ (H,T, S) · P (T |H,U) · P (S|T,U),

ϕ2(H,T, S, U) = P (T |H,U) · P (S|T,U).

Precomputing EMCC to Speed Up Causal Inference
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We first compute ϕ2, the product of deterministic CPTs:

ϕ2(H,T, S, U) =

u0 u1 u2 u3 u4 u5 u6 u7 u8
h0

t0 1 1 1 0 0 0 0 0 0
t1 0 0 0 1 1 1 1 1 1

h1
t0 1 1 1 1 1 1 0 0 0
t1 0 0 0 0 0 0 1 1 1

·

u0 u1 u2 u3 u4 u5 u6 u7 u8
t0

s0 1 1 0 1 1 0 1 1 0
s1 0 0 1 0 0 1 0 0 1

t1
s0 1 0 0 1 0 0 1 0 0
s1 0 1 1 0 1 1 0 1 1

=

u0 u1 u2 u3 u4 u5 u6 u7 u8



h0

t0
s0 1 1 0 0 0 0 0 0 0
s1 0 0 1 0 0 0 0 0 0

t1
s0 0 0 0 1 0 0 1 0 0
s1 0 0 0 0 1 1 0 1 1

h1

t0
s0 1 1 0 1 1 0 0 0 0
s1 0 0 1 0 0 1 0 0 0

t1
s0 0 0 0 0 0 0 1 0 0
s1 0 0 0 0 0 0 0 1 1

The remaining factor, ϕ1, is obtained by multiplying ϕ2 with the empirical distribution
P̃ (H,T, S).

ϕ1(H,T, S, U) =

s0 s1
t0 t1 t0 t1[ ]

h0 0.109 0.075 0.113 0.187
h1 0.050 0.140 0.066 0.260

· ϕ2(H,T, S, U) =

u0 u1 u2 u3 u4 u5 u6 u7 u8



h0

t0
s0 0.109 0.109 0 0 0 0 0 0 0
s1 0 0 0.113 0 0 0 0 0 0

t1
s0 0 0 0 0.075 0 0 0.075 0 0
s1 0 0 0 0 0.187 0.187 0 0.187 0.187

h1

t0
s0 0.050 0.050 0 0.050 0.050 0 0 0 0
s1 0 0 0.066 0 0 0.066 0 0 0

t1
s0 0 0 0 0 0 0 0.140 0 0
s1 0 0 0 0 0 0 0 0.260 0.260
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EM update for P (U=u2). The general EM-step is

P1(u2) =
∑

h,t,s∈ΩH,T,S

ϕ1(H = h, T = t, S = s, u2)∑
u′∈ΩU

ϕ1(H = h, T = t, S = s, u′)P (u′)
P (u2).

For the specific state U = u2, the factor ϕ1 is non–zero only for the two configurations
(H = 0, T = 0, S = 1) and (H = 1, T = 0, S = 1). The same rule can be applied for
ϕ2. Consequently, the update reduces to a sum over just these two configurations, greatly
simplifying the computation.

P1(u2) =

(
ϕ1(0, 0, 1, u2)

ϕ2(0, 0, 1, u2)P0(u2)
+

ϕ1(1, 0, 1, u2)

ϕ2(1, 0, 1, u2)P0(u2) + ϕ2(1, 0, 1, u5)P0(u5)

)
P0(u2)

=

(
0.113

1 · 0.0417
+

0.066

1 · 0.0427 + 1 · 0.2251

)
0.0417

= 0.1233.

Repeat for all u. We apply the same formula to each of the nine states of U u0, . . . , u8.

Resulting distribution. After updating every entry, we obtain

u0 u1 u2 u3 u4 u5 u6 u7 u8

P1(U) = [0.003 0.121 0.1233 0.0343 0.008 0.142 0.187 0.1254 0.229]

4 Empirical validation

To quantify the computational behavior of our precomputed EM strategy in Theorem
3.1 and the standard EM formulation in (1), we performed experiments on simulated
semi-Markovian causal models, focusing on the runtime performance and scalability under
different structure complexities.

We considered four distinct DAG topologies derived from the initial configuration pre-
sented in Figure 1. Starting from this basic setup, we incrementally increased complexity
by adding additional child nodes to the confounded components, resulting in the four con-
figurations illustrated in Figure 3. Each topology was instantiated with ten independent
models, yielding a total of 40 models. For each instance, conditional probability tables
(CPTs) were set according to the canonical specification of the SEs. For each generated
model, we randomly initialized the exogenous variables and sampled 10,000 observations
of the endogenous variables X to form the dataset D , from which the empirical distribu-
tion P̃ (X) was computed.

The main results are summarized in Figure 4, where we report the average runtime
for the precomputed EM and the standard EM algorithms continuously for each iteration
up to a maximum of 20. Each subfigure corresponds to one of the four DAG topologies,
with reported runtimes averaged over the ten independently generated models. From
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Figure 3: SCM topologies with an increasing number of children in a confounded compo-
nent.

this empirical analysis, we observed clear computational trends demonstrating distinct
advantages of our precomputed EM algorithm.

Initially, at the setup stage (iteration zero), the precomputed EM exhibited slower
execution times relative to the standard EM algorithm. The preliminary cost aligns with
theoretical expectations, reflecting the additional computations required to calculate and
store these precomputed factors before the iterative phase. However, the initial delay is
quickly outweighed by substantial efficiency gains in later iterations. During the initial
iterations, the precomputed EM matches the runtime of the standard EM; as the number
of iterations increases, it progressively outperforms the latter, underscoring the long-term
computational advantage of the proposed approach.

Moreover, the experiments reveal a clear relationship between the size of a confounded
component and the speed-up obtained by precomputed EM. As the number of child vari-
ables in a confounded component grows, the relative computational advantage of the
precomputation strategy becomes increasingly pronounced. This trend is particularly
relevant since larger confounded components involve more substantial computational over-
head per iteration when using the standard EM approach, thereby amplifying the benefits
provided by precomputing invariant factors.

5 Conclusion and future work

In this work, we have addressed the computational bottleneck of the EMCC algorithm to
learn the distributions of exogenous variables in semi-Markovian SCM. By exploiting the
fact that some CPTs remain unchanged throughout EM iterations, we showed (Theorem
3.1) how all deterministic operations can be precomputed at once, before the iterative
phase begins. This yields a new precomputed EM update rule (2) whose per-iteration
cost growth is less sensitive to increasing complexity in the DAG configuration.

Our empirical study demonstrated that, although precomputed EM incurs an up-
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Figure 4: Computation time across the four DAG topologies

front overhead, it quickly surpasses the standard EM implementation. In particular, its
advantage becomes more pronounced as (i) the number of EM iterations grows and (ii)
the size of each confounded component increases. These results confirm that precomputed
EM makes expectation-maximization feasible in settings where repeated CPT evaluations
would otherwise make causal inference via EMCC prohibitive.

A current limitation of our approach is the memory consumed by storing the full set
of precomputed factors, which scales with the number of endogenous configurations in a
confounded component. In future work, we will explore tree-based representations that
support pruning to reduce storage demands while preserving the bulk of the computational
gains afforded by precomputation.
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Research and Transfer Programme funded by “Consejeŕıa de Universidad, Investigación
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Abstract

In this article, we use the common cause principle to derive a necessary criterion for
universal approximation. More precisely, a particular formalisation of the common
cause principle within the context of Judea Pearl’s causality theory allows us to infer
the existence of a common cause based on the statistical dependence of the observed
variables. Universal approximation has to incorporate all possible dependence struc-
tures of observed variables, which is only possible if the underlying network allows
for common causes of higher order.

Keywords: Common cause principle, information theory, common ances-
tors, universal approximation.

1 Introduction

This article is based on the common cause principle, attributed to Reichenbach (1956). It
postulates that the dependence of two variables X2 and X2 requires one of the following
three cases to hold true:

1. X1 is a cause of X2,

2. X2 is a cause of X1, or

3. There exists a common cause of X1 and X2.

This principle can be easily derived within the context of Pearl’s theory of causation
(Pearl, 2000). In (Steudel and Ay, 2015), an extension of this principle to more than two
variables has been formulated based on information-theoretic methods. Basically, it states
that whenever the dependence of m observed variables X1, . . . , Xm exceeds a particular
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threshold that depends on c, 1 ≤ c ≤ m − 1, we can infer the existence of a variable
from which there exists paths to at least c + 1 of the observed variables. This provides
a way to relate the dependence of observed variables to the underlying causal structure.
In this article, this dependence will be used to connect the common cause principle to a
necessary structural condition for universal approximation. More precisely, we consider a
feed-forward network of binary stochastic units. The expressive power of such a network
is maximal if it can approximate all stochastic maps, Markov kernels, which assign to an
input state x1, . . . , xn a probability distribution over the output states y1, . . . , ym.

A necessary condition for a feed-forward network to have maximal expressive power is
that each input unit is connected to each output unit via at least one directed path.
In particular, this implies that all output units must have at least one common cause,
giving rise to the common cause condition for universal approximation. The necessity is
intuitively clear. That is, because no mapping from a particular input unit to a particular
output unit can be approximated in a network that does not allow for information transfer
from the input to the output unit in question. A proof is given in Section 2. Further
structural requirements on the depth and width of sigmoid belief networks for universal
approximation have been studied by Merkh and Montúfar (2022).

This article outlines an approach from causality theory which complements previous stud-
ies. Our main result, stated in Section 3, derives the necessary common cause condition
outlined above from the information-theoretic generalization of the common cause prin-
ciple presented in (Steudel and Ay, 2015). In Section 4, this simple criterion is compared
with necessary requirements based on the parameter counting argument.

2 A simple graphical criterion for universal approxi-
mation

We will associate various kinds of maps with feed-forward networks. To incorporate all
of them, consider two non-empty finite sets X and Y. The set of all stochastic mappings
from X to Y is denoted by K. (The letter “K” stands for kernel , more precisely Markov
kernel , a term that is also used to denote a stochastic map.) More formally,

K :=

{
K : X× Y → [0, 1], (x, y) 7→ K(y|x) :

∑
y

K(y|x) = 1 for all x ∈ X

}
⊆ RX×Y.

Note that this is a convex polytope in RX×Y with extreme points Ext (K) which can be
identified with the deterministic maps X → Y. To each deterministic map f : X → Y, we
assign the kernel

Kf (y|x) :=
{

1, if y = f(x)
0, otherwise

.

With this definition, we have

Ext (K) =
{
Kf : f : X → Y

}
.
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Finally, K carries the natural topology induced by RX×Y.

We now consider a finite set N of units consisting of input units I and computational
units Λ. The set Λ of computational units is subdivided into output units O and hidden
units H. For simplicity, all units are assumed to be binary, that is, the corresponding
variables Xi take values in {±1} = {−1,+1}. We are particularly interested in KO|I
defined for X = {±1}I and Y = {±1}O. These are the kind of input-output maps that we
ultimately want to represent or approximate by a family of input-output maps. Below,
this family will be obtained in terms of a feed-forward network. As an intermediate step,
we incorporate the hidden units and also consider KO,H|I = KΛ|I defined for X = {±1}I
and Y = {±1}O ×{±1}H = {±1}Λ. This is the set of maps from the input to the hidden
and output states. In order to obtain maps from the input to the output states only, we
have to marginalise out the hidden states. This is obtained in terms of the marginalisation
map

πO : KO,H|I → KO|I

defined by

K(xO|xI) =
∑
xH

K(xO, xH |xI).

At this point, a model M is simply a subset of KO,H|I . The image of M under πO,
denoted by MO|I , consists of those maps that can be represented by the network.

Definition 1 (Universal approximator). Let M be a model in KO,H|I . We call M a uni-
versal approximator (in KO|I), if every element of KO|I can be approximated arbitrarily
well by elements of MO|I = πO(M). We can reformulate this in terms of the closure of
MO|I :

KO|I = cl
(
MO|I

)
.

The model M is a deterministic universal approximator (in KO|I), if every element of

Ext
(
KO|I

)
can be approximated arbitrarily well by elements of MO|I , or, equivalently,

Ext
(
KO|I

)
⊆ cl

(
MO|I

)
. Clearly, every universal approximator is a deterministic univer-

sal approximator.

We now examine the properties of Definition 1 under further marginalisation of the output
states. More precisely, consider

O ⊆ O′ ⊆ Λ,

and the corresponding marginalisation

πO′,O : KO′|I → KO|I ,

defined by

πO′,O(K(xO | xI)) :=
∑

xO′\O

K(xO, xO′\O | xI).

Clearly, we have πO = πO′,O ◦ πO′ , and MO′|I is mapped onto MO|I . It is easy to see
that

πO′,O

(
Ext(KO′|I)

)
= Ext(KO|I). (1)

Common Cause Condition for Universal Approximation
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This follows from the fact that πO′,O is an affine map between convex sets, that is

πO′,O((1− t)K1 + tK2) = (1− t)πO′,O(K1) + tπO′,O(K2), (2)

for all K1,K2 ∈ KO′|I and t ∈ [0, 1].

Proposition 2 (Marginal universality). Let M be a model in KΛ|I , and let O ⊆ O′ ⊆ Λ.
Then the following holds:

1. If M is a universal approximator in KO′|I then it is also a universal approximator
in KO|I .

2. If M is a deterministic universal approximator in KO′|I then it is also a determin-
istic universal approximator in KO|I .

Proof. The proof is divided into three steps where we abbreviate πO′,O by π.

Step 1: Consider the open set U := KO|I \ cl(MO|I). In what follows, we show that the

open preimage U ′ := π−1 (U) and the closed set cl
(
MO′|I

)
are disjoint.

Obviously, we have

π−1
(
cl(MO|I)

)
⊇ π−1

(
MO|I

)
⊇ MO′|I . (3)

Given that the set on the LHS of (3) is closed, due to the continuity of π, this implies

π−1
(
cl(MO|I)

)
⊇ cl

(
MO′|I

)
. (4)

This finally yields

U ′ ∩ cl(MO′|I)
(4)

⊆ π−1 (U) ∩ π−1
(
cl(MO|I)

)
= π−1

((
KO|I \ cl(MO|I)

)
∩ cl(MO|I)

)
= π−1(∅)
= ∅. (5)

Step 2: We show

E ′ ⊆ cl(MO′|I) ⇒ E := π(E ′) ⊆ cl(MO|I). (6)

We prove this by contradiction and assume that there exists E ∈ E \ cl(MO|I). Then the
open set U = KO|I \ cl(MO|I) contains E and is therefore non-empty. Choose E′ ∈ E ′

satisfying π(E′) = E. Clearly, E′ is an element of U ′ = π−1(U). By (5), U ′ and cl(MO′|I)
are disjoint, so that E′ ∈ E ′ \ cl(MO′|I). That means E ′ ̸⊆ cl(MO′|I).

Step 3: We can finally verify the two statements of the proposition by choosing E ′ and E
in (6) appropriately. For universal approximation, we set

E ′ := KO′|I , and E := π(E ′) = KO|I .
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The statement about deterministic universal approximation is obtained by setting

E ′ := Ext
(
KO′|I

)
, and E := π(E ′)

(1)
= Ext

(
KO|I

)
.

In what follows, we specify the kind of models M we consider in this article. We interpret
input-output maps as being generated by a feed-forward network consisting of layers
L0, L1, . . . , LD where L0 = I is the input layer and LD = O is the output layer. Thus,
N = L0 ∪L1 ∪ · · · ∪LD, and Λ = N \L0. Given that only L0 and LD are observable, we
refer to the layers L1, . . . , LD−1 as the hidden layers, and their union is denoted by H.
To define the network, we now consider directed edges between the nodes. We assume
that couplings are only allowed between neighbouring layers, that is (i, i′) ∈ E and i ∈ Lk

always implies i′ ∈ Lk+1. In particular, units within a layer are not connected via edges,
and edges cannot jump over a layer. We write n for the number of input units and m for
the number of output units, that is |L0| = n and |LD| = m.

We now define models in terms of parametrisations that are consistent with the given
network structure. More precisely, for each unit i ∈ Λ, we consider a parametrisation

θi 7→ Kθi .

With θ := (θi)i∈Λ we define a kernel Kθ ∈ KO,H|I by

Kθ(xO, xH |xI) :=
∏
i∈Λ

Kθi(xi|xpa(i)). (7)

Collecting all these kernels Kθ, we obtain the model

M := {Kθ : θ ∈ Θ} ⊆ KΛ|I ,

which we refer to as a feed-forward model .

Proposition 2 implies a simple graphical requirement for a feed-forward model M to
be a (deterministic) universal approximator in KO|I , which is stated in the following
proposition.

Proposition 3 (Graphical condition for universal approximation). Let M be a feed-
forward model which we assume to be a deterministic universal approximator in KO|I .
Then:

(1) For every input unit i ∈ I and every output unit o ∈ O, there exists a directed path
from i to o.

(2) In consequence, there exists a common cause i ∈ N of all output units o ∈ O. We
refer to this as the common cause condition (for determinsitic universal approxima-
tion).

Common Cause Condition for Universal Approximation
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Proof. Assume that there exist i ∈ I and o ∈ O that are not connected by a directed
path from i to o. Then Xo is conditionally independent of Xi given XI\i for all Kθ ∈ M.
Therefore, MO|I is contained in the closed set C of kernels K ∈ KO|I for which Xo is
conditionally independent of Xi given XI\i. This implies that also its closure, cl(MO|I),
is contained in C. Clearly, the complement of C is an open and non-empty set. It consists
of those kernels for which Xo is not conditionally independent of Xi given XI\i. Such a
map is given, for instance, by the copy map which assigns as output of o simply the input
of i.

3 Information-theoretic derivation of the common cause
condition

The main result of this article is concerned with deriving the second criterion of Proposi-
tion 3 by making use of Theorem 4 from (Steudel and Ay, 2015), stated below. It relates
the stochastic dependencies of observed variables to the underlying causal structure given
in terms of a directed acyclic graph G = (N,E). A probability distribution p of random
variables XN = (Xi)i∈N is said to factorise according to G, if it satisfies

p(xN ) =
∏
i∈N

p(xi|xpa(i)).

Theorem 4. Let G = (N,E) be a directed acyclic graph, and let XN = (Xi)i∈N be
random variables with a distribution that factorises according to G. For a subset O of N ,
define the set Ac+1 of all common ancestors of O of order c+ 1, that is

Ac+1 := {j ∈ N : j reaches more than c units in O} .

Then, with

Ic(XO) :=
∑
k∈O

H(Xk)− c ·H(XO), (8)

the entropy of these common ancestors is lower bounded as

H(XAc+1
) ≥ 1

|O| − c
Ic(XO). (9)

In particular, if Ic(XO) on the RHS of (9) is positive, then there exists a unit j ∈ N and
corresponding units k1, . . . , kc+1 ∈ O such that j ; ki, i = 1, . . . , c+ 1.

Let us now relate the setting of this theorem to the setting of a feed-forward network, as
introduced in Section 2. Clearly, the feed-forward network represents a directed acyclic
graph G. Furthermore, if we multiply a kernel of the structure (7) with the uniform input
distribution µ on {±1}I , then we obation a joint distribution p on {±1}N that factorises
according to G. Below, we will require a reformulation the function Ic, defined by (8), to
a function on kernels K ∈ KO|I :

Ic : KO|I → R, K 7→ Ic(K) := Ic(K∗(µ)). (10)

Nihat Ay, Leon Sierau
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Stated in words, we simply take the image of the uniform distribution µ with respect to
K, the K-push forward of µ, and then evaluate Ic of it, as defined by (8). Obviously, the
map (10) is continuous (in K).

Theorem 5. The common cause condition for deterministic universal approximation,
second condition of Proposition 3, follows from the information-theoretic inequality (9) of
Theorem 4.

Proof. To prove this theorem, we define a deterministic map f : X → Y that cannot be
approximated arbitrarily well if the condition is not satisfied. For that, we enumerate
the units of the input and output layer as L0 = {1, 2, . . . , n} and LD = {1, 2, . . . ,m},
respectively. We then define f as the map that simply copies the state of the first input
unit into the states of all output units, that is f : {±1}n → {±1}m, (x1, . . . , xn) 7→
(x1, . . . , x1).

We now evaluate Ic(K
f ), as defined by (10). It is easy to see that image of the uniform

distribution with respect to Kf is given by

Kf
∗ (µ)(xO) =

 0.5 if xi = −1 for all i ∈ O
0.5 if xi = +1 for all i ∈ O
0 otherwise

. (11)

That implies

I|O|−1(K
f ) =

∑
i∈O

H(Xi)− (|O| − 1)H(XO) = |O| ln 2− (|O| − 1) ln 2 = ln 2.

Now we choose 0 < ε < ln 2. Given that Ic is continuous, the preimage U of the open
interval ] ln 2− ε, ln 2+ ε[ is an open neighbourhood of Kf in KO|I . If K

f can be approx-

imated arbitrarily well by the model then every open neighbourhood of Kf , in particular
U , has a non-empty intersection with MO|I . Therefore, there exists K ∈ M, such that
πO(K) ∈ U , and therefore

ln 2− ε < I|O|−1(πO(K)) < ln 2 + ε.

In particular, I|O|−1(πO(K)) > 0. Clearly, µ ⊗ K factorises according to G and by
Theorem 4, we have a common ancestor of order |O| = m.

Figure 1 visualizes the common cause condition for deterministic universal approximation.
Furthermore, it shows that the first condition of Proposition 3 is stronger than the second
one. This is because the first condition would also exclude both networks shown in Figure
1, whereas the common cause condition only excludes the network on the RHS.

The common cause condition implies that if we upper bound the number of outgoing
edges of each unit, universal approximation can only be achieved if the network is deep
enough. In the following corollary of Theorem 5, we consider a simple instance of this
intuition.

Common Cause Condition for Universal Approximation
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not excluded

Figure 1: The network on the LHS is not excluded by the common cause condition because
there is an input node that reaches all output nodes. This condition is not satisfied for
the network on the RHS.

Corollary 6. Assume that in the feed-forward network each node of a layer Li can reach
at most ρ ≥ 2 nodes of the next layer Li+1, and consider a corresponding feed-forward
model M. Then for M to be a deterministic universal approximator it is necessary that
the depth of the network, D, satisfies

D ≥ lnm

ln ρ
. (12)

In particular, condition (12) is necessary for universal approximation.

Proof. By iteration, each node of layer Li can reach at most ρk nodes of layer Li+k. Now,
for a depth D of the network with

ρD < m

there is no input node that reaches all output nodes so that the network cannot be a
deterministic universal approximator according to Theorem 5. Thus, it is necessary that

ρD ≥ m,

which is equivalent to (12).

If we set m = ρk in (12) then we obtain D ≥ k. In the example shown in Figure 2, ρ = 2,
and m = 4 = ρ2, so that the depth D has to be at least 2. However, as one can see, this
is not sufficient for the network to have a node that reaches all output nodes.

Note that while the first criterion of Proposition 3 is stronger than the second, no stronger
condition on the necessary depth of the network follows from it. More precisely, if ρD ≥ m
it is possible that every input unit reaches every output unit.

The following requirement on the depth of the feed-forward network is based on condi-
tion (1) of Proposition 3 and cannot be derived from condition (2), the common cause
condition. Instead of bounding the number of outgoing edges, we now bound the number
of incoming edges. In the neuroscience terminology, this corresponds to having narrow
receptive field (i.e, each neuron in a layer Li receives inputs from at most a bounded num-
ber of neurons in the previous layer Li−1). A condition on the necessary depth similar to
the condition of Corollary 6 follows directly.
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Figure 2: For this network, we have four output nodes, that is m = 4, and each node
of one layer connects to at most two nodes of the following layer, that is ρ = 2. The
necessary condition (12) then translates to D ≥ 2. However, there is no node in the
network that reaches all output nodes.

Corollary 7. Assume that in the feed-forward network each node of a layer Li can receive
input from at most ρ ≥ 2 nodes of the previous layer Li−1, and consider a corresponding
feed-forward model M. Then for M to be a deterministic universal approximator it is
necessary that the depth of the network, D, satisfies

D ≥ lnn

ln ρ
. (13)

Proof. By the same iteration argument as in the proof of Corollary 6, every unit of the
output layer LD can be reached by at most ρD units of the input layer. Hence, for all
output units to be reached by all input units, a necessary condition immediately follows
with

ρD ≥ n ⇔ D ≥ lnn

ln ρ
.

4 Stochastic neurons and the parameter counting ar-
gument

The typical way to obtain necessary conditions for universal approximation is based on
simple parameter counting. To be more precise, we consider a stochastic neuron j ∈
L1 ∪ · · · ∪ LD which is defined in terms of a weight vector wj = (wij)i∈pa(j) and a
threshold ϑj . The probability for the stochastic neuron j to generate the state +1 is then
given by

Kwj ,ϑj (+1|xpa(j)) :=
1

1 + e−2(
∑

i∈pa(j) wijxi−ϑj)
.

If each node of the network has at most ρ outgoing edges, then the total number of
parameters is upper bounded by

ρ · (|L0|+ · · ·+ |LD−1|) + |L1|+ · · ·+ |LD|. (14)
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For simplicity, let us consider the special case where all layers have width m. Then the
bound (14) reduces to

D ·m · (ρ+ 1) . (15)

We obtain the same bound on the number of parameters, if each computational node
has at most ρ incoming edges. More precisely, the number of parameters is then upper
bounded by

ρ · (|L1|+ · · ·+ |LD|) + |L1|+ · · ·+ |LD|
which also reduces to (15) if all layers have the same width m. For a feed-forward model
to be a universal approximator, the bound (15) has to exceed the dimension of KO|I , the
set of the input-output kernels, that is

D ·m · (ρ+ 1) ≥ 2m(2m − 1).

This is equivalent to

D ≥ 2m(2m − 1)

m · (ρ+ 1)
. (16)

Condition (16) of the parameter counting argument is typically stronger than the con-
ditions (12) and (13), respectively. However, Proposition 3 equips us with very simple
graphical conditions to rule out universal approximation and thereby complement param-
eter counting.

Consider for example an arbitrarily deep network with some bound ρ on the number

of children (or parents) of each unit and D ≫ 2m(2m−1)
m·(ρ+1) . If there exists a pair (i, o),

i ∈ I, o ∈ O such that there exists no directed path (i ⇝ o), the corresponding feed-
forward model cannot be a universal approximator. This situation is displayed in Figure
3.

· · ·

Figure 3: A deep network with ρ = 2, m = 3 and D ≫ 2m(2m−1)
m·(ρ+1) . All edges that lie on

directed paths originating at the bottom-most input neuron are drawn as dotted arrows.
Because the same sparse connection pattern is repeated between every pair of successive
layers, the top-most output neuron is unreachable from the bottom-most input neuron.
Hence, although the network meets the depth condition suggested by the parameter-
counting argument, it still falls short of being a universal approximator.
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Abstract

Artificial Intelligence and Machine Learning systems are increasingly being de-
ployed in Human Resources (HR), including sensitive tasks such as bonus alloca-
tion. This paper benchmarks modeling techniques – ranging from transparent white-
box models (stepwise regression, Bayesian network, fuzzy rules) to high-performing
black-box algorithms (random forest, gradient boosting, neural networks) – on small
sample HR data. In addition, a large language model (LLM) was tasked with de-
riving human-understandable rules directly from the training set, offering a novel
alternative aligned with explainability requirements. The results reveal that while
black-box models deliver superior predictive accuracy, they struggle to meet AI Act
transparency obligations. The study concludes with recommendations for balancing
performance, interpretability, and regulatory compliance and outlines the possibili-
ties for the integration of decision support systems using interpretable methods.

1 Introduction

The deployment of Artificial Intelligence (AI) in Human Resources Management (HR)
has moved from experimental proofs of concept to routine practice in recruitment, per-
formance evaluation, and bonus allocation. McKinsey’s 2024 global AI survey (McKinsey
Global Institute, 2024) reports that AI has moved into the mainstream: more than three-
quarters of organizations already apply it in at least one business function, and almost
a third of large companies use algorithms for critical HR decisions such as hiring, perfor-
mance evaluation, and employee development. Although only 12 percent of respondents
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report routine use of generative AI in HR, adoption is accelerating. Large enterprises
both spearhead uptake and redesign internal processes to embed AI, and HR emerges as
one of the functions with the highest intensity of AI deployment and perceived impact.

At the same time, prominent failures have revealed the legal and ethical risks of opaque
”black-box” models. The (Larsson et al., 2024) argues that bias is an intrinsic feature
of HR AI systems because they inherit training data patterns and their algorithms are
hard to audit. Citing documented cases in which automated hiring tools disadvantaged
candidates by gender or ethnicity, the study calls for tighter transparency requirements
and stronger regulatory oversight.

1.1 Regulatory background

In March 2024 the Council of the European Union adopted Artificial Intelligence Act
(Regulation (EU) 2024/1689, (European Union, 2024), hereafter ’AI Act’), the first hor-
izontal, risk-based regulation of AI systems worldwide1. Applications that evaluate or
classify individuals for employment, promotion, or termination and monitor or evaluate
performance and behavior are explicitly listed as high-risk (Annex III 4). Providers of
such high-risk systems must therefore (i) establish a risk management system, (ii) reg-
ister the AI system in the public EU database, (iii) generate comprehensive technical
documentation, (iv) guarantee human oversight, (v) ensure traceability and appropriate
accuracy, robustness, and cybersecurity, (vi) conduct data governance, establish a quality
management system(ISACA, 2024).

From a modeling perspective, these requirements shift attention to transparency and
interpretability. Whereas large language models, deep neural networks, or gradient-
boosting ensembles often deliver state-of-the-art predictive accuracy, their inner logic is
nontrivial to convey to nontechnical stakeholders. The emerging literature on eXplainable
AI (XAI) documents this tension between accuracy and comprehensibility (Molnar and
Freiesleben, 2024; Shwartz-Ziv and Tishby, 2017). In HR contexts, the risk is amplified:
models operate on small, heterogeneous data sets that combine behavioral, transactional,
and demographic attributes, making them vulnerable to both sampling variance and
indirect discrimination(Bujold et al., 2024; Capasso et al., 2024).

1.2 Research gap

Recent empirical studies have benchmarked white-box and black-box algorithms in stan-
dardized machine learning repositories (Kruschel et al., 2025; Fischer et al., 2023). How-
ever, analogous comparisons of real HR data sets - which typically contain many cor-
related predictors but observations of few - remain scarce. Moreover, just few works
evaluate models simultaneously on (i) predictive performance, (ii) formal interpretability,
and (iii) explicit compliance with the AI Act transparency clauses. Addressing this gap is
timely and relevant: legal scholars, advisory companies, and international organizations
warn that business leaders ’risk sleepwalking toward AI misuse’ in HR if they continue

1The regulation was published in the EU Official Journal on July 12th 2024 and enters into force on
August 1st 2024 with an implementation period of 24 months for most provisions.
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to prioritize performance over auditability(Herrera-Poyatos et al., 2025; Marwala, 2025;
Mökander et al., 2021; Oxborough et al., 2018).

1.3 Objectives and contributions

The authors aim to make the following contributions.

1. We created eight prediction models that span the white-box/black-box spectrum,
i.e. stepwise linear regression, a hybrid Bayesian network, a Mamdani-type fuzzy
rule system, random forest, gradient-boosting regression, and a single-hidden-layer
neural network.

2. Use the training and testing data set in the ChatGPT large language model and
compare the prediction results with the other models.

3. Using an anonymized data set of employee performance, evaluation and annual
bonuses from the Faculty of Management (38 employees, 59 potential predictors),
we benchmark these models on a hold-out test set using several common error
metrics (RMSE, MAE, RMSLE, etc.).

4. We map every model to the transparency obligations of the AI Act and discuss
trade-offs between numeric accuracy and regulatory fitness.

2 Methods and their properties

2.1 Data set

The empirical study uses an anonymized personnel table used by the management of fac-
ulty for periodic evaluation, planning, and decision-making. The table contains 38 em-
ployees (rows) and 59 candidate predictors (columns), including

• simplified organizational role, study-administration engagement, department,

• quantitative teaching load (guaranteed and taught courses, English-taught share,
etc.),

• research indicators (publications, citations, research grants),

• service indicators (expert panels, state-exam committees, outreach activities),

• the continuous target variable concerning employee annual bonuses.

The feature-to-observation ratio (p/n ≈ 1.6) typifies the ’wide but shallow’ setting
(Ahn, 2006) that can be encountered in HR analytics of smaller organizations. The
predictors mix numerical, ordinal, and nominal scales and can contain sporadic missing
values.
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2.2 Pre-processing

(a) Cleaning. Related columns with vast majority of zeros were added together (like
counts in categories of impact factors journals or different types of mobilities and
outreach activities).

(b) Cleaning. Non-informative columns were dropped (variants of citation counts
correlated with WOS citations). Character variables were converted to factors.

(c) Missing values. There were no missing values.

(d) Feature reduction. We were searching for near-zero-variance predictors. How-
ever, these were already removed in earlier phases. Similarly, similar to rare factor
levels (< 5% frequency), which were already removed in the categorization phase of
the faculty function variable.

(e) Train–test split. An 80:20 stratified split (stratified on the binary flag bonus>0)
was fixed with the setup of a pseudorandom number generator seed.

(f) Scaling. For algorithms sensitive to magnitude (artificial neural network), the
numeric input was centered and scaled; the target was transformed by log(1 + y)
when required.

2.3 Model catalogue

Following the transparency imperative of the AI Act, we explicitly include white-box tech-
niques whose internal logic can be inspected directly and add problematic (but powerful)
state-of-the-art black-box learners complemented with partial post hoc explanations. The
comparison of both categories can highlight the possible loss caused by regulatory envi-
ronment in EU. Table 1 summarizes key characteristics.

Table 1: Overview of candidate models. “Interpretable in principle” means that coeffi-
cients, rules or CPTs can be inspected without auxiliary tools.

Family Concrete algorithm Transparency level

White-box Stepwise linear regression (AIC) coefficients visible
Conditional Gaussian BN graph + CPTs, causal queries
Fuzzy rule system linguistically readable rules

Dubious Estimates by LLM (ChatGPT) explanation by system of rules?

Black-box Random forest variable importance + SHAP
Extreme gradient boosting tree-SHAP explanations
Multilayer perceptron (nnet) post-hoc SHAP, Integ. gradients
Gradient b. regr. via ChatGPT tree-SHAP explanations
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2.3.1 White-box models

Stepwise linear regression (LM–AIC). We fit an ordinary least squares model
(Chambers, 1992) and apply bidirectional AIC search to control over-parameterization
(Venables and Ripley, 2002). The significant number of zero values in the response vari-
able led us to the idea of a more sophisticated model. The variant of Tweedie GLM (Dunn
and Smyth, 2005) was rejected due to harder interpretability, zero inflated Poisson, or
negative binomial regression (Zeileis et al., 2008), which are usable only for count data
(bonuses in general cannot be regarded as count data). The last possibility considered was
the combination of logistic regression model (zero or nonzero bonus) and GLM Gamma
with log link (for nonzero bonuses only) (Venables and Ripley, 2002). The last possibil-
ity is interpretable but is infeasible for a small sample of data with a higher number of
features.

Hybrid Bayesian network (BN–CG). Discrete predictors remain categorical, con-
tinuous predictors (including the logarithmic transformation of the bonus) are treated as
Gaussian nodes. A hill-climbing structure search with BIC–CG score learns the directed
acyclic graph under the constraint that continuous nodes cannot be parents of discrete
nodes (Scutari, 2010). The model parameters are then learned using MLE-CG, which is a
combination of maximum likelihood estimators for conditional probability tables (discrete
nodes) and least squares regression models (continuous nodes) (Azzimonti et al., 2019).
The network gives predictions (insertion of evidence), contains directly interpretable con-
ditional distributions (Lauritzen, 1996), and provides a possibility of causal interpretation
(Pearl, 2009).

Fuzzy rule system (FRS-WM). We employ the fuzzy rule approach introduced in
(Mamdani and Assilian, 1975) and implemented in the FRBS R package (Riza et al.,
2015). Each input variable domain is partitioned into five Gaussian membership func-
tions. The Wang–Mendel algorithm (Wang and Mendel, 1992) is generally used to han-
dle regression tasks and induces interpretable IF–THEN rules; defuzzification employs a
weighted average. The output membership sets are defined on the log(1 + y) scale to
avoid dominance of the zero cluster, and we used a finer partition into nine membership
functions.

2.3.2 Black-box models

Random forest (RF). We used Breiman’s random forest algorithm (based on the
Breiman and Cutler procedure) used for classification and regression (Breiman, 2001).
We grow 500 trees with one third of candidate splits for the regression task. Out-of-bag
error guides hyper-parameter tuning.

Partial interpretability is provided by feature importance scores (Gini importance)
which give only global explanations and SHapley Additive Explanations (SHAP) values
which provide more informative contributions of single features to particular predictions
(Lundberg and Lee, 2017).
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Extreme gradient boosting (XGB). XGBoost is a scalable end-to-end tree boosting
system able to work with sparse data and weighted quantile sketch for approximate tree
learning (Chen and Guestrin, 2016). Gradient-boosted trees with lower learning rate 0.1
which is more robust to overfitting but slower to compute. Therefore, it we incresed
number of iterations to 300 rounds and limited the maximal tree depth to 6.

Although we ranked this approach among black-box models, it has a partial inter-
pretability. SHAP interaction values can be used for local explanations (Jabeur et al.,
2024).

Single-hidden-layer multilayer perceptron. Using nnet, we train a basic example
of the artificial neural network approach, a single hidden layer multilayer perceptron
(Ripley, 1996) with a size of 20 neurons in the hidden layer with skipped connection of
input and output. The L2-decay was set to 0.01 and a maximum of 1000 iterations were
performed on z-scored predictors and log-scaled target (Venables and Ripley, 2002). The
output clipping prevents numeric overflow.

Gradient Boosting Regression (GBR) in ChatGPT. We asked ChatGPT with
the GPT-4.5 model to train on the same example of training set used in the above methods
and then to provide predictions for cases in the test set (done only with a single partition
used in the white-box approaches above). The large language model generated Python
code and used a Gradient Boosting Regressor algorithm implemented in the scikit-learn
Python package (Pedregosa et al., 2011), which is closely related to the XGB approach
mentioned above and based on Friedman’s gradient boosting algorithm (Friedman, 2001).

Gradient boosting iteratively builds an additive model by sequentially fitting weak
decision trees to the residual errors of previous ensemble members. The hyperparame-
ters were tuned using cross-validation and the model handled categorical variables using
one-hot encoding. Interpretability is only partial, can be realized by analyzing feature
importance derived from the trained model and providing insights into the global contri-
butions of individual predictors.

Large Language Model-based Heuristic (LLM). We employed a topical heuristic
approach using a large language model (LLM), specifically GPT-4.5 (OpenAI, 2025), to
derive a prediction directly from training data. Rather than using traditional numerical
optimization methods, the LLM analyzed the training data set, identified key features im-
pacting bonuses (such as administrative roles, academic positions, publication activities,
and teaching workload), and formulated explicit IF–THEN decision rules. The predictions
were manually derived by applying these rules to new data.

The following prompt was used with the anonymized training and testing CSV files:

Simply study the ”train” file as a large language model to understand how
bonuses are allocated. Then, without training any machine learning models,
attempt to assign bonuses to the ”test” file based on the same principles.

ChatGPT itself declares this method to be interpretable, transparent, and suitable for
scenarios that require high explainability and compliance with regulatory requirements
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such as the AI Act (European Union, 2024). Since this is just a declaration appearing as
an output of LLM and we were not able to control the real procedure. Also, we performed
a single run, since we cannot be sure whether the LLM under same account does not share
previous results. Therefore, we labeled the method as ’dubious’ in Table 1.

2.4 Hyper-parameter tuning

As we briefly mentioned above, the white-box models used internal criteria (AIC, BIC,
rule strength) while the black-box learners were tuned by five-fold cross-validation in
the training split, minimizing the root mean square error (RMSE). The kind reader can
imagine that this aspect of model optimization can be advanced based on user’s more
advanced experience with particular models, and models could be fine-tuned even further.
However, we did not focus on this aspect; we aimed to present a comparison of traditional
approaches with the capabilities of emerging large language model tools.

2.5 Evaluation metrics

To assess accuracy, we report seven scalar metrics commonly used in regression bench-
marking (Hyndman and Koehler, 2006):

RMSE root-mean-squared error
√

1
n

∑
i(yi − ŷi)2

MAE mean absolute error 1
n

∑
i |yi − ŷi|

MedAE median absolute error median |yi − ŷi|

RMSLE RMSE in log space
√

1
n

∑
i(log(1 + yi)− log(1 + ŷi))2

MAPE mean absolute percentage error 1
n

∑
i
|yi−ŷi|
yi+ε

sMAPE symmetric MAPE 1
n

∑
i

|yi−ŷi|
(|yi|+|ŷi|+2ε)/2

R2 coefficient of determination 1−
∑

(yi−ŷi)
2∑

(yi−ȳ)2

Where ε = 10−6 prevents division by zero for zero bonuses. RMSLE is used to predict
the correct order of magnitude of a variable, since it uses a logarithm, it produces NaN
if negative prediction appears. All metrics were evaluated on the previously unseen test
set to emulate real deployment.

3 Results

Predictive accuracy. Gradient boosting (XGBoost) delivers the second lowest RMSE
(5 400 CZK) and a strong R2 (0.92), marginally ahead of the LLM-generated gradient
boosting (5 431 CZK). The large language model (LLM) rule set produced by ChatGPT
attains the best RMSE (4 899 CZK), MAE (2 000 CZK) and perfect median error, indi-
cating few large outliers but an acceptable central tendency. Among white-box methods,
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41



Table 2: Test–set accuracy of all candidate models (values rounded to two decimals).

Model RMSE MAE MedAE MAPE sMAPE R2 RMSLE

LM–step AIC 31 703.2 26 920.7 27 224.4 1.02×1010 1.60 0.32 –
BN–hybrid 6 918.6 4 125.5 970.5 2.57×107 1.66 0.66 3.82
FRS–WM 12 331.3 7 993.4 3 997.2 1.90×106 1.33 0.55 4.85
Random Forest 10 883.8 8 957.1 7 759.8 6.56×109 1.15 0.13 6.64
XGBoost 5 400.3 5 065.2 5 343.0 3.18×109 1.12 0.92 6.18
MLP (nnet) 24 692.4 16 270.1 7 526.9 2.98×108 1.69 0.41 4.78
ChatGPT – GBR 5 431.2 4 209.0 3 129.4 1.29×109 1.18 0.69 4.90
ChatGPT – LLM 4899.0 2 000.0 0.0 0.3 0.14 0.37 0.37

the hybrid Bayesian network clearly outperforms stepwise linear regression and the fuzzy
rule system, reducing the RMSE by roughly 80%.

Interpretability and compliance. Stepwise LM, the Bayesian network and the fuzzy
rule base provide intrinsic explanations (coefficients, conditional-probability tables, lin-
guistic rules) and therefore satisfy the AI Act’s transparency clause without auxiliary
tools. Random forest and XGBoost require post-hoc SHAP analysis, while MLP is es-
sentially opaque; all three are consequently classified as high-risk systems that are not
transparent and sufficiently interpretable. Therefore, it cannot be used as an automated
decision system even with human oversight.

The ChatGPT LLM solution produces amazing accuracy of prediction. It exactly
guessed five out of six bonuses, where the last one in reality was set lower for reasons
not contained in the HR evaluation data set. However, this unbelievable model strength
in this specific task on a small sample needs to be tested in a correct scientific manner,
not by anecdotic evidence as in this case. The LLM formulates compact natural-language
rules, but its provenance and training data remain opaque, raising traceability concerns.

Let us present example of a LLM rule-based decision (prediction of bonus) in case of
two emloyees accompanied by a thorough justification and argumentation.

Employee 3
Assigned bonus: 0 CZK
Criteria:

• Position: Without administrative involvement.

• Study administration involvement: Not involved.

• Academic activity: Low to average, 35 citations, 4 new, without sig-
nificant publishing activity.

• Teaching activity: Low workload (0.6 FTE), average student-hours,
and only 2 courses taught.

• Other activities: Higher participation in faculty-organized events (24),
but low mobility and very limited training.
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Conclusion: The employee does not meet the threshold of activity that would
justify awarding an extraordinary bonus.

Employee 6
Assigned bonus: 25,000 CZK
Criteria:

• Position: Member of the Academic Senate, implying a higher level of
responsibility.

• Study administration involvement: Actively engaged in study ad-
ministration.

• Academic activity: Slightly lower publication activity (8 citations in
total, only 1 new), but this lower level is compensated by other factors.

• Teaching activity: Very high teaching load (2,282 student-hours) and
a large number of taught courses.

• Other activities: Significant participation in training sessions (29),
solid involvement in faculty-organized events (14).

Conclusion: The employee demonstrates a high level of commitment in ad-
ministrative roles, teaching, and education, fully justifying a higher bonus of
25,000 CZK.

Overall assessment. On this “wide-but-shallow” HR data set the performance gap
between the interpretable and black-box models narrows: the Bayesian network achieves
an RMSE only 28% higher than XGBoost while maintaining full explainability.

Given the preference of the EU AI Act for transparent systems, the hybrid BN offers
the best trade-off between precision and regulatory fitness, while pure black-box models
will not be usable as a support for decision-making in high-risk fields like HR.

4 Conclusion and future directions

This study demonstrates the applicability and comparative strengths of eight modeling
approaches for the allocation of bonuses in a small academic organization. Although
black-box models, particularly ensemble methods such as gradient boosting, excel in pre-
dictive performance, they fall short of the stringent transparency and interpretability
requirements imposed by the AI Act. In contrast, white-box models, like stepwise regres-
sion, Bayesian networks, and fuzzy rules—offer interpretable structures but struggle with
predictive accuracy in sparse data contexts. The LLM approach showed good predic-
tion accuracy accompanied by rule-based argumentation, but failed to deliver complete
transparency and auditability.

Despite these insights, several limitations should be addressed in future research.
More extensive data sets and longitudinal evaluation are necessary to validate the sta-
bility of model performance over time. In addition, refining the LLM heuristic approach
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through reinforcement learning from human feedback (RLHF), integration with formal
rule-learning algorithms could enhance its consistency and traceability and thorough ex-
perimental design.

Our findings underscore that the trade-off between predictive power and regulatory
compliance will remain a key challenge for AI applications in high-risk decision support
system resources, especially under the evolving European AI regulatory framework.
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M. Brucher, M. Perrot, and É. Duchesnay. Scikit-learn: Machine Learning in Python,
2011. URL https://scikit-learn.org/.

B. D. Ripley. Pattern Recognition and Neural Networks. Cambridge University Press,
Cambridge, 1996. ISBN 978-0521460865.

L. S. Riza, C. Bergmeir, F. Herrera, and J. M. Beńıtez. frbs: Fuzzy rule-based systems
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Abstract

The conditional independence (CI) relation of a distribution in a max-linear
Bayesian network depends on its weight matrix through the C∗-separation criterion.
These CI models, which we call maxoids, are compositional graphoids which are in
general not representable by Gaussian or discrete random variables. We prove that
every maxoid can be obtained from a transitively closed weighted DAG and show that
the stratification of generic weight matrices by their maxoids yields a polyhedral fan.

1 Introduction

Linear structural equation models, sometimes called Bayesian networks, are of critical
importance in modern data science and statistics through their applications to causality
Pearl (2009) and probabilistic inference Koller and Friedman (2009). These statistical
models use directed acyclic graphs (DAGs) to represent causal relationships and conditional
independencies between random variables. Recently, there has been a focus on developing
graphical models which are able to capture causal relations between extreme events.
The two main approaches employ Hüssler–Reiss distributions Engelke et al. (2024, 2025)
and max-linear Bayesian networks, the latter of which are the main subject of this paper.

Max-linear Bayesian networks (MLBNs), were introduced in Gissibl and Klüppelberg
(2018) to model cascading failures. They are used in areas where these failures lead to
catastrophic events, such as financial risk and water contamination Leigh et al. (2019);
Rochet and Tirole (1996). A random vector X = (X1, . . . ,Xn) is distributed according to
the max-linear model on a DAG G if it satisfies the system of recursive structural equations

Xi =
∨

j∈pa(i)

cijXj ∨ Zi, cij ,Zi ≥ 0, (1.1)

where ∨ = max, the cij are edge weights, pa(i) is the set of parents of i in G, and the Zi

are independent, atom-free, continuous random variables.
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The structural equations mimic Bayesian networks in the extreme value setting. Despite
this similarity, the conditional independence (CI) theory of MLBNs turns out to be more
subtle in certain aspects than that of classical Bayesian networks which are governed by
the well-known d-separation criterion. In addition to the d-separations of the DAG, a
max-linear model may satisfy other CI statements which depend on the weight matrix C
appearing in (1.1). Améndola et al. (2022) observed that multiple distinct CI structures
can arise for the same DAG, each for a set of C-matrices with positive Lebesgue measure.
They introduced the graphical ∗-separation criterion which is complete but not strongly
complete for CI implication in MLBNs, and the C∗-separation criterion which takes C
into account and completely characterizes the CI structure of an MLBN. Moreover, the
following chain of implications from d- over ∗- to C∗-separation is valid for all MLBNs:

[i ⊥d j | L] =⇒ [i ⊥∗ j | L] =⇒ [i ⊥C∗ j | L].

In this paper, we focus on the CI structures which arise from C∗-separation since they
are the most refined according to these implications and MLBNs are generically faithful to
them. We call M∗(G,C) := { [I ⊥⊥ J | L] : [I ⊥C∗ J | L] in (G,C) } the maxoid associated
to the DAG G with coefficient matrix C and note that this is essentially the global Markov
property of G with respect to C∗-separation with given coefficient matrix C. We show
that M∗(G,C) is a compositional graphoid and that the set of distinct maxoids associated
to a fixed DAG G are in correspondence with the cones of a complete fan for which we
provide an explicit representation of the inequalities. The following is our main result.

Theorem. For any DAG G there is a hyperplane arrangement HG ⊆ RE such that for
every C ∈ RE \ HG the set

coneG(C) :=
{
C ′ ∈ RE \ HG : M∗(G,C) = M∗(G,C ′)

}
is a full-dimensional open polyhedral cone. The collection of all closures of such cones for
a fixed G forms a complete polyhedral fan FG in RE. Moreover the map which sends a
cone of FG to its maxoid is an inclusion-reversing surjection.

One immediate consequence of the above theorem together with the results of Améndola
et al. (2022) is that the maximal cones of FG correspond to the distinct CI structures which
can arise from a max-linear Bayesian network with positive Lebesgue measure for the
choice of C. In this sense, the maximal cones correspond to the generic CI structures of an
MLBN supported on G. Similarly, we call a weight matrix C generic if it does not lie on HG .
As we will show in Section 2, if there exist two nodes i, j ∈ V (G) such that there are at
least two distinct paths between i and j, then FG has at least two distinct full-dimensional
cones. This provides a strong contrast to classical linear structural equation models which
are generically faithful to d-separation, and thus almost every distribution in the model
exhibits the same CI structure; cf. Lauritzen (1996).

Our results also elucidate which CI structures may arise from a given graph and when
two graphs exhibit the same generic CI structure. This is critical for determining if the
graph structure may be recovered using only conditional independencies as is typically
done in constraint-based causal discovery algorithms, e.g.,Spirtes et al. (2000).

Polyhedral aspects of maxoids
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The remainder of this paper is organized as follows. In Section 2 we recall the details
of the ∗- and C∗-separation criteria and use this to provide an explicit description of the
linear inequalities which define coneG(C) via the critical paths of G. We then relate the set
of maxoids arising from a DAG G to the cones of the associated polyhedral fan. In Section 3
we show that every maxoid is a compositional graphoid but provide counterexamples
which demonstrate that maxoids need not be representable by either regular Gaussian
or discrete distributions. This again provides a contrast to Bayesian networks for which
Gaussian and discrete distributions are the primary parametric families which are studied.

2 The Polyhedral Geometry of C∗-separation

Let G = (V ,E) be a DAG on |V | = n vertices and denote the set of coefficient matrices
supported on G by RE

>0, i.e., all n× n matrices C with cij = 0 if i → j /∈ E and cij > 0
otherwise. We recall that a random vector X is distributed according to the max-linear
model on G if it satisfies eq. (1.1). This system of equations has solution X = C∗Z where
the matrix-vector product is done in max-times arithmetic. C∗ is the Kleene star matrix
of C whose entries are given by

(C∗)ij = max
π∈P (i,j)

∏
e∈π

cij ,

where P (i, j) denotes the set of all directed paths from i to j in G and
∏

e∈π cij is the weight
of the path π. The conditional independence structure of max-linear models depends on
inequalities between the weights of paths, which in the above form would not be polyhedral.
To solve this, we note that the coordinate-wise logarithm is an isomorphism which maps
RE

>0 → RE . This transformation takes us from max-times to max-plus arithmetic and in
this new coordinate system the Kleene star is given by

(C∗)ij = max
π∈P (i,j)

∑
e∈π

cij = max
π∈P (i,j)

ωC(π).

It is natural to extend the logarithm to send 0 to −∞ and thus when embedding
C ∈ RE into Rn×n we use the convention that cij = −∞ if i → j /∈ E(G). Those familiar
with tropical geometry will notice that C is actually a matrix over the tropical semiring
with max-plus arithmetic, however this will not be relevant for the results which we present
here. For the remainder of this paper, we will exclusively utilize the max-plus convention.

A path π′ is critical if ωC(π′) = maxπ∈P (i,j) ωC(π). If there is a unique critical path
between every pair of nodes i, j then we say that C is generic and denote this unique
path by πij

crit(G,C), omitting the pair (G,C) when it is clear from context. Note that
if C is not generic, then its entries satisfy some non-trivial linear equation of the form
ωC(π) = ωC(π′) for π,π′ ∈ P (i, j). Hence, the set of generic matrices is the complement
of a hyperplane arrangement HG whose defining equations depend on G. We are now
ready to introduce C∗-separation.

Definition 2.1. Let (G,C) be a weighted DAG with vertex set V and L ⊆ V . The critical
DAG G∗

C,L is the DAG on V such that i → j ∈ E(G∗
C,L) whenever i and j are connected

via a directed path, and no critical path from i to j in G intersects L.
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Figure 1: The types of ∗-connecting paths between i and j given L in a critical DAG G∗
C,L.

The colored colliders ℓ must belong to L; the non-colliders p, q must not belong to L.

Two nodes i and j are C∗-connected given L if there exists a path from i to j in G∗
C,L

of the form pictured in Figure 1. If no such path exists, then i and j are C∗-separated
given L which is denoted [i ⊥C∗ j | L].

Theorem 2.2 ((Améndola et al., 2022, Theorem 6.18)). Let (G,C) be a weighted DAG
and X be a random vector distributed according to the max-linear model on (G,C). Then

[i ⊥C∗ j | L] =⇒ [i ⊥⊥ j | L].

Moreover, the converse holds for all but a Lebesgue null set of weight matrices C.

C∗-separation generally entails more CI statements than d-separation. In particular
note that a ∗-connecting path can have at most one collider in its conditioning set whereas
d-separation allows any number of colliders in a connecting path. Moreover, it suffices to
block only a single critical path from i and j in order to separate them.

Example 2.3. Consider the diamond graph G with weight matrix C:

1

2 3

4

C =


−∞ c12 c13 −∞
−∞ −∞ c24 −∞
−∞ −∞ −∞ c34
−∞ −∞ −∞ −∞


Observe that P (1, 4) = {π2,π3} where πi = 1 → i → 4. If C satisfies ωC(π2) > ωC(π3),
then G∗

C,{2} is exactly the diamond above because π2 is a critical path from 1 to 4 which

intersects the conditioning set {2}. Since neither π2 nor π3 are of the forms displayed
in Figure 1, this MLBN satisfies [1 ⊥C∗ 4 | 2]. On the other hand, if ωC(π3) > ωC(π2)
then a similar argument yields that [1 ⊥C∗ 4 | 3]. Thus we get two distinct maxoids which
correspond to whether π2 or π3 is the critical path. Moreover, the maxoid M∗(G,C) is
completely determined by which side of the hyperplane

c12 + c24 = ωC(π2) = ωC(π3) = c13 + c34

the matrix C lies on.

Polyhedral aspects of maxoids
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Our goal in the remainder of this section is to develop the observations from the
previous example into a general result which connects weighted DAGs and their maxoids
using polyhedral geometry. We begin with a sequence of lemmas which further elucidate
the connection between the critical paths in (G,C) and the CI structure M∗(G,C).

Lemma 2.4. Let (G,C) and (G′,C ′) be two weighted DAGs on the same node set and
generic weights C and C ′. Then

M∗(G,C) = M∗(G′,C ′) ⇐⇒ πij
crit(G,C) = πij

crit(G
′,C ′) for all i ̸= j,

i.e., two weighted DAGs have the same critical paths if and only if their maxoids coincide.

Proof. “ ⇐= ”: If (G,C) and (G′,C ′) have the same critical paths then they give rise to
the same critical DAG for any L, implying equal maxoids.

“ =⇒ ” by contraposition: Suppose that π = πij
crit(G,C) ̸= πij

crit(G′,C ′) = π′ and
denote the nodes on π′ as follows:

π′ : i = ℓ′0 → ℓ′1 · · · → ℓ′m−1 → ℓ′m = j. (2.1)

We may assume that π does not contain any of the nodes ℓ′1, . . . , ℓ′m−1 (if this is not the
case, then we may replace j with an internal node common to both π and π′ and have
shorter but still differing critical paths). Then clearly [i ⊥C∗ j | ℓ′m−1] holds in (G′,C ′)
but not in (G,C), implying inequality of the respective maxoids.

Lemma 2.5. Let (G,C) be a weighted DAG and G the transitive closure of G. There
exists a matrix C supported on G such that M∗(G,C) = M∗(G,C).

Proof. For a fixed (G,C) with edge set E , let E be the edge set of its transitive closure
G. For any two path-connected nodes i, j ∈ V , let εij be the weight of the (not necessarily
unique) critical i− j path in (G,C), and fix a −∞ < δ < mini,j εij . One possible choice
of C is given by

C = (cij)i,j∈V =


cij if (i, j) ∈ E,

δ if (i, j) ∈ E \ E,

−∞ otherwise.

By construction, no edge in E \ E is contained in any critical path of (G,C). Thus, the
statement follows from Lemma 2.4.

A related notion is the weighted transitive reduction.

Definition 2.6. The weighted transitive reduction Gtr
C of a weighted DAG (G,C) is the

subgraph of G with edges determined as follows:

i → j ∈ E(Gtr
C ) ⇐⇒ i → j is the unique critical i− j path in (G,C).
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Figure 2: For appropriate Ctr and C, M∗(G,C) = M∗(Gtr
C ,Ctr) = M∗(G,C) holds.

Remark 2.7. Another consequence of Lemma 2.4 is that for any weighted DAG (G,C)
with generic C we have

M∗(G,C) = M∗(Gtr
C ,Ctr), (2.2)

where Ctr is any matrix supported on Gtr
C which gives rise to the same critical paths

as (G,C). Combined with Lemma 2.5, this means that the maxoid of any weighted DAG
arises as a maxoid of its transitive closure for an appropriately chosen weight matrix.

Example 2.8. The maxoid corresponding to the weighted DAG on the left in Figure 2 is

M∗(G,C) = {[1 ⊥⊥ 3 | 2] , [1 ⊥⊥ 3 | 2, 4] , [1 ⊥⊥ 4 | 2] , [1 ⊥⊥ 4 | 2, 3]}.

This maxoid is also realized by the weighted transitive reduction Gtr
C and transitive closure

G when Ctr and C are chosen according to Lemma 2.5 and Remark 2.7. In this example,
ctr24 > ctr23 + ctr34 and c14 < min{c12 + c24 , c13 + c34} must hold.

Theorem 2.9. Let (G,C) be a weighted DAG with generic C ∈ RE \ HG. The set

coneG(C) :=
{
C ′ ∈ RE \ HG : M∗(G,C) = M∗(G,C ′)

}
(2.3)

is a full-dimensional open polyhedral cone defined by linear inequalities of the form

ωC′(πij
crit(G,C)) > ωC′(π), for each π ∈ P (i, j) \ {πij

crit(G,C)}, (2.4)

for all distinct i, j ∈ V .

Proof. By Lemma 2.4, the set coneG(C) consists of all generic weight matrices C ′ supported
on G and giving rise to the same critical paths as C. This is precisely what is encoded
in the inequalities (2.4) for all i, j ∈ V . These strict linear inequalities in the entries of
C ′ define an open polyhedral cone in RE disjoint from HG . The cone is non-empty as
C ∈ coneG(C) is given, and full-dimensional because ε-perturbations of C in the direction
of any cij preserve its critical paths.

Remark 2.10. A minimal description of the cone defined in (2.4) can be obtained by
considering only pairs i, j which are connected by multiple disjoint paths, in the sense
that any two of them form a simple cycle in the skeleton of G. Indeed, if two i− j paths π1

and π2 contain a common intermediate node k, then the linear inequality corresponding to
the comparison of ωC(π1) and ωC(π2) is already implied by the linear inequalities which
arise from comparing their respective i− k and k − j portions.
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We now study the case where the weight matrix lies on the boundary of a cone. For
generic C, let C̃ be a matrix lying on a facet of the euclidean closure of coneG(C). This
means that for some pair i, j ∈ V , equality holds in (2.4) and thus there are two critical
i− j paths in (G, C̃): one is the unique critical i− j path πij

crit(G,C), and the other we
denote by π′. We assume that the paths are disjoint in the sense of Remark 2.10 and that
all matrices on the facet of coneG(C) on which C̃ lies give rise to the same critical paths
as C outside of those which factor through the directed i− j portion of the DAG.

Theorem 2.11. In the setting described above, the following holds:

M∗(G, C̃) = M∗(G,C) ∪M∗(G,C ′), (2.5)

where C ′ is a matrix supported on G giving rise to the same critical paths as C except for
in the directed i− j portion, where the unique critical path is π′.

Proof. We first consider the simplified case where G consists solely of the two directed
i− j paths. For readability, we set π := πij

crit(G,C) and refer to the intermediate nodes of
π and π′ using the notation in (2.1). In this setting, i and j are the only two nodes which
are connected by more than one path. Because of this, it suffices to prove both inclusions
in (2.5) only for separation statements of the form [i ⊥C∗ j | L].

“⊆”: Let L ⊂ V \ ij. Note that if [i ⊥⊥ j | L] ∈ M∗(G, C̃) holds, then L intersects
π ∪ π′ non-trivially. Indeed, if L ∩ (π ∪ π′) = ∅, then the critical DAG G∗

C̃,L
contains the

edge i → j, implying ∗-connectedness. Thus, this choice of L also separates i and j in
(G,C) or (G,C ′), implying the first inclusion.

“⊇”: In (G,C) any L ⊆ V \ij which intersects π non-trivially gives rise to the statement
[i ⊥C∗ j | L]. This choice of L also separates i and j in (G, C̃). (Recall that the condition
for the edge i → j to be present in G∗

C̃,L
is that no critical i − j path in (G, C̃) factors

through L.) Analogously, any statement of the form [i ⊥C∗ j | L] in M∗(G,C ′) also holds
in (G, C̃).

In the more general setting where G does not consist solely of directed i − j paths,
additional ∗-connecting i − j paths may exist. Thus, additional nodes which are not
contained in π and π′ may be needed to separate i and j. However, these nodes will be
required to separate i and j in all three weighted DAGs, since, by our starting assumption,
these three matrices give rise to the same critical paths outside of the directed i− j portion
of G. Furthermore, if i′ and j′ are nodes such that a path between them factors through π
(and thus also π′), then a similar argument immediately shows that any L which separates
them in (G, C̃) must also separate them in either (G,C) or (G,C ′). Lastly, any separation
which does not involve π and π′ will be present in all three maxoids by assumption and
thus the remaining CI statements will be the same as well.

Remark 2.12. In the setting of Theorem 2.11, given C̃ one can obtain a matrix with the
properties of C ′ by replacing c̃ℓ,ℓ′ with c̃ℓ,ℓ′ + ε, where (ℓ, ℓ′) ∈ π′ and ε > 0 fulfills

ε < min
i′,j′∈V

{
min

π1,π2∈P (i′,j′)
|ωC̃(π1) − ωC̃(π2)|

}
. (2.6)

This makes π′ the unique critical i− j path while preserving all other critical paths.
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Theorem 2.11 implies that facets (and by extension, lower-dimensional faces) of the
euclidean closure of coneG(C) correspond to non-generic maxoids which arise as unions of
generic maxoids.

Corollary 2.13. The euclidean closures of the open cones corresponding to the generic
maxoids of G form a complete polyhedral fan, FG, in RE. The maximal cones of FG are
in bijection with the generic maxoids of G. Moreover, the function Φ which sends a cone
of FG to its maxoid is an inclusion-reversing surjection:

F1 is a face of F2 =⇒ Φ(F1) ⊇ Φ(F2) for all F1,F2 ∈ FG.

Remark 2.14. It is not hard to show that FG is the Gröbner fan of the ideal IG =
⟨
∑

π∈P (i,j)

∏
e∈π xe : i, j ∈ V , |P (i, j)| > 1 ⟩; see Sturmfels (1996). Indeed, any weight

matrix C ∈ RE defines a term order which picks out the critical i− j paths of (G,C) as
the initial term of the generator fij =

∑
π∈P (i,j)

∏
e∈π xe in IG .

Example 2.15. The fan associated to the diamond graph from Example 2.3 consists
of two maximal cones in R4 separated by the hyperplane c12 + c24 = c13 + c34. The
corresponding maxoids are

M1 = {[1 ⊥⊥ 3 | 2] , [1 ⊥⊥ 4 | 2, 3] , [1 ⊥⊥ 4 | 2]} for c12 + c24 > c13 + c34

M2 = {[1 ⊥⊥ 3 | 2] , [1 ⊥⊥ 4 | 2, 3] , [1 ⊥⊥ 4 | 3]} for c12 + c24 < c13 + c34

M3 = {[1 ⊥⊥ 3 | 2] , [1 ⊥⊥ 4 | 2, 3] , [1 ⊥⊥ 4 | 2] , [1 ⊥⊥ 4 | 3]} for c12 + c24 = c13 + c34.

M1

M2

M3

1

2 3

4

Figure 3: A projection of the fan FG of the diamond which is the Gröbner fan of the ideal
IG = ⟨x12x24 + x13x34⟩.

3 Representability of maxoids

The polyhedral fan FG provides the maxoids associated to a given DAG with a geometric
structure which is both interesting and practically useful: it gives an efficient algorithm for
solving the CI implication problem for maxoids on a given DAG. A similar connection has
been previously exploited in the framework of structural imsets by Bouckaert et al. (2010).
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However, the polyhedral fan in our case is specific to the graph and the map from its cones
to maxoids does not in general induce a Galois connection. As a result, the extraction of
conditional independence features from the polyhedral geometry is not straightforward.

In this section we focus on logical properties of all maxoids, independent of the
underlying DAG, in the context of conditional independence implication. Like many
other types of graphical models (cf. Lauritzen and Sadeghi (2018)), C∗-separation satisfies
the compositional graphoid properties, i.e., every maxoid is closed under the following
equivalence and implications for all disjoint I, J ,K,L ⊆ N :

Semigraphoid: [I ⊥⊥ J | L] ∧ [I ⊥⊥ K | JL] ⇐⇒ [I ⊥⊥ JK | L],

Intersection: [I ⊥⊥ J | KL] ∧ [I ⊥⊥ K | JL] =⇒ [I ⊥⊥ JK | L], and

Composition: [I ⊥⊥ J | L] ∧ [I ⊥⊥ K | L] =⇒ [I ⊥⊥ JK | L].

Whereas the Semigraphoid property holds for the CI statements satisfied by any random
vector, Intersection and Composition provide non-trivial additional structure. Améndola
et al. (2022) mention without proof that C∗-separation satisfies the compositional graphoid
properties. We supply the routine proof below and then delve into the question of what
distinguishes maxoids from other types of compositional graphoids.

Proposition 3.1. Maxoids are compositional graphoids.

Proof. Consider any maxoid M = M∗(G,C) for a given DAG G and weight matrix C
supported on G. All separation statements below are with respect to (G,C). By the
definition of C∗-separation, the assumption [I ̸⊥C∗ J | L] implies the existence of a ∗-
connecting path π between I and J in the critical DAG G∗

C,L. A fortiori, π also connects
I and KL in G∗

C,L, hence [I ̸⊥C∗ JK | L]. Now consider a ∗-connecting path π between
I and K in G∗

C,JL. If it contains a collider j ∈ J , then the portion of π from I to j is a
∗-connecting path between I and J in G∗

C,L. Otherwise the collider (if any) is in L and π
yields a ∗-connecting between I and K in G∗

C,L. In both cases, we obtain a ∗-connecting
path between I and JK in G∗

C,L. By contraposition, these two arguments prove the “only
if” part of the Semigraphoid property.

The “if” direction is proved by contraposition as well. Assume that [I ̸⊥C∗ JK | L]
and [I ⊥C∗ J | L], i.e., there exists a ∗-connecting path π from I to JK but not one from
I to J in G∗

C,L. Hence, π must connect I and K and cannot contain any node from J .
But then π also ∗-connects I and K in G∗

C,JL, thus [I ̸⊥C∗ K | JL] holds.
For Intersection, use again contraposition. Assume [I ̸⊥C∗ JK | L] and [I ⊥C∗ J | KL].

By the Semigraphoid property and the symmetry with respect to exchanging J and K,
we can split [I ̸⊥C∗ JK | L] into two cases: [I ̸⊥C∗ K | L] or [I ̸⊥C∗ J | KL]. The second
case contradicts our other assumption. In the former case, let π denote an ∗-connecting
path between I and K in G∗

C,L. We may assume that this path is as short as possible, i.e.,
does not contain any other node of K. If it contains a node j ∈ J , then the portion from I
to j ∗-connects I and J in G∗

C,KL which is impossible. Hence π is free of nodes from J and
thus ∗-connects I and K also in G∗

C,JL which is the required conclusion of Intersection.
The Composition property holds almost by definition. Any ∗-connecting path from

I to JK in G∗
C,L connects either I to J or I to K, which is the contrapositive of the

assertion of Composition.
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Algebraic statistics today, by and large, deals with CI models on discrete and regular
Gaussian random variables. Note that the parametrization of MLBNs in (1.1) does not
produce jointly Gaussian distributions as the maximum of Gaussians does not follow a
Gaussian distribution. On the other hand, discrete distributions are not atom-free and
are thus incompatible with this parametrization. Nevertheless, it is reasonable to ask
whether maxoids, as abstract conditional independence models, can be represented using
one of these two distribution classes. We answer this question negatively by highlighting
features of maxoids which serve as obstructions to Gaussian and discrete representability.
This means that maxoids are a new and rather exotic class of compositional graphoids.

In Drton and Xiao (2010) the term semigaussoid is used to refer to compositional
graphoids. What is missing from a semigaussoid to a gaussoid is the closedness under the
following implication:

Weak Transitivity: [i ⊥⊥ j | L] ∧ [i ⊥⊥ j | kL] ⇐⇒ [i ⊥⊥ k | L] ∨ [j ⊥⊥ k | L],

for all distinct i, j, k and L ⊆ N \ ijk. The following example shows that maxoids need
not satisfy Weak Transitivity. By results of Lněnička and Matúš (2007), this provides
examples of maxoids which — in contrast to classical d-separation graphoids — cannot be
faithfully represented by a regular Gaussian random vector.

Example 3.2. Consider the diamond graph G as described in Example 2.3 with weight
matrix C satisfying ωC(π3) > ωC(π2). The maxoid of (G,C) consists precisely of the d-
separations in G plus [1 ⊥⊥ 4 | 3]. As [1 ⊥⊥ 4 | 3] and [1 ⊥⊥ 4 | 2, 3] hold without [1 ⊥⊥ 2 | 3]
or [2 ⊥⊥ 4 | 3], this CI structure violates Weak Transitivity and cannot be faithfully
represented by a regular Gaussian distribution.

This violation of Weak Transitivity has the following geometric consequence. The
space of regular Gaussian distributions which are Markov to this CI structure is the union
of two standard Bayesian networks on subgraphs of the diamond G: one has the edge
1 → 2 removed (so that it satisfies [1 ⊥⊥ 2 | 3]) and the other has the edge 2 → 4 removed
(and hence satisfies [2 ⊥⊥ 4 | 3]). For an algebraic explanation of this phenomenon we refer
to Drton et al. (2024).

Example 3.3. The Cassiopeia graph G (see also Améndola et al. (2022)) arises from
Figure 1e by reversing the direction of all arrows. Its associated fan FG has only one
maximal cone and thus all generic C give rise to the same CI structure, which has a
peculiarity: since the path from i to j has two colliders, it is not ∗-connecting given
p and q. We have M∗(G,C) = Md(G) ∪ {[i ⊥⊥ j | p, q]}. One easily computes that the
CI structure of the conditional distribution given q equals{

[i ⊥⊥ ℓ], [i ⊥⊥ ℓ | j], [i ⊥⊥ ℓ | j, p], [i ⊥⊥ j],

[i ⊥⊥ j | ℓ], [i ⊥⊥ j | p], [ℓ ⊥⊥ p | j], [ℓ ⊥⊥ p | i, j]
}

.

It follows from implication (I:13) of Studený (2021) (with X = i,Y = j,Z = ℓ,U = p) that
every discrete distribution satisfying these CI statements must also satisfy [i ⊥⊥ j | ℓ, p].
This shows that the Cassiopeia maxoid cannot be represented by discrete random variables.
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R. Lněnička and F. Matúš. On Gaussian conditional independence structures. Kybernetika,
43(3):327–342, 2007. URL https://www.kybernetika.cz/content/2007/3/327.

J. Pearl. Causality. Cambridge University Press, 2009.

J.-C. Rochet and J. Tirole. Interbank lending and systemic risk. Journal of Money, Credit
and Banking, 28(4):733–762, 1996.

P. Spirtes, C. Glymour, and R. Scheines. Causation, prediction, and search. Adaptive
Computation and Machine Learning. MIT Press, Cambridge, MA, second edition, 2000.
With additional material by David Heckerman, Christopher Meek, Gregory F. Cooper
and Thomas Richardson, A Bradford Book.
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Abstract

Compositional graphoids are fundamental discrete structures which appear in
probabilistic reasoning, particularly in the area of graphical models. They are
semigraphoids which satisfy the Intersection and Composition properties. These
important properties, however, are not enjoyed by general probability distributions.
We survey what is known in terms of sufficient conditions for Intersection and
Composition and derive a set of new sufficient conditions in the context of discrete
random variables based on conditional information inequalities for Shannon entropies.

1 Introduction

Dawid (1980) found fundamental relations among the valid conditional independence (CI)
statements for any finite system N of jointly distributed random variables which became
known later as the semigraphoid properties. They consist of the following assertions and
implications, for any four disjoint subsets I, J ,K,L ⊆ N ; see (Studený, 2005, Section 2.2.2):

Triviality [I ⊥⊥ ∅ | L],

Symmetry [I ⊥⊥ J | L] ⇐⇒ [J ⊥⊥ I | L],

Decomposition [I ⊥⊥ JK | L] =⇒ [I ⊥⊥ J | L],

Weak union [I ⊥⊥ JK | L] =⇒ [I ⊥⊥ K | JL],

Contraction [I ⊥⊥ J | L] ∧ [I ⊥⊥ K | JL] =⇒ [I ⊥⊥ JK | L].

The Triviality axiom is inconsequential as it does not interact with the other axioms
in a way that produces other, non-trivial statements. Throughout this paper, we accept
the Symmetry axiom and formally identify any CI symbol [I ⊥⊥ J | K] with its symmetric
version [J ⊥⊥ I | K]. This leaves Decomposition, Weak union and Contraction as the
defining traits of a semigraphoid. They can be restated more succinctly as an equivalence:

[I ⊥⊥ JK | L] ⇐⇒ [I ⊥⊥ J | L] ∧ [I ⊥⊥ K | JL].
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Since the roles of J and K are interchangeable in the left-hand side, we may consider a
symmetrized version which is the starting point for our investigation:

[I ⊥⊥ JK | L] ⇐⇒

{
1 [I ⊥⊥ J | L] ∧ 2 [I ⊥⊥ K | JL] ∧
3 [I ⊥⊥ K | L] ∧ 4 [I ⊥⊥ J | KL].

The present paper addresses the question under which circumstances are subsets of the
statements on the right-hand side sufficient to imply [I ⊥⊥ JK | L] on the left-hand side,
provided that all random variables are discrete.

By Contraction, 1 ∧ 2 as well as 3 ∧ 4 are always sufficient; hence, any 3-subset
of { 1 , 2 , 3 , 4 } is sufficient. Up to interchanging J and K, this leaves only three
configurations of the 2-element subsets to consider:

• The implication 1 ∧ 3 =⇒ [I ⊥⊥ JK | L] is the converse of (the symmetrized
version of) Decomposition, called Composition.

• Similarly, 2 ∧ 4 =⇒ [I ⊥⊥ JK | L] is the converse of (the symmetrized version of)
Weak union and is called Intersection.

• Finally, the two symmetric implications 1 ∧ 4 =⇒ [I ⊥⊥ JK | L] and 2 ∧ 3 =⇒
[I ⊥⊥ JK | L] seem to be almost entirely disregarded in the literature, to the point
where we could not find an established name for these implications.

The focus of this paper is on sufficient conditions for Intersection and Composition; the
nameless third implication is only briefly discussed in Section 5. Unlike the semigraphoid
properties, Intersection and Composition are not universally valid: there exist discrete
probability distributions which satisfy the premises but not the conclusion [I ⊥⊥ JK | L].
Nevertheless, they can be verified for several families of graphical models (see Lauritzen and
Sadeghi (2018)) which play a prominent role in applications. It is also worth mentioning
that the geometric notion of partial orthogonality which has uses in machine learning as a
measure of semantic independence satisfies Composition; see Jiang et al. (2023).

Intersection classically appears as a technical condition which ensures the equivalence
of different Markov properties of graphical models (see (Lauritzen, 1996, Theorem 3.7)).
It also guarantees the uniqueness of Markov boundaries by Pearl and Paz (1985) and drives
certain identifiability results described in Peters (2015). The Composition property is
needed in the correctness proof of the IAMB algorithm to find Markov boundaries; cf. Peña
et al. (2007). Continuing this line of work, more recent research of Amini et al. (2022)
seeks to decouple structure learning algorithms from the graphical representation and
faithfulness assumptions to generalize them to situations in which only formal properties
of the independence model, such as Intersection and Composition, are assumed. This has
renewed interest in sufficient conditions under which these properties hold.

The remainder of this paper is organized as follows. Section 2 performs routine
manipulations to reduce Intersection and Composition to a standard form in which they
turn out to be logical converses. Sections 3 and 4 survey known sufficient conditions for
Intersection and Composition, respectively, discuss some interesting example classes, and
derive a set of new sufficient conditions. Further remarks are collected in Section 5.

On the Intersection and Composition properties of conditional independence
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Notational conventions

Our notation for conditional independence statements largely follows the standard reference
Studený (2005). In particular, N is a finite set indexing a system of jointly distributed
random variables. Subsets of N are usually called I, J ,K,L, . . . and elements i, j, k, l, . . ..
An element i ∈ N also denotes the singleton subset { i } ⊆ N . Union of subsets of N is
abbreviated to IJ = I ∪ J . A CI statement [I ⊥⊥ J | K] is read as “I is independent of J
given K”. In Sections 3 and 4 we work concretely with four discrete random variables
denoted X ,Y ,Z ,G . Throughout we employ concepts such as entropy and conditional
mutual information from Shannon theory for which Yeung (2005) is an accessible reference.

2 Preliminary reductions

It is well-known that any CI statement [I ⊥⊥ J | K] with pairwise disjoint sets I, J ,K ⊆ N
is equivalent modulo the semigraphoid axioms to a conjunction of elementary CI statements:

[I ⊥⊥ J | K] ⇐⇒
∧
i∈I

∧
j∈J

∧
K⊆L⊆IJK\ij

[i ⊥⊥ j | L]. (1)

The proof of this fact merely combines Decomposition and Weak union (with Symmetry)
in one direction and Contraction in the other. Since the semigraphoid axioms hold for any
system of discrete random variables, we may reformulate Intersection and Composition in
terms of elementary CI using (1) and arrive at the following equivalent formulations:

Intersection [i ⊥⊥ j | kL] ∧ [i ⊥⊥ k | jL] =⇒ [i ⊥⊥ j | L] ∧ [i ⊥⊥ k | L],

Composition [i ⊥⊥ j | L] ∧ [i ⊥⊥ k | L] =⇒ [i ⊥⊥ j | kL] ∧ [i ⊥⊥ k | jL].

This is the form in which these properties are often presented in the literature on gaussoids,
such as Lněnička and Matúš (2007). This also shows that Intersection and Composition
are logical converses of each other modulo the semigraphoid properties.

The final reduction concerns the conditioning set L which is common to all statements
in the above CI implication formulas. The “full” Intersection and Composition properties
demand the above CI implications to hold for each choice of distinct i, j, k ∈ N and
L ⊆ N \ ijk. Each quadruple (i, j, k,L) encodes an instance of the property. In a given
instance (i, j, k,L), we may marginalize the distribution to ijkL and condition on L. Thus,
we arrive at the following problem formulation which is addressed in this paper.

Problem. For jointly distributed discrete random variables (X ,Y ,Z ), find sufficient
conditions such that

Intersection [X ⊥⊥ Y | Z ] ∧ [X ⊥⊥ Z | Y ] =⇒ [X ⊥⊥ Y ] ∧ [X ⊥⊥ Z ], respectively,

Composition [X ⊥⊥ Y ] ∧ [X ⊥⊥ Z ] =⇒ [X ⊥⊥ Y | Z ] ∧ [X ⊥⊥ Z | Y ].

If T (X ,Y ,Z ) is a sufficient condition for Intersection or, respectively, Composition to
hold in a trivariate discrete distribution, then a sufficient condition for the full Intersection
or Composition property is obtained as a conjunction of T (i, j, k | L = ω) over all
quadruples (i, j, k,L) and all events ω of L.
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3 The Intersection property

The problem of finding sufficient conditions for the Intersection property has received
considerable attention from a variety of research communities. The most widely known
and the simplest general condition on a distribution which ensures Intersection is that the
probability density is strictly positive. This is sufficient but not necessary and, depending
on the application, may be too restrictive. We begin with two examples of the failure of
Intersection which illustrate this condition.

Example 3.1 (Three binary random variables). The joint distribution of three binary
random variables is given by eight non-negative real numbers p000, p001, . . . , p111 which
are indexed by triples over the set { 0, 1 } and sum to one. The set of all such distributions
is known as the probability simplex ∆(2, 2, 2). A generic choice of these values leads to a
distribution which does not satisfy any CI statement and therefore satisfies Intersection
vacuously. To violate Intersection, at least its premises must be fulfilled. The set of such
distributions is the intersection of ∆(2, 2, 2) with an algebraic variety V and its structure
can be examined using primary decomposition in Macaulay2 (Grayson and Stillman) as
described in Kahle et al. (2019).

Macaulay2
needsPackage "GraphicalModels";

R = markovRing(3:2);

I = conditionalIndependenceIdeal(R, {{{1},{2},{3}}, {{1},{3},{2}}});

J = conditionalIndependenceIdeal(R, {{{1},{2,3},{}}});

decompose(I:J)

The above decomposition describes the two irreducible components of V in ∆(2, 2, 2) on
which there are distributions which violate Intersection. They are given by the conditions

p000 = p011 = p100 = p111 = 0, or (2)

p001 = p010 = p101 = p110 = 0. (3)

As expected, violations of Intersection can only occur on the boundary of ∆(2, 2, 2) where
the probability mass function has zeros and not all of the eight joint events are possible.
Choosing one of the two sets of zero constraints and using generic values for the remaining
four probabilities (which must sum to one) yields two 3-parameter families of distributions
which satisfy the premises but not the conclusion of Intersection.

Example 3.2 (Functional dependencies). The random variable X depends functionally
on Y if the conditional entropy H(X | Y ) vanishes. This is equivalent to the existence of
a deterministic function f such that Pr[X = f(Y )] = 1, i.e., the value of Y determines
the outcome of X almost surely. In this case (and if X is non-constant overall), the joint
distribution cannot be strictly positive. Functional dependencies occur frequently in the
context of relational databases and may present themselves in measurements of physical
quantities because of the laws of nature. If X functionally depends on Z and on Y , then
[X ⊥⊥ Y | Z ] and [X ⊥⊥ Z | Y ] hold and the mutual information I(X : Y ,Z ) simplifies to
H(X ). Thus, if X is a function of both Y and Z but non-constant (hence has positive
Shannon entropy H(X )), then the conclusion of Intersection is not satisfied.

On the Intersection and Composition properties of conditional independence
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Remark 3.3. Note that the conditions (2) and (3) in Example 3.1 enforce in both cases
that Y is a function of Z and vice versa. It is possible to violate Intersection without any
functional dependencies in the distribution, but this requires larger state spaces.

The positivity of the entire distribution is unnecessarily restrictive. A more refined
support condition has been developed independently by groups of statisticians, information
theorists and algebraists. It is based on the following concept.

Definition 3.4. Let Y and Z be jointly distributed discrete random variables with
state spaces QY and QZ , respectively. Their characteristic bipartite graph G(Y ,Z ) is
the bipartite graph on QY ⊔ QZ with an edge between events y and z if and only if
Pr[Y = y,Z = z] > 0.

This graph appears in the work of Gács and Körner (1973) on common information
where it is used to construct a random variable GK (Y ,Z ) which solves the following
optimization problem aimed at extracting the maximum entropy of a random variable
which is simultaneously a function of Y and of Z :

max H(G )

s.t. H(G | Y ) = H(G | Z ) = 0.
(4)

The optimal value is known as the Gács–Körner common information. The solution
GK (Y ,Z ) has as its events the connected components of G(Y ,Z ) and is specified as a
function of (Y ,Z ) to evaluate to the connected component in which the outcomes of Y
and Z both lie. Since by construction Pr[Y = y,Z = z] > 0 if and only if y and z lie
in the same connected component, G(Y ,Z ) is well-defined and satisfies the functional
dependence constraints in (4). In our context, its significance lies in the following fact:

Theorem 3.5. If [X ⊥⊥ Y | Z ] and [X ⊥⊥ Z | Y ], then [X ⊥⊥ Y ,Z | GK (Y ,Z )].

In information theory, this is sometimes called the double Markov property after
Exercise 16.25 in the book of Csiszár and Körner (2011).

Corollary 3.6 (Gács–Körner criterion). If G(Y ,Z ) is connected, then [X ⊥⊥ Y | Z ] ∧
[X ⊥⊥ Z | Y ] =⇒ [X ⊥⊥ Y ,Z ].

Proof. If G(Y ,Z ) is connected, then GK (Y ,Z ) is a constant random variable and thus
[X ⊥⊥ Y ,Z | GK (Y ,Z )] simplifies to [X ⊥⊥ Y ,Z ], the desired conclusion of Intersection.

This sufficient condition for one instance of Intersection indirectly also targets the
support of the distribution but instead of requiring positivity everywhere, it only requires
enough positivity on the marginal distribution of (Y ,Z ) to make their characteristic
bipartite graph connected. One can show that under the premises of Intersection, indeed
every connected component of G(Y ,Z ) is a complete bipartite graph. An equivalent
condition in terms of σ-algebras is already present in Dawid (1980) and features in other
works under the name measurable separability. San Mart́ın et al. (2005) provide an overview
of the history of this idea on the statistics side.
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In algebraic statistics, a similar result is known as the Cartwright–Engström conjecture
which was recorded in Drton et al. (2009) and resolved by Fink (2011). It asserts that
the binomial ideal corresponding to the premises of Intersection has one associated prime
for each possible shape of G(Y ,Z ). Intersection holds for all distributions in the unique
component for which the graph is connected and all other components contain distributions
violating Intersection. This explains the computational results observed in Example 3.1.

Example 3.7 (Incompleteness of the Gács–Körner criterion). The following table defines
a joint distribution of four binary random variables in which G is the Gács–Körner common
information of Y and Z . Since G is non-constant, the criterion of Corollary 3.6 does not
apply. Nevertheless, the distribution satisfies [X ⊥⊥ Y ,Z ] and therefore Intersection.

X Y Z G Pr

0 0 1 1 1/4

0 1 0 0 1/4

1 0 1 1 1/4

1 1 0 0 1/4

The first contribution of this paper is a set of new sufficient conditions for Intersection.
Like the Gács–Körner criterion above, they are formulated synthetically, i.e., in terms
of an auxiliary random variable G which satisfies additional CI constraints with respect
to X ,Y ,Z . In this situation, the random variables are subject to powerful information-
theoretic inequalities. We take advantage of recent work of Studený (2021) which elucidates
the connections between CI implications on four discrete random variables and special
information-theoretic constraints known as conditional Ingleton inequalities.

Theorem 3.8 (Conditional Ingleton criterion). Let X ,Y ,Z be jointly distributed discrete
random variables. If there exists a discrete G jointly distributed with X ,Y ,Z satisfying any
of the following conditions: (i) [X ⊥⊥ G ] and [Y ⊥⊥ Z | G ], (ii) [Y ⊥⊥ G ] and [X ⊥⊥ Z | G ],
or (iii) [Z ⊥⊥ G ] and [X ⊥⊥ Y | G ]; then [X ⊥⊥ Y | Z ]∧ [X ⊥⊥ Z | Y ] =⇒ [X ⊥⊥ Y ,Z ] holds.

Proof. Given [X ⊥⊥ Y | Z ] and [X ⊥⊥ Z | Y ], the conditions (ii) and (iii) are symmetric
with respect to exchanging Y and Z and both follow from rule (I:2) in Studený (2021).
Condition (i) is covered by rule (I:4).

In order to compare Theorems 3.5 and 3.8, assume that G is a function of Y and of Z .
In condition (ii), the independence assumption [Y ⊥⊥ G ] then implies that G is constant
and hence the further assumption [X ⊥⊥ Z | G ] simplifies to the desired conclusion already;
a similar argument applies to condition (iii). Regarding condition (i), the assumption
[Y ⊥⊥ Z | G ] is equivalent to H(G ) = I(Y : Z ). This is highly unusual when G is a
function of Y and of Z . Indeed, the Gács–Körner theorem (see, e.g., Csirmaz (2023))
asserts that this can only happen if the probability table of (Y ,Z ) can be brought into
block-diagonal form by permutations of its rows and columns and each block has rank one.
It appears that the two criteria in Theorems 3.5 and 3.8 are complementary and neither
implies the other. Note that the distribution given in Example 3.7 does not satisfy the
Gács–Körner criterion but does satisfy the conditional Ingleton criterion Theorem 3.8 (i)
since G = Z = 1 − Y are functionally equivalent and the marginal (X ,G ) is uniform.

On the Intersection and Composition properties of conditional independence
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4 The Composition property

The previous section showed that the Intersection property is well-studied. By comparison,
not much is known about the failure modes of Composition. Studený (2005), Corollary 2.4,
shows that Gaussians (even with singular covariance matrices) satisfy Composition. Since
many types of graphical models can be faithfully represented by Gaussians, they in-
herit the Composition property from the Gaussian. In the discrete setting, a known
sufficient condition is multivariate total positivity of order 2 (MTP2) which is a type of
log-supermodularity condition on the density function. Fallat et al. (2017) show that
MTP2 implies upward stability (i.e., [I ⊥⊥ J | K] =⇒ [I ⊥⊥ J | L] for any L ⊇ K), which
is far stronger than Composition. We again begin the investigation with two example
classes in which Composition is violated.

Example 4.1 (Matroids). Matroids provide a class of functional dependence structures
which are incompatible with the Composition property. For background information
on matroids and their probabilistic representations, we refer to Matúš (1994) and its
references. In a matroid M on ground set N , any two elements which are not loops are
either functionally equivalent or independent. Under the benign assumption that the
matroid is simple, i.e., contains no loops and no two functionally equivalent elements, the
independence [i ⊥⊥ j] holds for any i ̸= j. If the full Composition property were to hold as
well, then it follows inductively that [I ⊥⊥ J ] for all disjoint I, J ⊆ N . This implies that
the matroid is free and hence there is only one simple matroid satisfying Composition.

Example 4.2 (Three binary random variables). The assumptions [X ⊥⊥ Y ] and [X ⊥⊥ Z ]
define a marginal independence model which can be easily parametrized using the results
of Kirkup (2007). For binary states, this parametrization is as follows:

p000 = αβγ − δ, p100 = αβγ − ε,

p001 = αβγ + δ, p101 = αβγ + ε,

p010 = αβγ + δ, p110 = αβγ + ε,

p011 = αβγ − δ, p111 = αβγ − ε,

(5)

where α,β, γ ∈ (0, 1) and x = 1−x; the values of δ and ε are subject to the conditions that
all these probabilities must be non-negative. If α = β = γ = 1/2, δ = 0 and ε > 0 is small,
then the parametrization defines a probability distribution which satisfies [X ⊥⊥ Y ] and
[X ⊥⊥ Z ] but I(X : Y ,Z ) = 8ε2 +O(ε3) > 0. Hence, this distribution violates Composition.

On the other hand, the parametrization technique from Boege et al. (2022) can also
be used to describe the distributions on which [X ⊥⊥ Y ,Z ] holds true. It is the submodel
parametrized by (5) where ε = δ · α/α.

Example 4.2 shows that there are strictly positive distributions which do not satisfy
the Composition property. Thus, Composition does not admit sufficient conditions which
require a “richness of support” like Corollary 3.6 in the case of Intersection. The moral
of the Cartwright–Engström story is that a sufficient condition may still be encoded in
the primary decomposition of the Composition ideal, even if it does not take the form of
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support constraints. Recall that the Intersection ideal has one minimal prime for each
possible characteristic bipartite graph of Y and Z . This rich structure invites further
investigation which leads to Corollary 3.6. However, Kirkup (2007) proved that the
Composition ideal has only one minimal prime whose variety contains any probability
distribution at all. Thus, there is no relevant structure in the primary decomposition
and this approach is also a dead end. The only strategy which we found applicable to
Composition is the one using conditional information inequalities.

Theorem 4.3 (Dual conditional Ingleton criterion). Let X ,Y ,Z ,G be jointly distributed
discrete random variables satisfying any of the following conditions: (i) [X ⊥⊥ G | Y ,Z ] and
[Y ⊥⊥ Z | X ], (ii) [Y ⊥⊥ G | X ,Z ] and [X ⊥⊥ Z | Y ], or (iii) [Z ⊥⊥ G | X ,Y ] and [X ⊥⊥ Y | Z ].
Then [X ⊥⊥ Y | G ] ∧ [X ⊥⊥ Z | G ] =⇒ [X ⊥⊥ Y ,Z | G ] holds.

Proof. Analogously to the proof of Theorem 3.8, the conditions (ii) and (iii) are symmetric
and they follow from (I:14) in Studený (2021). Condition (i) follows from (I:19).

Note that in Theorem 4.3, the Composition property is obtained simultaneously for
all conditional distributions given the auxiliary G . This makes the criterion appear to
be somewhat harder to work with as it requires a suitable coupling of the conditional
distributions through G . The following Examples 4.4 and 4.5 show possible applications and
provide a glimpse at the complexity of the underlying real algebraic geometry. Concerning
comparisons with pre-existing criteria for Composition, we remark that every Bayesian
network which satisfies the four CI statements required in Theorem 4.3 (i) also satisfies
[X ⊥⊥ Y ,Z ,G ] which is much stronger than required for the instance of Composition.

Example 4.4. Start with any distribution satisfying [Y ⊥⊥ Z | X ] and take a function G of
(Y ,Z ). The resulting joint distribution satisfies [X ⊥⊥ G | Y ,Z ] and thus Theorem 4.3 (i).
If none of X ,Y ,Z , in turn, functionally depend on G , the conditional distributions are
non-trivial and satisfy Composition (perhaps vacuously).

Example 4.5. Consider the two distributions p and q of three jointly distributed binary
random variables X ,Y ,Z parametrized as follows:

p000 = 0, p100 = 0, q000 = 1/4 ξ(4η − 1), q100 = 1/4 ξ(4η − 1)

p001 = 1/2α, p101 = 1/2α, q001 = 1/4 ξ, q101 = 1/4 ξ

p010 = 1/4α, p110 = 1/4α, q010 = ξη, q110 = ξη,

p011 = 1/4α, p111 = 1/4α, q011 = 0, q111 = 0,

(6)

for α, ξ ∈ (0, 1) and η ∈ [17/18, 1). Both of these families of distributions satisfy an instance
of Composition. Indeed, the mixture of the two distributions defined via

Pr[X = x,Y = y,Z = z,G = g] = gλpxyz + gλqxyz, where g ∈ { 0, 1 },

satisfies the conditions of Theorem 4.3 (i) whenever ξ = α and 4λ = 1 ±
√

18η−17
2η−1 .
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5 Remarks

Duality. Intersection and Composition are not only converses modulo the semigraphoid
axioms but also dual. For an elementary CI statement [i ⊥⊥ j | L] over ground set N ,
the dual statement is [i ⊥⊥ j | L]

∗ := [i ⊥⊥ j | N \ ijL]. Applying duality statement-wise
transforms

Intersection [i ⊥⊥ j | kL] ∧ [i ⊥⊥ k | jL] =⇒ [i ⊥⊥ j | L] ∧ [i ⊥⊥ k | L] to

Intersection∗ [i ⊥⊥ j |  L] ∧ [i ⊥⊥ k |  L] =⇒ [i ⊥⊥ j | k L] ∧ [i ⊥⊥ k | j  L],

where  L = N \ ijkL. But this is the Composition property with L replaced by  L. Hence,
the dual of a CI structure satisfying Intersection is a CI structure satisfying Composition
and vice versa. Remarkably, the sets of sufficient conditions obtained in Theorems 3.8
and 4.3 are also formally dual to each other. This is a feature of the conditional information
inequalities used in their proofs, although in general it is not true that any valid conditional
information inequality can be dualized and remain valid.

Denote by I4 the set of CI structures which are representable by four discrete random
variables and satisfy all instances of Intersection; analogously C4 for the Composition
property. It can be verified that |I4| = |C4| = 5 736 and they both have the same number
of elements modulo the action of the symmetric group S4 on the random variables. These
orbit representatives are usually called permutational types and I4 and C4 both have 369
of them. However, this coincidence of numbers is not explained by duality. For example,
the CI structure of the distribution in Studený (2021), Example 4, is in I4 ∩ C4 but its
dual is not probabilistically representable as it violates Studený’s rule (I:1).

Moreover, the sets I4 and C4 have a natural lattice structure. Using code adapted
from Boege et al. (2025), we have computed that I4 has 23 permutational types of
irreducible elements and that C4 has 24 such permutational types. Hence, the lattices are
not isomorphic. In view of this incompatibility, we believe that the coincidence of the
cardinalities of I4 and C4 is an artifact of the small ground set size rather than a reflection
of a deeper connection between the two properties.

Relation to Gaussianity. Regular Gaussian distributions satisfy both, Intersection
and Composition. For the third implication [X ⊥⊥ Y ] ∧ [X ⊥⊥ Y | Z ] =⇒ [X ⊥⊥ Y ,Z ]
briefly discussed in Section 1, note that the premises are symmetric under exchanging X
and Y , but the consequence is not. This means that [X ⊥⊥ Y ] and [X ⊥⊥ Y | Z ] may be
derived from [X ⊥⊥ Y ,Z ] as well as [Y ⊥⊥ X ,Z ] using the semigraphoid axioms. A more
symmetric formulation of the converse implication

[X ⊥⊥ Y ] ∧ [X ⊥⊥ Y | Z ] =⇒ [X ⊥⊥ Y ,Z ] ∨ [Y ⊥⊥ X ,Z ]

is sometimes referred to as weak transitivity and is known to hold for Gaussians as well.
This analysis suggests that the realm of Gaussian random variables is usually more
pleasant to work in as far as elementary properties of conditional independence, such as
the semigraphoid properties and their converses, are concerned.
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The third implication. The proper (unsymmetrized) form of the third converse
implication has been considered in the work of Dawid (1980) which features a sufficient
condition derived from a generalization of Basu’s theorem. For discrete random variables,
our approach of using conditional information inequalities also applies.

Theorem 5.1. Let X ,Y ,Z be jointly distributed discrete random variables. If there exists
a discrete G jointly distributed with X ,Y ,Z satisfying [X ⊥⊥ Z | G ] and [Z ⊥⊥ G | Y ], then
[X ⊥⊥ Y ] ∧ [X ⊥⊥ Y | Z ] =⇒ [X ⊥⊥ Y ,Z ] holds.

Proof. This follows from (I:7) in Studený (2021).

Conditional information inequalities for tight Composition. Matúš (2006) gives a
complete characterization of the entropy profiles of discrete X ,Y ,Z which satisfy [X ⊥⊥ Y ]
and [X ⊥⊥ Z ] and such that every variable is a function of the other two. The latter
condition is often referred to as tightness of the entropy profile. Such linear information
inequalities can be used to give sufficient conditions for Composition in terms of the joint
entropies of the random variables. Unfortunately, the tightness assumption which drives
Matúš’s proof is very restrictive in this case. It is easy to check that a tight distribution
which satisfies [X ⊥⊥ Y ,Z ] must have X constant and Y and Z functions of each other.
It would certainly be interesting to investigate conditional information inequalities for
entropy vectors satisfying [X ⊥⊥ Y ] and [X ⊥⊥ Z ] but which are not tight.

Operational characterizations of Theorems 3.8 and 4.3. One of the merits of the
Gács–Körner criterion for Intersection is that the auxiliary variable GK can be directly
constructed and has an operational interpretation as the common information of Y and Z .
Both of these aspects have to be left unexplored in this article for the auxiliary variables
appearing in Theorems 3.8 and 4.3. It would be interesting to attach an operational
meaning to these random variables or to provide direct constructions, even in special cases.

Limits of discrete distributions. Some information-theoretic constructions define
a sequence of random variables Yn as functions of n i.i.d. copies of a given variable X .
A desired information-theoretic effect only occurs “in the limit” of this construction
which is possibly realized by a random variable Y ∗ with infinite support. For example,
consider again the setup in Example 4.4. Using Matúš (2007), Theorem 3 and Corollary 2,
it is possible to construct discrete random variables Y ∗,Z∗,G∗

1,G∗
2 with possibly infinite

support such that:

• H(G∗
1 | Y ∗) = I(X : Y ∗ | G∗

1) = 0,

• H(G∗
2 | Z∗) = I(X : Z∗ | G∗

2) = 0, and

• the entropy profiles of (X ,Y ,Z ) and (X ,Y ∗,Z∗) agree.

Then G∗ = (G∗
1,G∗

2) is a function of (Y ∗,Z∗) and the distribution (X ,Y ∗,Z∗,G∗) satisfies
the CI constraints of Theorem 4.3 (i) as well as the premises of Composition given G∗.
However, it is not known whether the conditional Ingleton inequalities on which Theo-
rem 4.3 relies are valid for distributions with infinite supports. See also Open Question 2
in Studený (2021) about the validity on these inequalities on the almost-entropic region.
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Abstract

We propose the adoption of the newly introduced SMART operators to improve the
readability of a Fuzzy rule-based system developed for sentiment analysis. Specifically,
the S-or operator will be utilized to combine the results of various rules generated
from a designated lexicon. Conversely, the S-and operator will merge the diverse
inferences derived from multiple lexicons.

1 Introduction

Fuzzy rule-based systems, such as those discussed in Alonso Moral et al. (2021)), offer
outputs that are inherently explainable. This is particularly evident when these systems
are utilized in sentiment analysis, as demonstrated in Liu and Cocea (2017). However,
traditional Mamdani-type systems (Mamdani (1974); Mamdani and Assilian (1975)), em-
ploying standard min-max aggregation operators, often yield outputs that are challenging
to interpret prior to the final defuzzification step . To address this issue, we propose
the adoption of the SMART disjunctive operator (referred to as S-or hereafter), which
was recently introduced in Capotorti and Figà-Talamanca (2020). By utilizing the S-or
operator instead of the conventional max operator for aggregation, we aim to produce
more easily interpretable outputs for the consequents of the rules. This approach enhances
the overall interpretability of the fuzzy rule-based system, ultimately improving the clarity
and understanding of the system’s outputs.

In sentiment analysis, Fuzzy rule-based systems typically rely on scores derived from
lexicons to provide crisp inputs (see, e.g., Nadali et al. (2010)). However, it is important
to note that different lexicons can yield varying results, as demonstrated in previous
studies, such as Chauhan et al. (2023); Vashishtha and Susan (2019). Usually, only the
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final defuzzified crisp values are utilized to evaluate classifier performance, overlooking the
richness and diversity inherent in the various Fuzzy outputs. To address this limitation, we
apply a novel approach of merging multiple Fuzzy outputs using the SMART conjunctive
operator (S-and hereafter) before the defuzzification process, as suggested in Capotorti
and Figà-Talamanca (2020). This method allows for the creation of an ensemble of
classifications, offering a unique perspective on sentiment analysis. Our approach differs
significantly from existing methods, such as Shapiro and Moritz Sudhof (2020)), and
provides a fresh and innovative solution to the challenges in sentiment analysis.

The paper is organized in the following way: In Section 2 we briefly illustrate a
Mamdami-type Fuzzy Rule-Base apt to deal with sentiment analysis with two different
scores obtained through a lexicon and how the S-or operator can be employed to obtain
a more interpretable output membership. Moreover, we propose a new dufuzzification
operator that is more accurate of the usual center of area (COA). In Section 3.1 we
propose the adoption of the other aggregation operator S-and to join the information
stemming from different sources, in particular different lexicons, obtaining and ensemble
of classifiers. Finally, a concluding section summarizes the contribution and hints about
future developments.

2 FUZZY RULE-BASED SYSTEM

Our proposal is based on the Fuzzy Rule-Based system outlined in the study by Vashishtha
and Susan (2019). This system was chosen for its clear and easily understandable design,
as well as its strong classification performance. However, it is important to note that our
method is versatile and can be applied to any Fuzzy Rule-Based system of the Mamdani
type.

In the aforementioned paper by Vashishtha and Susan (2019), the authors utilized a
system consisting of 9 well-defined rules, as detailed in Tab. 1; Each rule is composed of
two antecedent variables, each with three Fuzzy subsets (Low, Medium, High), and one
consequent variable with three Fuzzy subsets (Negative, Neutral, Positive).

Table 1: The nine Mamdani Fuzzy rules proposed in Vashishtha and Susan (2019).
RULE Pos. score Neg. score Sentiment
R1 Low Low Neutral
R2 Medium Low Positive
R3 High Low Positive
R4 Low Medium Negative
R5 Medium Medium Neutral
R6 High Medium Positive
R7 Low High Negative
R8 Medium High Negative
R9 High High Neutral

The two input variables, X1 and X2, respectively represent the negative and the
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positive sentiment score of a specific text obtained by adopting one specific lexicon (e.g.
SentiWordNet Baccianella et al. (2010), AFINN Nielsen (2011) or VADER Hutto and
Gilbert (2015)). For the three linguistic terms Low-Medium-High, authors use a standard
Fuzzy partition of the domain of each input score with three triangular memberships µi(x),
i ∈ {Low, Medium, High}, as those depicted in Fig.1 Usually, but not necessarily, input

Figure 1: Fuzzy partition for input variables.

domains are normalized into the real unit interval [0, 1].
For the output variable Y , representing the overall sentiment judgment of the selected

text (in the aforementioned paper authors analyze Twitter posts), authors use a similar
Fuzzy partition with three linguistic terms, but on the standard scale of numbers between
0 an 10, with memberships µi(y), i ∈ {neg, neu, pos}, illustrated in Fig.2

Figure 2: Fuzzy linguistic terms for the output variable.

The sentiment classification for each text is performed through the following steps.

• The two input scores x1 and x2 are fuzzified into the membership values µj1(x1)
and µj2(x2), respectively, of each of the 9 rules in Tab.1.

• Through the usual minimum t-norm, the firing strength of the j-th rule is obtained
as:

wRj = µj1(x1) ∧ µj2(x2). (1)

Andrea Capotorti, Davide Petturiti, Barbara Vantaggi

73



• The usual maximum t-conorm ∨ is applied for combining the firing strengths derived
in the previous step in order to obtain the fulfillment of each output term:

wneg = wR4 ∨ wr7 ∨ wR8 (2)

wneu = wR1 ∨ wR5 ∨ wR9 (3)

wpos = wR2 ∨ wR3 ∨ wR6 (4)

• The resultant output memberships for all terms are obtained through the usual
minimum t-norm ∧:

µ̃neg(y) = wneg ∧ µneg(y); (5)

µ̃neu(y) = wneu ∧ µneu(y); (6)

µ̃pos(y) = wpos ∧ µpos(y). (7)

• The final output memberships µ̃j , j ∈ {neg, neu, pos}, are again aggregated through
the usual maximum t-conorm ∨ before being defuzzified:

µ∨−max(y) = µ̃neg(y) ∨ µ̃neu(y) ∨ µ̃pos(y). (8)

The usual aggregation produces memberships µ∨−max that are not easy to interpret
due to their potential extreme vagueness, e.g. those depicted in Fig.3.

Figure 3: Comparison of aggregated output memberships obtained by ∨ −max or S-or
operators.

We perform here the same exercise by applying the disjunctive aggregation operator
S-or in the last step; the results highlight that this alternative merge produces less vague
and concave memberships. Indeed, µS−or ⊆ µ∨−max using usual Fuzzy inclusion relation,
and µS−or displays nested α-cuts. Such membership can be easy interpreted as a truncated
Fuzzy number. Fig.3 provides a visual comparison of µS−or w.r.t. µ∨−max).
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2.1 The S-or aggregation operator

The S-or function operates by calculating a weighted average of the extreme values of
the different α-cuts of the m memberships to be aggregated. The weights are carefully
adjusted to achieve a specific behavior in the aggregation process, focusing on the outermost
values. This approach aligns with the canonical max t-conorm ∨ if applied vertically.
The weighting emphasizes the disagreement among the different α-cuts in terms of weak
overlapping. To achieve this, when fixing an α-cut, the weights of the outermost values,
identified by indexes in Ol for the left extrema and Or for the right extrema, are calculated
as 1

m (1 + ϵj), with

ϵj =

{ ∑M
f=1

1
f πj

f

∆ if ∆ ̸= 0
0 otherwise

. (9)

In (9) the πj
f ’s are the lengths of the various overlappings while ∆ is the range of the

α-cuts, as depicted in Fig.4.

Figure 4: Overlapping lengths πj
f and range ∆ of α-cuts involved in the weights ϵj for the

S-or aggregation: above between two memberships; below among three.

For the two inner extremes, i.e. the largest left extreme and the lowest right extreme,
the weights are simply given by 1

m (1−
∑

j∈O∗
ϵj).

The memberships m that need to be aggregated are truncated by the firing strengths
in equations (5, 6, 7). As a result, these memberships may not be normal, meaning there is
no value ỹ for which µ̃j(ỹ) = 1. This is different from the original formulation in Capotorti
and Figà-Talamanca (2020), where the memberships were normal fuzzy numbers. Our goal
is to ensure that the output of this merging process is a fuzzy number, possibly truncated.
When the number of α-cuts to aggregate changes, the resulting extremes must align with
those of the lower levels. This alignment can be achieved through a proper translation
and deformation of the extremes.

Due to the necessary discretization of the α levels to be considered in practical
applications, we can formulate the transformation by referring to two consecutive values
αm and αm+1. The extremes of the transformed αm+1-cut are computed recursively as
follows:
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µ̂
αm+1

l = µ̂αm

l + ϱαm |µαm+1

l − µαm

l | (10)

µ̂αm+1
r = µ̂αm

r − ϱαm |µαm+1
r − µαm

r | (11)

with

ϱαm =
µ̂αm
r − µ̂αm

l

µαm
r − µαm

l

(12)

and where the ”overlined” extremes are those obtained by the previously described S-or
and the ”hatted” ones are those finally obtained by the transformation at the specified
levels.

It is important to note that the typical method of discretizing the membership functions
µ̃j , where j ∈ {neg, neu, pos}, results in step functions with a finite number of distinct
α-cuts. This characteristic makes the S-or operator easily applicable and effectively
implementable for our purposes. It is worth mentioning that the original formulation in
Capotorti and Figà-Talamanca (2020) was intended for Fuzzy numbers, whereas we are
working with more general Fuzzy quantities.

2.2 Defuzzification

The final step in text sentiment classification involves synthesizing the final output
membership, denoted as µ∨−max or µS−or, into a single real value that represents the
overall sentiment of the text. This value is then used to assign a final sentiment label
based on a predetermined decision rule. For example, the following decision rule adopted
in Vashishtha and Susan (2019):

Label =

 Negative if COA ∈ [0, 3.3[
Neutral if COA ∈ [3.3, 6.7[
Positive if COA ∈ [6.7, 10]

(13)

where COA is the usual defuzzified center of the area value of their aggregated membership
µ∨−max usually approximated by

COA =

∑
yi∈Y yi µ∨−max(yi)∑
yi∈Y µ∨−max(yi)

, (14)

summations being over the partition Y = {y0, y1, . . . , yn} chosen for the discrete operational
representation of the memberships (in the aforementioned paper authors chose, e.g.,
Y = {0, 1, . . . , 10}).

Since the polygonal shape of the output membership µS−or, we suggest instead to
approximate the center of the area through the more accurate value proposed in Naimi
and Tahayori (2020) and defined as:

C(A)=

∑n
j=1

(
(yj−yj−1)

[
µj−1

(2yj−1+yj)

3
+µj

(yj−1+2yj)

3

])
∑n

j=1((yj−yj−1)(µj−1+µj))
. (15)
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where µj−1 and µj stay for µS−or(yj−1) and µS−or(yj), respectively, and Y = {0, 0.1, . . . , 9.9, 10}.
The center of the area is quite insensitive to the specific shape of the membership

functions, consequently, we obtain almost the same values with µ∨−max or µS−or. Hence,
concerning the classification aim, our proposal reaches the same performances of Vashishtha
and Susan (2019). In fact, our goal is to improve the interpretability rather than the
performance and we expect that this characteristic of our approach will be valuable when
applied to real and extensive datasets.

3 An Ensemble of Sentiment Classifier

As mentioned in the introduction, sentiment classifications are typically conducted using
different lexicons, with each lexicon providing a classification for a given instance. However,
there are instances where different lexicons may produce varying classifications for the
same data point. For example, in the Sanders dataset referenced in Vashishtha and Susan
(2019), tweet #3420 is labeled as Neutral using the AFINN lexicon with a COA of 5.4,
but is classified as Positive when processed through the VADER lexicon with a COA
of 7.67. To address this issue, the results from different lexicons can be aggregated to
provide a more comprehensive classification. One approach is to calculate the arithmetic
mean of the centers of the areas C(A)’s in (15), but this method may not account for
the unique shapes of the membership functions. A weighted average could offer a more
nuanced solution, although determining the appropriate weights can be challenging.

An alternative method is to utilize the conjunctive SMART operator S-and, as intro-
duced in Capotorti and Figà-Talamanca (2020). This operator considers the agreements
among the α-cuts of the initial membership functions, resulting in a more robust aggre-
gation of output memberships. By combining the output memberships obtained from
different lexicons, a single aggregated membership can be obtained using the S-and opera-
tor. The center of the area of this aggregated membership can then be used to determine
the classification label through a decision rule.

Precisely, by aggregating the different output memberships µs−or’s obtained for different
lexicons, a single aggregated joined membership µS−and is obtained; by computing the
center of the area (15) of µS−and we can eventually decide the classification label through
some decision rule, like, e.g., (13). As a result, this ensemble approach provides a weighted
mean of the different classifications, with the final center of the area of the aggregated
membership representing a combination of the centers of the individual memberships,
implicitly weighted based on their agreement or disagreement.

3.1 The S-and aggregation operator

In order to gain a simple understanding of the S-and operator, let us briefly outline the
main steps involved. For more detailed information, please refer to the source cited as
Capotorti and Figà-Talamanca (2020).

The S-and operator is a variation of the Fuzzy mean that considers the full or partial
overlap among the α-cuts of the Fuzzy memberships being combined.

Andrea Capotorti, Davide Petturiti, Barbara Vantaggi

77



Let m represent the number of membership functions to be aggregated, Il ⊂ {1, . . . ,m}
denote the set of indices of the last m− 1 left extremes, and Ir ⊂ {1, . . . ,m} represent the
set of indices of the first m−1 right extremes (in ascending order) of the m α-cuts in input.
The construction of the S-and operator follows a similar basic rule to the S-or operator
described in Subsection 2.1, but requires a more complex formulation. The computation
of the α-cuts of the result varies depending on whether α is below or above the value
h ∈ (0, 1), which represents the highest level of non-empty intersection among all the m
α-cuts of the original Fuzzy numbers (see Fig.4 for the case m = 2).

If α ≤ h, the extremes of the α-cuts are determined as convex combinations of the
original extremes using coefficients given by:

1

m
(1 + γj) j ∈ Il or Ir , (16)

where the quantities

γj =

∑m
f=1

1
m+1−f π

j
f∑m

k=1

∑m
f=1

1
m+1−f π

k
f

(17)

represent the weighted normalized contribution of the m − 1 most relevant extremes,
specifically those in Il for the left extremes and those in Ir for the right extremes.

It is worth to remark that the factor 1
m+1−f for each term in the numerator of γj is

directly proportional to the number of overlaps, which represent the level of agreement.
Additionally, in cases where all m α-cuts align, the values of γj can be consistently set to
zero.

Furthermore, the coefficients associated with the m-th position, specifically those
linked to the outermost left extreme in {1, . . . ,m} \ Il and the outermost right extreme in
{1, . . . ,m} \ Ir, can be expressed as follows:

1

m
(1−

∑
j=I∗

γj) I∗ = Il, Ir respectively. (18)

In situations where α exceeds the threshold h, the formal definition becomes more
intricate as various subgroups of intersections involving two or more memberships need to
be identified.

The logic underlying the method is to compute the S-and operator within each subgroup
obtaining different intermediate α-levels, and merge them in a second step, by applying
the S-or operator. For the technical details, we refer the reader once again to Capotorti
and Figà-Talamanca (2020).

Furthermore, when utilizing the S-and operator, it is necessary that any changes in
the number of memberships to be merged at a certain α-level result in the nesting of
the resulting extremes within those of the lower levels. This nesting process should be
achieved through translation or deformation, employing the same technique described for
the S-or operator in equations (10-11).

In Figure 5, the results of the S-and and of the two S-or outputs for tweet #3420 from
the Sanders dataset are plotted, as documented in Vashishtha and Susan (2019). The
AFINN lexicon assigned a positive score of x1 = 3.0 and a negative score of x2 = 0.0 to the
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tweet. By applying equations (2-4), we calculated a negative firing strength of wneg = 0.0,
a neutral firing strength of wneu = 0.625, and a positive firing strength of wpos = 0.375.

When processed through the VADER lexicon, the tweet received a positive score
of x1 = 0.5 and a negative score of x2 = 0.0, resulting in a negative firing strength of
wneg = 0.0, a neutral firing strength of wneu = 0.0, and a positive firing strength of
wpos = 1.0.

The membership value µS−and is compared with the original µ∨−max values. It is
important to note that the center of the area C(A) is calculated to be 6.19, which differs
from the arithmetic mean of 6.99 for the two original C(A) values, which were 5.65 and
8.33, respectively.

Figure 5: Comparison of the S-and membership and C(A) w.r.t. two ∨−max of Vashishtha
and Susan (2019) for tweet #3420 of Sanders dataset.

4 Conclusion

We have shown how the implementation of the recently introduced SMART Fuzzy aggre-
gation operators, S-or and S-and, can improve the interpretability of a rule-based system
proposed in Vashishtha and Susan (2019) for sentiment classification. Our innovative
approach can be seamlessly integrated into any other Fuzzy rule-based system of Mandami
type, regardless of the lexicon used.

Specifically, the S-or aggregator generates a truncated Fuzzy number as the output
of the inference process, which is more precise and easier to interpret compared to the
traditional V-max aggregation method. The S-or membership represents a Fuzzy number
centered around its C(A) value, with a weight determined by the maximum height of the
membership.

On the other hand, the S-and operator enables the creation of an ensemble of sentiment
classifiers utilizing various lexicons, resulting in a final crisp sentiment score that is a
weighted average of scores obtained from individual lexicons. These weights implicitly
capture the level of agreement or disagreement among the original Fuzzy outputs.

In conclusion, the SMART Fuzzy aggregation operators offer a versatile and effective
solution for enhancing the interpretability and performance of rule-based sentiment classi-
fication systems. Further research will be devoted to apply these operators to classify the
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sentiment of news articles retrieved from financial US newspaper and to finally assess the
impact of the fuzzy-based sentiment score in the return and volatility dynamics of major
US stocks.

As a distinguished target problem, we envisage the application of the present method to
find associations between the sentiment of central banks (FED and ECB) communications
(via policy statements, post-meeting press conferences, economic forecasts, monetary
policy reports, speeches, interviews, and testimony to parliament) and the monetary policy
stance, similarly to what has been done in Hilscher et al. (2024).
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Abstract

A method for adding conditional independence (CI) constraints to score-based
Bayesian Network Structure Learning is presented. As well as showing how to check
that a DAG meets a CI constraint, we consider methods for propagation, conflict
analysis and separation. Throughout, forward-chaining in propositional logic is the
main algorithm. Some preliminary experiments are presented which indicate that the
chosen propagation method is slow, but that implementing separation is beneficial.

1 Introduction

There are two main approaches to Bayesian Network Structure Learning (BNSL), i.e.
learning the structure of a Bayesian network from data. In the constraint-based approach
a series of carefully chosen conditional independence tests are performed on the data and
a DAG that satisfies the results of those tests is constructed. In the score-based approach
each candidate DAG has a score (determined by the data). This is typically a penalised
likelihood, such as BIC, or some Bayesian measure such as marginal likelihood or posterior
probability. The job of a score-based algorithm for BNSL is simply to find a DAG with
maximal score.

In this paper we address the issue of incorporating conditional independence (CI)
constraints into a score-based approach. Where these CI constraints come from is not
our focus: they might either come from a domain expert who knows that certain CI
relations hold or they might be inferred from data, leading in effect, to a hybrid constraint-
based/score-based approach to BNSL.

Throughout we focus on a particular score-based algorithm: GOBNILP (Cussens,
2011)—which encodes BNSL as an integer program and uses a cutting plane approach to
ensure acyclicity of the graph. GOBNILP has two implementations: one in Python and
one in C. Here we focus on the C implementation which uses the SCIP (Solving Constraint
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Integer Programs) library (Bolusani et al., 2024). SCIP has a ‘plug-in’ architecture which
allows a user to write constraint handlers for particular sorts of constraints. In this paper
the design of a constraint handler for CI constraints is described and evaluated.

2 Implementing conditional independence constraints

2.1 Constraint representation

GOBNILP assumes that the score for a given DAG is a sum of local scores, one for
each BN variable. The local score is determined by the choice of parent set for each BN
variable. As a result GOBNILP creates binary integer program (IP) variables called
family variables. The family variable xi←J takes the value 1 if J is the parent set for BN
variable i and 0 otherwise.

GOBNILP imposes constraints to ensure that any assignment of values to all family
variables represents a DAG. One could effect CI constraints on family variables but we
choose not to do that. One problem with family variables is that there are exponentially-
many of them (so that for big problems GOBNILP either artificially fixes most of them
to zero or attempts to add them to the IP during the course of solving—a method known
as pricing). To evade this problem we define CI constraints on arrow variables, where the
arrow variable xi←j takes the value 1 if the DAG has an arrow from j to i and 0 otherwise.
Using p to denote the number of BN variables (= vertices in the DAG) there are only
p(p−1) arrow variables. Arrow and family variables are connected by the following linear
equation (where P denotes the set of DAG vertices):

xi←j =
∑

J⊆P\{i},j∈J

xi←J (1)

2.2 Constraint checking

The very minimum that any SCIP constraint handler must do is to decide whether an
assignment of values to a constraint’s variables satisfy the constraint or not. Given a DAG
G (defined by arrow variables) and a particular CI constraint A⊥B|S we can say that the
constraint is satisfied if A and B are separated by S in (GAn(A∪B∪S))

m, the moral graph
of the DAG restricted to the smallest ancestral set containing A ∪ B ∪ S. This test, of
course, gives the same result as testing for d-separation in G (Lauritzen, 1996, Proposition
3.25).

To determine whether A and B are separated by S in (GAn(A∪B∪S))
m the set of propo-

sitional logic definite clauses shown in Fig 1 are constructed and it is then determined
whether the proposition λ can be deduced. (We will call these definite clauses rules.)
The standard forward-chaining algorithm for propositional logic is used; see Russell and
Norvig (2010, Fig 7.15) for more information on this simple algorithm. In Fig 1 αi in-
dicates that i is in An(A ∪ B ∪ S), yi←j indicates that there is an arrow from j to i
in GAn(A∪B∪S), zi−j indicates that i and j are connected (not necessarily directly) in
(GAn(A∪B∪S))

m and λ indicates that A and B are not separated by S in (GAn(A∪B∪S))
m.
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xi←j i← j ∈ G (2)

αi i ∈ (A ∪B ∪ S) (3)

αi ∧ xi←j →αj (4)

αi ∧ xi←j →yi←j (5)

αi ∧ xi←j →zi−j {i, j} ∩ S = ∅ (6)

yi←j ∧ yi←k →zj−k {j, k} ∩ S = ∅ (7)

zi−j ∧ zi−k →zj−k {i, j, k} ∩ S = ∅ (8)

zi−j →λ i ∈ A, j ∈ B (9)

Figure 1: Rules for checking a CI constraint

a b

c

s

e f

Figure 2: G1: A graph which violates the constraint {a}⊥{b}|{s}

To see how the constraint checking process works, consider the DAG G1 in Fig 2 which
violates the constraint {a}⊥{b}|{s}. The proof of λ in this case is illustrated by the proof
graph in Fig 3. The proof graph is constructed by adding a vertex for each fact newly
derived by forward-chaining and adding arrows to it from any earlier facts which allowed
its inference.

2.3 Constraint propagation

GOBNILP uses SCIP to perform a branch-and-bound search for an optimal DAG. When
(as in GOBNILP) we have only binary IP variables, branching is the process of choosing
a variable and creating two sub-problems: one where that variable has the value 0 and
one where it has the value 1. Successive branching leads to sub-problems where a number
of variables have fixed values: a partial assignment. If we can determine that a given
constraint is violated by a partial assignment then the branch in question can be cut
off since it cannot lead to a feasible solution (let alone an optimal one). In addition,
constraints can be used to fix as yet unfixed variables. For example if we have a CI
constraint that i and j must be independent and we have a sub-problem where xi←k = 1

Conditional Independence Constraints in Score-Based Learning of Bayesian Networks

84



αa

xb←f

αb

xs←c

αs

xc←a

xc←b

xe←a

αc

ys←c

αf

yb←f

zb−f

yc←a

yc←b

za−c

zb−c

λ

zc−f

Figure 3: Illustration of the proof that G1 in Fig 2 violates the constraint {a}⊥{b}|{s}
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then we can fix xk←j to 0. This is called propagation.
In GOBNILP’s CI constraint handler, propagation is effected as follows. The rules

in Fig 1 are constructed with the modification that only arrows fixed to 1 lead to the
corresponding proposition xi←j being included in (2). If λ can be deduced we have
established infeasibility and simply cut off the current branch. If not, we see whether
propagation is possible.

Our desire to perform propagation is why forward-chaining inference (as opposed to,
say, resolution) is used. Once forward-chaining has terminated without inferring λ, then
for each unfixed arrow variable xi←j we add xi←j as a new fact and see whether, with this
addition, λ can be deduced, again using forward-chaining. If so, we fix xi←j to 0. This
approach to propagation where we see whether a particular fixing leads to infeasibility,
is called probing. In general probing can be expensive. However, since we construct and
keep hold of the set of facts deducible prior to any fixings we typically have few additional
iterations of forward-chaining to do when probing. On the other hand since each unfixed
arrow variable is considered many probings are done which is expensive.

2.4 Conflict analysis

Cutting off infeasible branches of the branch-and-bound tree is important for efficient
solving. However, if we can also supply the ‘reason’ for the infeasibility to the solver (in
this case SCIP) this can also improve performance. In the case of a CI constraint, the
reason for infeasibility is the existence of a set of arrow variables which entail λ using
the rules in Fig 1. If the proof graph is constructed then the set of variables leading to
infeasibility is readily recovered: it is just the set of xi←j nodes which are ancestors of λ.
So, for example, in Fig 3, the set of ancestors of λ are {xs←c, xc←b, xc←a}.

Once an infeasibility-entailing set of variables has been identified the solver has the
option of adding an associated conflict clause to the problem, which in our example would
be the constraint:

¬xs←c ∨ ¬xc←b ∨ ¬xc←a (10)

To see the benefit of such clauses imagine that the 5 arrow variables in the first layer of
the proof graph (Fig 3) had got set to 1 as a result of this sequence of branching decisions:
(xb←f = 1, xe←a = 1, xs←c = 1, xc←b = 1, xc←a = 1). So we have reached a depth 5 node
in the branch-and-bound tree that we now know to be infeasible due to the {a}⊥{b}|{s}
constraint. It follows that

¬xb←f ∨ ¬xe←a ∨ ¬xs←c ∨ ¬xc←b ∨ ¬xc←a (11)

is a valid clause. However adding such a clause to the problem is pointless since the search
will never revisit this depth 5 node we know already to be infeasible. Clause (10) however
is useful. If we add it then any node reached by a sequence of branching decisions of
the form (. . . , xs←c = 1, . . . , xc←b = 1, . . . xc←a = 1) (in fact, any sequence fixing these 3
arrow variables to 1 in any order) can immediately be flagged as infeasible.

Also if some of the fixings of the variables xs←c, xc←b and xc←a to 1 were the result
of propagations using other constraints, then we might be able to infer additional conflict
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clauses. This is done by essentially extending the proof graph Fig 3 ‘leftwards’ to represent
these propagations. In practice, the work of doing all this is left to SCIP. We just inform
SCIP of the (minimal) sets of arrow variables whose locally fixed values led to infeasibility
and leave it to create what it judges are useful conflict clauses.

2.5 Separation

Since we are always dealing with finite DAGs it follows that any constraint on DAG
structure can be expressed as a finite set of linear constraints. In this section we de-
rive the linear representation of CI constraints. Returning to the running example we
have that any DAG containing the arrows {xs←c, xc←b, xc←a} will violate the constraint
{a}⊥{b}|{s}. It follows that the linear constraint:

xs←c + xc←b + xc←a ≤ 2 (12)

is implied by the constraint {a}⊥{b}|{s}.
More generally, it is useful to consider active chains used in the definition of d-

separation. An active chain for a CI constraint A⊥B|S is a chain connecting an element
of A to an element of B which is not blocked by S. For each active chain there is a min-
imal set of arrows which establish that it is an active chain. This set will include all the
arrows in the chain together with a (possibly empty) set of arrows which establish that
any colliders in the chain which are not in S have an element of S as a descendant. In our
running example, the active chain is (a, c, b), where c is a collider with s as a descendant.

Let Active(A⊥B|S) be the set of all minimal sets of arrows which entail an active
chain, or equivalently which allow λ to be deduced. It follows that the constraint A⊥B|S
is equivalent to the following set of linear constraints.∑

xi←j∈C
xi←j ≤ |C| − 1 C ∈ Active(A⊥B|S) (13)

The linear inequalities in (13) can be used to perform separation. As part of the
process of solving an integer program (IP) an IP solver will solve the linear relaxation of
the problem which is a linear program (LP) where the integrality constraint on integer
variables is removed. Solving this LP provides a useful bound and is typically quick to
do. The solution to the LP typically contains variables with fractional values. In the case
of GOBNILP’s binary arrow variables we will typically get values in the interval [0, 1]
other than 0 or 1.

If we can find linear inequalities from (13) that are violated by the solution to the linear
relaxation, then we can add them as cutting planes (which separate the linear relaxation
solution from the set of feasible solutions) and resolve the (now more constrained) linear
relaxation. Adding linear inequalities from CI constraints at this point in the solving
process will increase efficiency.

So, given an assignment of (possibly fractional) values to the arrow variables xi←j

how can we find a violated linear inequality
∑

xi←j∈C xi←j ≤ |C| − 1 for some C ∈
Active(A⊥B|S)? We do this by adapting the forward-chaining algorithm to infer positive
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lower bounds associated with facts. Initially, each αi for i ∈ A ∪ B ∪ S is given a lower
bound ℓ(αi) of 1 and each xi←j with a positive value x∗i←j > 0 in the solution to the
linear relaxation is given ℓ(xi←j) = x∗i←j as its lower bound. All other facts h have an
associated lower bound of ℓ(h) = 0. Forward-chaining uses the rules in Fig 1 to increase
lower bounds as follows. If b1 → h is a rule then ℓ(h) is updated to ℓ(b1) if this increases
ℓ(h). If b1 ∧ b2 → h is a rule then ℓ(h) is updated to ℓ(b1) + ℓ(b2) − 1 if this increases
ℓ(h). This update rule is an example of a Boole-Fréchet inequality (Boole, 1854) and the
lower bounds can be viewed as lower bounds on the probability of the facts, although this
interpretation is not exploited here.

It is easy to adapt forward-chaining to effect these updates and also to record a proof
graph. Indeed if all initial positive lower bounds were 1, then the procedure is exactly
the same as normal forward-chaining. Only one alteration is required to the construction
of the proof graph: if h is a vertex already in the proof graph and its lower bound gets
increased using a rule b1 → h (resp. b1 ∧ b2 → h) then any arrows to it in the proof graph
are removed and one from b1 is added (resp. one from both b1 and b2 are added).

If this procedure produces a lower bound for λ which is positive then the xi←j ancestors
of λ in the proof graph are found. Call the set of such ancestors C. We will show
below that if λ has a positive lower bound then

∑
xi←j∈C x

∗
i←j > |C| − 1 so the cut∑

xi←j∈C xi←j ≤ |C| − 1 is added. It is easy to see that this is a valid cut since the
proof graph constructed during the updates of lower bounds also serves as a proof that
C ∈ Active(A⊥B|S). Fig 4 shows a proof that λ ≥ 0.2 from xc←a ≥ 0.6, xc←b ≥ 0.8 and
xs←c ≥ 0.9. (Fig 4 only shows the lower bounds needed for this proof to avoid clutter.)
Note that 0.6+0.8+0.9 = 2.3 > 2 so xc←a+xc←b+xs←c ≤ 2 separates any linear relaxation
solution where x∗c←a = 0.6, x∗c←b = 0.8 and x∗s←c = 0.9. Note also that, although our
cut-finding algorithm is correct, it is not complete. If we had x∗s←c = 0.7 rather than
x∗s←c = 0.9 then forward-chaining would infer αc ≥ 0.7, zb−c ≥ 0.5 and za−c ≥ 0.3 and
no positive lower bound for λ could be inferred, even though xc←a + xc←b + xs←c ≤ 2 is
still a cut since 0.6 + 0.8 + 0.7 = 2.1 > 2.

If a positive lower bound ℓ(λ) is inferred for λ then we have a set H = {λ} such that∑
h∈H ℓ(h) > |H|−1. The following theorem shows that for any set H obeying this strict

inequality if we replace a fact in H by its parent(s) to get a new set H ′ then we also have∑
h∈H′ ℓ(h) > |H ′| − 1. If we start with H = {λ} and repeatedly apply this result until

we have arrive at a set H ′ where no fact has parents then we
∑

h∈H′ ℓ(h) > |H ′| − 1. H ′

will contain αi facts and xi←j facts. All αi have ℓ(αi) = 1 so if we remove all of them
form H ′ we will still have

∑
h∈H′ ℓ(h) > |H ′| − 1 and so the remaining xi←j facts provide

a cut.

Theorem 1. Let H be a set of vertices in a proof graph for lower bounds produced
using forward-chaining such that

∑
h∈H ℓ(h) > |H| − 1 where ℓ(h) is the lower bound

for fact h. Let h′ ∈ H have a non-empty parent set Pa(h′) in the proof graph and let
H ′ = H \ {h′} ∪ Pa(h′). Then

∑
h∈H′ ℓ(h) > |H ′| − 1.

Proof. We simply check the 5 possible situations. Suppose Pa(h′) = {b1} so ℓ(b1) = ℓ(h′).
If (i) b1 ∈ H then

∑
h∈H′ ℓ(h) =

[∑
h∈H ℓ(h)

]
−ℓ(h′) > |H|−1−ℓ(h′) ≥ |H|−2 = |H ′|−1.

If (ii) b1 ̸∈ H then
∑

h∈H′ ℓ(h) =
∑

h∈H ℓ(h) > |H| − 1 = |H ′| − 1. Now suppose
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xc←a ≥ 0.6

xc←b ≥ 0.8

xs←c ≥ 0.9

αc ≥ 0.9

za−c ≥ 0.5

zb−c ≥ 0.7 λ ≥ 0.2

Figure 4: Simplified proof tree for λ ≥ 0.2

Pa(h′) = {b1, b2} so ℓ(b1) + ℓ(b2) − 1 = ℓ(h′). If (iii) {b1, b2} ⊆ H then
∑

h∈H′ ℓ(h) =[∑
h∈H ℓ(h)

]
− ℓ(h′) > |H| − 1− ℓ(h′) ≥ |H| − 2 = |H ′| − 1. If (iv) b1 ∈ H, b2 ̸∈ H, then∑

h∈H′ ℓ(h) =
[∑

h∈H ℓ(h)
]
− ℓ(h′) + ℓ(b2) > |H| − 1 + 1− ℓ(b1) ≥ |H ′| − 1. Similarly for

b1 ̸∈ H, b2 ∈ H. If (v) b1 ̸∈ H, b2 ̸∈ H then
∑

h∈H′ ℓ(h) =
[∑

h∈H ℓ(h)
]
− ℓ(h′) + ℓ(b1) +

ℓ(b2) > |H| − 1 + 1 = |H ′| − 1.

2.6 Presolving

CI constraints can play a part in presolving, a process which simplifies the problem before
solving proper begins. Most obviously, given a CI constraint A⊥B|S, we can fix any xi←j

to 0 in presolving if i ∈ A, j ∈ B or vice-versa. Also if i ∈ A, j ∈ B, k ̸∈ S then we can
add the following set packing constraints during presolving:

1. xi←k + xk←i + xj←k ≤ 1

2. xj←k + xk←j + xi←k ≤ 1

More complicated presolving is also possible. If we have not only arrow variables xi←j but
also (binary) variables representing ancestor relations then some of those can be fixed to
0 in presolving: if i is required to be independent of j then neither can be the ancestor of
the other and they may not have a common ancestor. In addition, although not currently
implemented, one could use CI constraints to prevent some family variables from being
created (rather than being pointlessly created and then fixed to 0 in presolving). For
example, if we have a CI constraint A⊥B|S then no parent set for any s ∈ S can intersect
with both A and B.

3 Preliminary Experiments

The CI constraint handling method described in Section 2 has been implemented as SCIP
constraint handler and integrated into the GOBNILP algorithm. To check the imple-
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Figure 5: ‘True’ DAG used to simulated data.
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Figure 6: Optimal learned DAG with C⊥F constraint. BIC score is -12009. Takes 1.75
seconds to learn

mentation and assess the effectiveness of propagating and separating some preliminary
experiments have been conducted.

5000 datapoints generated from the 7 node 7 arc Gaussian network shown in Fig 5
(from the bnlearn (Scutari, 2010) R package) were provided as input to GOBNILP and
the globally optimal DAG for this data, according to the BIC score, was found in under
1 second. This learned DAG was, unsurprisingly, Markov equivalent to the true DAG in
Fig 5 and had BIC score -6997.753.

Figs 6 and 7 show the optimal DAGs when the constraints C⊥F and C⊥F |D, respec-
tively, are added. For this very small example at least, dealing with a CI constraint did
not slow down learning much: it took 1.75 seconds and 1.69 seconds, respectively. It is
interesting that in both cases to ensure that (i) the constraint and (ii) the dependencies
suggested by the data are respected, quite a dense network is required.

To examine CI constraint handling for a bigger problem, a dataset with 100 datapoints
on 20 continuous variables X0 . . . X19 was used for learning. With a parent set cardinality
upper bound of 4 the optimal DAG, according to the BIC score, was learned in 19 seconds
seconds. With a single CI constraint X7⊥X19 an optimal DAG was learned in 44 seconds
and with a second CI constraint X11⊥X14|X9 an optimal DAG was learned in 59 seconds.
However, if constraint propagation was turned off finding an optimal DAG took only 24
and 33 seconds, respectively. This indicates that the probing approach to propagation is
too slow and so an alternative faster and perhaps less complete approach to propagation
is worth exploring. When in addition to propagation being turned off, separation was
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Figure 7: Optimal learned DAG with C⊥F |D constraint. BIC score is -8187. Takes 1.69
seconds to learn

also turned off, finding an optimal DAG took 25 and 60 seconds, so it appears that
implementing separation is beneficial.
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Doornmalen, L. Eifler, M. Ghannam, A. Gleixner, C. Graczyk, K. Halbig, I. Hedtke,
A. Hoen, C. Hojny, R. van der Hulst, D. Kamp, T. Koch, K. Kofler, J. Lentz, J. Manns,
G. Mexi, E. Mühmer, M. E. Pfetsch, F. Schlösser, F. Serrano, Y. Shinano, M. Turner,
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Abstract

Not all normalized nonnegative monotone set functions are belief functions. This
paper investigates ways to modify them to obtain a belief function that preserves
some of their properties. The problem is motivated by an approach to data-based
learning of belief function models. The approach is based on the idea that classi-
cal methods of mathematical statistics can provide estimates of lower bounds for
unknown probabilities. Thus, methods of mathematical statistics can be used to
obtain a reasonable rough estimate, which is further elaborated to obtain a desired
belief function model.

1 Introduction

When learning a probabilistic model from data, you need to determine a large number of
parameters, i.e., find estimates for many probabilities. But you are not completely sure
about any of them especially if you have a limited amount of data. Using Bayesian statis-
tics, you get a posterior distribution of the considered probability (usually suggesting to
accept the most probable value), and if you want to be careful when applying the frequen-
tist approach, you should consider some confidence intervals of the needed parameters.
Thus, when learning models from data, it may seem more natural to do so in the frame-
work of belief function theory (Shafer, 1976) than in the framework of probability theory.
However, even this approach is not trivial. Although it has some similar properties, the
function whose values are estimates of the lower bounds of the confidence intervals for
each of the probabilities considered does not form a belief function. This happens only in
small examples. Otherwise, we get more general monotonic set functions (usually called
capacities), which need to be processed in order to be transformed into belief functions.
And the possible ways to do this are the subject of this paper.
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Thus, in this paper we explore the possibilities of searching for a belief function that
would be obtained as a modification of the values of the statistical estimates of confi-
dence intervals. After introducing the necessary terminology and notation, we begin to
study the properties of functions whose values correspond to the statistical estimates of
the lower bounds of confidence intervals. In this paper, we study only two types of their
approximation by belief functions. In Section 3 we propose a procedure for finding ap-
proximations that preserve all the information extracted from the data by the statistical
estimates, and in Sections 4 and 5 we study the lower approximations that do not add to
the model any information that is not encoded in the considered statistical estimates.

2 Necessary notions from theory of belief functions

In the whole paper, Ω denotes a finite frame of discernment . A non-negative set function
f : 2Ω → R+ is called pseudo-belief function (PBF) if f(∅) = 0, and it is

monotonic for a ⊂ b ⊆ Ω : f(a) ≤ f(b), and

normalized f(Ω) = 1.

Each PBF f is connected with a set of probability distributions defined on Ω. A credal
set of PBF f is the following set of probability distributions.

P(f) =
{
π defined on Ω :

(
∀a ⊆ Ω : π(a) ≥ f(a)

)}
. (1)

There is a natural partial ordering for PBFs. f ≤ g means that f(a) ≤ g(a) for all
a ⊆ Ω. f < g denote that f ≤ g and f ̸= g. Notice also that f ≤ g is equivalent with
P(f) ⊇ P(g).

We say a function f : 2Ω → R+ is a belief function (BF) if it is a PBF and for all
non-empty a ⊆ Ω ∑

b⊆a

−1|a\b|f(b) ≥ 0.

The set of all belief functions defined on given Ω is denoted by BF .
Thus, for each BF f one can define non-negative function mf on 2Ω called basic

probability assignment (BPA) mf by the following expression

mf (a) =
∑
b⊆a

−1|a\b|f(b), (2)

for which
f(a) =

∑
b⊆a

mf (b). (3)

The sets a ⊆ Ω for which mf (a) > 0 are called focal elements of f . Notice that if all focal
elements of BF f are singletons (|a| = 1), then also P is a singleton. These BFs are called
Bayesian. The representation of BF f using its BPA mf is often preferred. It makes
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the introduction of some notions, such as the following notion of pignistic transform and
simple specification, more intuitive.

Pignistic transform of BF f is a specific element of its credal set P(f) (Dubois and
Prade, 1982). It is a probability distribution defined for all ω ∈ Ω

πf (ω) =
∑

a⊆Ω:ω∈a

mf (a)

|a|
.

Using Equation (3), it is trivial to show that πf (a) ≥ f(a). It means that P(f) ̸= ∅
for all BFs f . Note that it does not hold for all PBFs. As a trivial example consider
Ω = {ω1, ω2}, and PBF g defined g({ω1} = g({ω2} = 0.6, g(Ω) = 1, which obviously
complies with the definition of PBFs. As a little bit more sophisticated example consider
an arbitrary Ω, and PBF g defined

g(a) =


0 if |a| < |Ω| − 1,

1− 1
|Ω|+1 if |a| = |Ω| − 1,

1 if a = Ω.

It means that for π ∈ P(g), π(ω) ≤ 1
|Ω|+1 for each ω ∈ Ω, which cannot hold for any

probability distribution π.
The following trivial assertion holds.

Lemma 1 Let g be a PBF on Ω. P(g) ̸= ∅ if and only if there exists BF f , for which
f ≥ g.

Proof. If P(g) ̸= ∅ denote π ∈ P(g), and define Bayesian BF f through its BPA
mf ({ω}) = π(ω). Since π(a) ≥ g(a) for all a ⊆ Ω, the also f ≥ g.

The opposite part of the equivalence is even simpler. The credal set P(f) of BF f is
always nonempty, and therefore P(g) ⊇ P(f) must also be nonempty. □

In (Jiroušek and Kratochv́ıl, 2025), the following notion was defined for BFs. We say
that BF f is a simple specification of BF g if mf is created from mg by shifting some of its
mass from some focal element to its subset; more precisely, there exist subsets a ⊂ b ⊆ Ω
such that mf (a) = mg(a)+ε, and mf (b) = mg(b)−ε, and all the remaining focal elements
of mf are the copies of the focal elements of mg, i.e., for all c ∈ Ω\{a, b}, mf (c) = mg(c).
Thus, this operation means that f(c) = g(c) + ε for all c ⊂ Ω, for which (a ⊆ c) \ (b ⊆ c),
and for all remaining c, f(c) = g(c). So we see that f > g. In this paper we will apply
this notion to all PBFs with the same effect. We will also generalize this notion in the
sense that we will consider ε < 0. The reader immediately sees that for negative values
of ε, f < g, and thus we will call this modification simple generalization.

Recall that in (Jiroušek and Kratochv́ıl, 2025) we proved the following assertion stating
that if f > g, then f can be obtained from g by a sequence of simple specifications.

Lemma 2 Let BFs f and g are defined on Ω. If g < f , then there exists a finite sequence
of BFs g = h1, h2, . . . , hk = f such that each hi+1 is a simple specification of hi.
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In the computational procedures introduced below we will use mass redistribution,
which consists of several simple specifications (generalizations) performed simultaneously.
By this new term we understand the process, when masses assigned to several subsets
are changed. We change PBF g to PBF f by redistributing ε from b ⊆ Ω to r its proper
subsets a1, . . . , ar if

(i) for all ℓ = 1, . . . , r, aℓ ⊊ b;

(ii) ε1, . . . , εr are such that
∑r

ℓ=1 εℓ = ε, and for all ℓ, εℓ
ε > 0;

(iii) mf (b) = mg(b)− ε;

(iv) for all ℓ = 1, . . . , r, mf (aℓ) = mg(aℓ) + εℓ;

(v) for all the remaining c ⊆ Ω \ {b, a1, . . . , ar}, mf (c) = mg(c).

Notice that if ε > 0, f is a specification of g (i.e., f > g), if ε < 0, f is a generalization of
g (i.e., f < g) because the condition (ii) guarantees that all εℓ are of the same sign; they
are all positive or negative.

Each PBF g splits the whole set of BFs BF into three disjoint parts: inner (upper)
envelop of g

B(g) = {f ∈ BF : f ≥ g} ,

outer (lower) envelop of g
B(g) = {f ∈ BF : f ≤ g} ,

and the set of BFs, which are incomparable with g, i.e., BF \
(
B(g) ∪ B(g)

)
.

3 Upper Approximations of Pseudo-Belief Functions

Consider a general PBF g : 2Ω → [0, 1]. Let us explore ways to find a suitable approx-
imation of g with some BF. There are several possible ways to do this. In this paper,
we will only consider approximations by BFs either from B(g) or B(g). Approximations
from B(g) are supported by the fact that they do not add any information that is not
contained in g. But the only task we can solve optimally is to look for the solution in
B(g). In this case the optimal solution is obtained by the following Upper approximation
procedure presented here in the form that produces both the BF f and the corresponding
BPA mf (it is a trivial application of Formulas (2) and (3) to show that the procedure
produces a consistent pair of functions).

Upper Approximation Procedure
For k = 1, ..., |Ω|

For a ⊆ Ω : |a| = k

f(a) := max
[
g(a),

∑
b⊊a mf (b)

]
;

mf (a) := max
[
0, g(a)−

∑
b⊊a mf (b)

]
;

If f(Ω) > 1 Then Fail;
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If the procedure does not fail, then

• f is a BF;

• f ≥ g;

• f is the lowest element of B(g).

The first two properties are obvious from the procedure. The last one is proved in the
following assertions.

Lemma 3 Let BF f be an output of the Upper approximation procedure applied to PBF
g (it means the procedure does not fail). Then there does not exist f̂ ∈ B(g) for which

f > f̂ .

Proof. Assume the opposite. Let f̂ ∈ B(g), and f > f̂ . By Lemma 2, there exists in
B(g) a BF for which f is its simple specification. Thus, without loss of generality, we

can assume that f is a simple specification of f̂ . It means that there exists a ⊆ Ω, for
which f(a) > f̂(a). It follows from the definition of simple specification that for all b ⊆ Ω,

|b| < |a|, BFs f and f̂ coincide, i.e., for all b ⊊ a, f(b) = f̂(b) and mf (b) = mf̂ (b). The
latter equality yields that

f̂(a) ≥
∑
b⊊a

mf (b).

Since f̂ ∈ B(g), we also know that f̂(a) ≥ g(a). It means that

f̂(a) ≥ max
[
g(a);

∑
b⊊a mf (b)

]
= f(a),

which is in contradiction with our assumption that f(a) > f̂(a). □

In other words, Lemma 3 states that Upper approximation procedure finds a solution
that is not dominated by another BF. The following theorem states the solution is unique.

Theorem 4 Let BF f be an output of the Upper approximation procedure applied to PBF
g (it means the procedure does not fail). Then B(f) = B(g).

Proof. Since f ∈ B(g), it is obvious that B(f) ⊆ B(g). Therefore, assuming the opposite,
there must be f ∈ B(g) \ B(f) for which there exists at least one a ⊆ Ω such that
f(a) < f(a). Consider such a with the smallest cardinality, which means that for all

b ⊊ a, f(b) ≥ f(b). This choice guarantees that f̂ : 2Ω → [0, 1], f̂(a) = f(a), and

f̂(c) = f(c) for all remaining c ∈ 2Ω \ {a} is correctly defined BF (it is monotonic).

However, f̂ < f , which contradicts Lemma 3. □

Thus, the set of optimal upper BF-approximations of g

A(g) =
{
f ∈ B : B(g) ∩ B(f) = {f}

}
is a one-point set. It means that if the procedure fails, then B(g) = ∅. There cannot exist
BF f̂ , for which

∑
b⊊a mf̂ (b) > g(Ω) = 1.
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Cybersecurity data example - part I

Table 1: Features (variables) characterizing organizations

Notation Variable # of values

L Legislation (regulated/unregulated by law) 2
S Security knowledge status of decision makers 5
T Total security score of organization 5
U User experience 4
V Volume of resources invested in cybersecurity 5
W Willingness of CIOs to educate themselves 5

In the current section, we illustrate the above-presented ideas concerning the data-
based learning of BF models using the cybersecurity data collected by Švadlenka (2025)
(for a more detailed description, see his cited PhD thesis). The data describe six charac-
teristics (variables – see Table 1) of fifty-two organizations (records).

For the sake of simplicity, we start with the simplest possible case, considering only
two dichotomous variables. We consider variables L and W , the latter binarized as shown
in Table 2. Thus, we consider Ω = {ω1, ω2, ω3, ω4}, and the available data, which are
summarized in the 2×2 contingency table (Table 2).

Table 2: 2×2 contingency table

W =≤ 3 W > 3
L = 1 {ω1} {ω2}
L = 2 {ω3} {ω4}

W =≤ 3 W > 3
L = 1 14 17
L = 2 15 6

The learning process is based on the idea that a belief function of an event a is a
lower bound for the possible probability of that event. The lower bound of a binomial
confidence interval has a similar property. Namely, there is only a small chance that
an actual probability of event a is less than the lower bound of a confidence interval
computed from the given data. As the title of this article suggests, we are considering
Jeffreys confidence intervals. We started with α = 0.05 (Lee, 1989), although other levels
and other estimates of confidence intervals can (and will) be used. The lower bounds of
these intervals for n = 52 are tabulated in Table 3. The values are calculated using the
R command (Crawley, 2012)

for(x in 0:52){print(c(x,qbeta(0.05/2, x+0.5, 52-x+0.5)))}.

Using this approach, we get a function g : 2Ω → [0, 1] that is monotone. If we also set
its value for Ω to one, we get a PBF that fits the given data. This function is tabulated
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Table 3: Lower limits of Jeffreys confidence intervals with α = 0.05, and n = 52
0∗ 1∗ 2∗ 3∗ 4∗ 5∗

∗0 0 0.1033921 0.2615272 0.4415067 0.6422402 0.9136317
∗1 0.0020829 0.1179209 0.2786434 0.460575 0.6637672 0.9136317
∗2 0.0080773 0.1327931 0.2959618 0.4798459 0.6856412 0.9530633
∗3 0.0165147 0.1479794 0.3134786 0.4993247 0.7079003
∗4 0.0265221 0.1634559 0.3311906 0.5190176 0.7305931
∗5 0.0376467 0.1792032 0.3490958 0.5389325 0.7537837
∗6 0.0496248 0.1952054 0.367193 0.5590787 0.7775591
∗7 0.06228799 0.2114491 0.3854819 0.5794675 0.8020423
∗8 0.0755216 0.2279231 0.4039627 0.6001125 0.8274177
∗9 0.08924337 0.2446184 0.422637 0.6210301 0.8539855

in Table 4. Since it is not a BF, we let the Upper approximation process modify it. The
whole process is recorded in the table. Looking at the resulting function f , we see that it
is not a BF, it is not normalized. This means that, due to Theorem 4, no BF dominates
g. However, this does not mean that there is no way to find a BF corresponding to the
given data with the properties of the upper approximation. Two ways to modify the
function g are presented here, both related to the reliability of the process by which g was
constructed. The alternative way — using a generalization of Shafer’s discounting — is
analyzed in our next contribution in these proceedings Daniel et al. (2025).

Table 4: Application of the Upper approximation process with α = 0.05
a # occurrences g(a)

∑
b⊊a mf (b) f(a) mf (a)

{ω1} 14 0.163 0 0.163 0.163
{ω2} 17 0.211 0 0.211 0.211
{ω3} 15 0.179 0 0.179 0.179
{ω4} 6 0.050 0 0.050 0.050

{ω1, ω2} 31 0.461 0.375 0.461 0.086
{ω1, ω3} 29 0.423 0.343 0.423 0.080
{ω1, ω4} 20 0.262 0.213 0.262 0.048
{ω2, ω3} 32 0.480 0.391 0.480 0.089
{ω2, ω4} 23 0.313 0.261 0.313 0.052
{ω3, ω4} 21 0.279 0.229 0.279 0.050

{ω1, ω2, ω3} 46 0.778 0.809 0.809 0
{ω1, ω2, ω4} 37 0.579 0.611 0.611 0
{ω1, ω3, ω4} 35 0.539 0.571 0.571 0
{ω2, ω3, ω4} 38 0.600 0.632 0.632 0

Ω 52 1.000 1.009 1.009 0

We know that with α = 0.05 it can happen that π(a) < g(a) with probability 0.025.
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Therefore, the probability that all 15 probabilities considered are greater than the respec-
tive values of the function g is only 0.97515, which is less than 0.7. To deal with such
unreliability, we can either decrease α, or apply the idea of Shafer (1976) to discount
PBF g. The latter approach is to follow the idea of Shafer (1976) proposed for inaccurate
sources: take a coefficient of discount rate δ and recompute values of g for all proper
subsets a ⊊ Ω as g(a) := (1− δ)g(a).

In the following, we consider the first case and lower the level of the confidence intervals
used. First, we computed the function g based on the estimates of the Jeffreys confidence
intervals with α = 0.03. It turned out that this PBF did not have a non-empty credal
set either. We succeeded in obtaining a suitable PBF by considering the estimates of
Jeffreys confidence intervals with α = 0.02. The corresponding PBF g and a log of the
corresponding calculation are presented in Table 5. It is worth noting that a very similar
result can be obtained by applying the same algorithm to the original g presented in
Table 4, discounted at the discount rate of δ = 0.9.

Table 5: Process of computation of the Upper approximation; α = 0.02
a # occurrences g(a)

∑
b⊊a mf (a) f(a) mf (a)

{ω1} 14 0.147 0 0.147 0.147
{ω2} 17 0.192 0 0.192 0.192
{ω3} 15 0.162 0 0.162 0.162
{ω4} 6 0.041 0 0.041 0.041

{ω1, ω2} 31 0.436 0.339 0.436 0.097
{ω1, ω3} 29 0.398 0.308 0.398 0.090
{ω1, ω4} 20 0.241 0.187 0.241 0.053
{ω2, ω3} 32 0.455 0.354 0.455 0.101
{ω2, ω4} 23 0.291 0.233 0.291 0.058
{ω3, ω4} 21 0.257 0.202 0.257 0.055

{ω1, ω2, ω3} 46 0.755 0.788 0.788 0
{ω1, ω2, ω4} 37 0.554 0.587 0.587 0
{ω1, ω3, ω4} 35 0.513 0.547 0.547 0
{ω2, ω3, ω4} 38 0.575 0.608 0.608 0

Ω 52 1.000 0.994 1.000 0.006

It is perhaps unnecessary to say that decreasing the level of confidence α (or discount
rate δ) finally always results in finding a PBF g with a nonempty credal set.

In this example, we were interested in finding a BF on Ω, whose cardinality was
4. To have a simple example, we had to binarize variable W . When considering non-
simplified two-dimensional contingency tables of the considered cybersecurity example,
the cardinality of the considered space of discernment increases up to 25. Not to speak
of considering three-dimensional contingency tables, where the cardinality of Ω can grow
up to 125. Thus, we easily go beyond the capacities of current computers, and the open
question is whether there are similar approaches that take into account the need to keep
the complexity of the resulting BPs reasonable.

Milan Daniel, Radim Jiroušek, Václav Kratochvíl

99



4 Lower Approximations of Pseudo-Belief Functions

As mentioned above, the lower approximations should be preferred if one does not want
the approximation to contain any information not contained in PBF g. Thus, in this case,
we consider the set of optimal outer approximations

A(g) =
{
f ∈ B : B(g) ∩ B(f) = {f}

}
.

It is a set of Pareto optimal outer approximations of g that are not dominated by any
other outer approximation of g. The problem remains which one to choose and how to
compute it. As in many other areas of research where one has to choose one solution
from a set of Pareto optimal solutions, it depends on whether there is some additional
information or some supporting criterion to take into account. This is all subject to
further research.

A relatively simple way to find a lower approximation is to apply the following Easy
lower approximation procedure. In contrast to the Upper approximation procedure in-
troduced in Section 3, where the procedure was unambiguously described, the following
pseudo-code uses a step that can be implemented in several different ways.

Easy Lower Approximation Procedure
For k = 1, ..., |Ω|

While A :=
{
a ⊆ Ω : |a| = k & g(a) <

∑
b⊊a mf (b)

}
̸= ∅

Choose any a ∈ A; ε := g(a)−
∑

b⊊a mf (b);
Redistribute ε to mf (bℓ), bℓ ⊊ a, ℓ = 1, . . . , r;

For a ⊆ Ω : |a| = k
mf (a) := g(a)−

∑
b⊊a mf (b);

For a ⊆ Ω
f(a) :=

∑
b⊆a mf (b);

Recall that the step “Redistribute ε to mf (bℓ), bℓ ⊊ a, ℓ = 1, . . . , r;” means that you
have to choose the system bℓ ⊊ a, ℓ = 1, . . . , r, and split ε into corresponding εℓ so that
all εℓ are negative and ε =

∑r
ℓ=1 εℓ. No matter how it is implemented, the process of

redistributing a negative value ε to mf always realizes several simple generalizations we
discussed in Section 2. Thus, when the redistribution is finished, g(a) =

∑
b⊊a mf (b). It

can always be realized in such a way that all mf (bℓ) are non-negative. In the example
below, we will implement this step so that a third of ε is added to all b ⊂ a : |b| = |a| − 1.
We take a third of ε because, in the case of the following example, it is applied when
|{b ⊂ a : |b| = |a| − 1}| = 3.

As said, the discussed process of redistribution can always be done, because∑
b⊊a mf (b) > |ε|. This can be implemented in many ways. It is also a topic for further

research to study which of them is preferable. Note that if possible, one should redis-
tribute ε to mf (b), for b ⊂ a : |b| = |a| − 1, and not to mf (b), for b ⊊ a with |b| < |a| − 1.
This is because the simple generalization when εi is subtracted from mf (a) and added
to mf (b) with |b| = |a| − 2 can be realized as two successive simple generalizations, first
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from a to c (for b ⊂ c ⊂ a), and second from c to b, which would give a hint that the
resulting BF does not belong to the Pareto optimal outer approximations.

There are even more open questions regarding the redistribution step. Although it
is quite likely, we are not sure whether one can always redistribute ε only to sets b, for
b ⊂ a : |b| = |a| − 1. However, the most important open question is whether there is
an implementation that guarantees that the resulting approximation is Pareto optimal.
Greater chances of producing Pareto optimal solutions have Advanced lower approxima-
tion procedure, which is described after an example in the following section. We will see
that in the advanced procedure, the redistribution process is considered simultaneously
for all subsets of the same cardinality, rather than separately in a cycle. However, this
increases the computational complexity of the whole process.

Cybersecurity data example - part II

Let us get back to considering the cybersecurity data and the function g defined in
Table 4, where its values correspond to the Jeffreys estimates of lower bounds of confidence
intervals with α = 0.05.

Table 6: Application of the Easy lower approximation process with α = 0.05

k = 1, 2 k = 3

a g(a) mf (a) ε mf (a) ε mf (a) ε mf (a) ε mf (a) f(a) f⋆(a)

{ω1} 0.163 0.163 0.163 0.163 0.163 0.163 0.163 0.163

{ω2} 0.211 0.211 0.211 0.211 0.211 0.211 0.211 0.211

{ω3} 0.179 0.179 0.179 0.179 0.179 0.179 0.179 0.179

{ω4} 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050

{ω1, ω2} 0.461 0.086 0.075 0.068 0.068 0.068 0.443 0.461

{ω1, ω3} 0.423 0.080 0.070 0.070 0.065 0.065 0.407 0.407

{ω1, ω4} 0.262 0.048 0.048 0.041 0.037 0.037 0.250 0.246

{ω2, ω3} 0.480 0.089 0.079 0.079 0.079 0.076 0.466 0.464

{ω2, ω4} 0.313 0.052 0.052 0.045 0.045 0.042 0.303 0.298

{ω3, ω4} 0.279 0.050 0.050 0.050 0.045 0.042 0.271 0.279

{ω1, ω2, ω3} 0.778 -0.031 0 0.007 0.012 0.015 0.778 0.778

{ω1, ω2, ω4} 0.579 -0.021 0 0.005 0.008 0.579 0.579

{ω1, ω3, ω4} 0.539 -0.014 0 0.003 0.539 0.539

{ω2, ω3, ω4} 0.600 -0.009 0 0.600 0.600

Ω 1 0.041 1 1

When applied to this function g, Easy lower approximation procedure skips the While

cycle for k = 1, 2, because for these k, set A =
{
a ⊆ Ω : |a| = k & g(a) <

∑
b⊊a mf (b)

}
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is empty. A is nonempty only for k = 3. The whole calculation is shown in Table 6. The
values of the resulting BF are in the column headed by f . We do not know if f is Pareto
optimal or not. We do not know it even for the solution f⋆ in the last column, which
was computed by the procedure described in the following section. The reader certainly
noticed that two solutions f and f⋆ are incomparable.

5 Advanced Lower Approximations

The idea of this procedure, here called Advanced lower approximation, is based on the
behavior of the Easy lower approximation procedure. The reader can see it in the example
presented above. After applying the redistribution step to a = {ω1, ω2, ω3} ∈ A (for
k = 3) we get g(a) =

∑
b⊊a mf (b), and therefore mf (a) = 0. But in the next step of

this cycle, the redistribution is applied to ā = {ω1, ω2, ω4} ∈ A. When this redistribution
process is finished, we get, analogously, g(ā) =

∑
b⊊ā mf (b), but for the preceding a we

get g(a) >
∑

b⊊a mf (b), and therefore mf (a) > 0. Therefore, in the procedure we are
going to describe, we leave the idea of redistributing negative ε’s in a cycle, we want to
redistribute all values simultaneously to get mf (a) = 0 for all a ∈ A.

Perhaps the first idea could be to set up a system to be solved by linear programming
methods. Unknown variables are all potential shifts of mass functions. Assume a fixed k,
and that we only want to move masses to subsets whose cardinality is one less than the
considered k. Denote ℓk = |{b ⊂ a : |b|+1 = |a| = k}|. Then we get ℓk.|Ak| unknown vari-
ables. The constraints are given by the equality that for all a ∈ Ak, g(a) =

∑
b⊊a mf (b),

and the sum of all shifts from the set a must equal εa, and that all new values of mf (b)
for all b are nonnegative. Such an approach is possible, but we believe it is unnecessarily
computationally expensive. Much simpler is the following iterative process.

Advanced Lower Approximation Procedure
For k = 1, ..., |Ω|

Set Ak =
{
a ⊆ Ω : |a| = k & g(a) <

∑
b⊊a mf (b)

}
̸= ∅;

If Ak ̸= ∅ Then
Untill max[|εa|] < 10−8

For a ∈ Ak εa := g(a)−
∑

b⊊a mf (b);
Choose a ∈ Ak : max[|εa|];
Redistribute εa to mf (bℓ), bℓ ⊊ a, ℓ = 1, . . . , r;

For a ⊆ Ω : |a| = k
mf (a) := g(a)−

∑
b⊊a mf (b);

For a ⊆ Ω
f(a) :=

∑
b⊆a mf (b);

Let us add two comments to the iterative process introduced above (realized in the
Untill cycle). First, the criterion that ends the cycle means that you are willing to accept
that all differences are so small that they can be considered zero. Second, realize that
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the values of εa reach both negative and positive values. When splitting this value for
Redistribution, all of its parts must be of the same sign. This is also why we choose a
according to the absolute value of εa.

This procedure yielded the BF f⋆ from Table 6 Let us also remark that, up to now,
we have always got along with the simplest possible realization of the Redistribution step
by one simple cycle:

For b ⊂ a : |b|+ 1 = |a|
mf (b) := mf (b) +

εa
|{b ⊂ a : |b|+ 1 = |a|}|

.

6 Conclusion

The paper introduces two types of approximations of PBFs by BFs. The research is
motivated by the idea that data-based learning of belief function models can start with
a normalized monotone set function whose values are defined by lower bounds of the
corresponding confidence intervals. Although the paper presents simple algorithms for
obtaining both lower and upper bounds of PBFs, it raises more questions than it answers.
The main questions concern the optimality of the proposed lower approximations. There
is also more room for computational experiments and the design of heuristic algorithms,
because, as it is quite natural in the framework of belief functions, all computational
processes are of very high computational complexity. Thus, the paper provides a good
basis for future research in several directions.
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Abstract

We present and compare several approaches for transforming pseudo-belief func-
tions, constructed from Jeffreys confidence intervals on observational data, into
proper belief functions. Two main classes of methods are examined: one based on
polyhedral geometry using various optimization strategies, and the other employing
generalized belief discounting. Finally, the proposed methods are evaluated on real
cybersecurity data and compared with standard upper and lower approximations of
pseudo-belief.

1 Introduction

In a companion paper in these proceedings Daniel et al. (2025), belief functions were
estimated from data using lower bounds based on Jeffrey’s binomial confidence intervals.
These bounds may not directly correspond to any valid belief function, leading to the
notion of pseudo-belief functions — representations that preserve the intended epistemic
meaning but violate some mathematical constraints of belief calculus.

This paper presents two complementary groups of methods for correcting such pseudo-
belief functions and obtaining valid belief functions from them. Each method has its own
motivation and interpretation:

• The first approach is based on polyhedral geometry. It considers the lower bounds
(e.g., Jeffreys-type) as defining a polyhedron of admissible belief functions and se-
lects one or more representative elements from this set using geometric or optimization-
based criteria. This approach is constructive and data-driven.
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• The second approach, introduced in this paper, generalizes the classical method
of belief discounting as defined by Shafer (1976). It assumes a partial reliability of
the original pseudo-belief function and proportionally reduces its support, originally
transferring the remainder to total ignorance. We utilize the remainder for negative
belief mass correction here. The result is a valid belief function that retains the
internal structure of the original function.

While these two approaches differ in spirit — geometric reconstruction versus numer-
ical correction — they share the same objective: to obtain valid belief functions that are
compatible with uncertain or incomplete evidence. Moreover, belief discounting is a linear
transformation and can be interpreted as a special case of movement within the credal
set (i.e., the set of all belief functions consistent with given information), hence admitting
a geometric interpretation.

By combining these perspectives, the paper contributes to the broader effort of belief
function learning: deriving reasonable epistemic representations from empirical data, even
in the presence of imprecision or ambiguity.

2 Preliminaries

This paper builds on a preceding contribution in these proceedings (Daniel et al., 2025),
where belief and pseudo-belief functions were introduced and motivated by data-driven
lower bounds such as Jeffreys intervals. These bounds may not always define a valid belief
function, leading to pseudo-belief structures that require correction.

We explore two complementary correction strategies, each developed in a separate
section. The first is based on polyhedral geometry and is presented next. The second
relies on belief discounting and follows afterward. Here we briefly recall the key concepts
common to both.

A belief function over a finite frame Ω is defined via a basic probability assignment
(BPA) m : 2Ω → [0, 1] satisfying m(∅) = 0,

∑
m(A) = 1. Belief and plausibility functions

are given by:
belm(A) =

∑
B⊆A

m(B), plm(A) =
∑

B∩A̸=∅

m(B). (1)

Pseudo-belief functions generalize this by allowing some negative masses while preserving
the belief–plausibility duality.

An important correction tool is discounting (Shafer, 1976), used when evidence is not
fully reliable. Given trust 1− δ, the discounted mass function is defined as:

mδ(A) = (1− δ)m(A) for A ̸= Ω, mδ(Ω) = (1− δ)m(Ω) + δ,

yielding a belief function belδ with belδ(A) = (1 − δ) bel(A) for A ̸= Ω, belδ(Ω) = 1.
Discounting increases uncertainty while preserving belief ratios.

Finally, when belief or plausibility bounds are defined by inequalities, they form a
polyhedron

P = {x ∈ Rn : Mx ≤ b},
which may or may not correspond to any belief function. We use geometric methods to
modify such sets into valid belief structures — a topic of the next section.
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3 Geometric Correction via Polyhedral Optimization

In the preceding chapters, we introduced pseudo-belief functions derived from empirical
data using Jeffreys confidence intervals, as motivated in Daniel et al. (2025). These define
lower and upper bounds for the belief and plausibility of each subset A ⊆ Ω, resulting in
a system of linear inequalities that constrains possible belief functions.

Let belJ ∈ R2n denote the vector of lower bounds (Jeffreys intervals) for each subset
A. The inequality

belJ(A) ≤
∑
B⊆A

m(B)

can be rewritten in matrix form as

Mm ≥ belJ ,

where m ∈ R2n is a vector of bpa values and M ∈ {0, 1}2n×2n is the inclusion matrix
with entries M[A,B] = 1 iff B ⊆ A.

If we add constraints for normalization and non-negativity,∑
A⊆Ω

m(A) = 1, m(A) ≥ 0,

we obtain a polytope P∗
J ⊂ R2n containing all belief functions consistent with the empirical

bounds. The polytope may have many vertices, corresponding to different consistent
BPAs.

Polyhedral geometry offers strong tools for selecting one specific point m ∈ P∗
J by

optimizing a suitable objective function. This approach draws on the convex geometry
of belief spaces as explored in Cuzzolin (2010, 2020) and relies on standard polyhedral
optimization methods (Ziegler, 1995; Bagnara et al., 2008).

We consider four optimization criteria:

Zero Objective (ZO). Selects any feasible point:

Minimize fZO(m) = 0.

Sparsity (SP). Minimizes the number of focal elements:

Minimize fSP(m) =
∑

A⊆Ω,A̸=∅

δ[m(A) > 0],

where δ[·] is the indicator function. This is approximated in LP by introducing binary
variables zA and constraints m(A) ≤ M · zA, for large M .

Cardinality-Weighted (CW). Penalizes small subsets:

Minimize fCW(m) =
∑

A⊆Ω,A ̸=∅

1

|A|
m(A).
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Dubois–Prade Entropy (HD). Maximizes entropy:

Maximize HD(m) =
∑

A⊆Ω,A ̸=∅

m(A) log |A|,

as proposed in Dubois and Prade (1987).
The resulting belief mass assignments under each objective are shown below for the

example with Ω = {ω1, ω2, ω3, ω4}:

Table 1: Comparison of belief mass assignments under different objective functions. Col-
umn mJ shows the pseudo-belief mass vector constructed directly from Jeffreys intervals
(Daniel et al., 2025).

A belJ(A) mJ(A) mZO(A) mSP (A) mCW (A) mHD(A)
{ω1} 0.164 0.163 0.400 0.163 0.164 0.174
{ω2} 0.211 0.211 0.321 0.297 0.211 0.222
{ω3} 0.179 0.179 0.229 0.317 0.179 0.190
{ω4} 0.050 0.050 0.050 0.222 0.050 0.060

{ω1, ω2} 0.461 0.086 0 0 0.081 0.065
{ω1, ω3} 0.423 0.080 0 0 0.075 0.059
{ω1, ω4} 0.262 0.048 0 0 0.044 0.027
{ω2, ω3} 0.480 0.089 0 0 0.089 0.068
{ω2, ω4} 0.314 0.052 0 0 0.052 0.031
{ω3, ω4} 0.279 0.050 0 0 0.050 0.029

{ω1, ω2, ω3} 0.778 -0.031 0 0 0 0
{ω1, ω2, ω4} 0.580 -0.032 0 0 0 0
{ω1, ω3, ω4} 0.539 -0.032 0 0 0 0
{ω2, ω3, ω4} 0.600 -0.032 0 0 0 0

Ω 1.000 0.117 0 0 0 0.075
HD 0 0 0.271 0.297

Discussion. Each optimization criterion leads to a different belief assignment. The
Sparsity (SP) solution concentrates belief on a minimal number of focal elements, which
may be beneficial for interpretability. TheCardinality-Weighted (CW) solution favors
larger sets, thereby reflecting cautious reasoning. The Dubois–Prade entropy (HD)
solution maximizes epistemic uncertainty and spreads mass over larger focal elements,
constrained by empirical bounds. Interestingly, the CW solution closely resembles the
approximation obtained in (Daniel et al., 2025) using the Upper Approximation Proce-
dure, which supports the validity of our optimization-based approach.

These results illustrate that geometric correction methods not only ensure consistency
with empirical estimates but also allow tailoring belief functions according to different
modeling principles or user preferences.
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4 A Generalization of Belief Discounting

Let us assume a PBF belJ constructed by application of the method of Jeffreys confidence
intervals (Daniel et al., 2025) or any general PBF, which does not satisfy the classic
Shafer’s definition of BF - there are some focal elements in respective BPA with negative
mass, cf. negative ε in lower approximation in Daniel et al. (2025). Our aim is simply to
find an acceptable way how to eliminate these negative belief masses. From the definition
of a PBF, all pseudo-beliefs are non-negative, thus also all belief masses of singletons are
obviously non-negative. Hence, an issue can appear only for X ⊆ Ω, |X| ≥ 2.

We can consider the negative mass m(X) as a consequence of over information about
the case which is the subject of the belief; excess information on subsets of X, which can
be corrected by removal of at least belief mass corresponding to the sum of negative belief
masses.
Example 1 In the simplest case of such a PBF, i.e., belS on |Ω2| = 2, mS(Ω2) = ε < 0,
we can simply solve the problem by discounting with discounting rate δ ≥ −ε/(1 − ε) :
mδ

S(Ω2) = (1 − δ)mS(Ω2) + δ ≥ (1 − (−ε/(1 − ε))ε − ε/(1 − ε) = ε(1 + ε/(1 − ε) −
1/(1 − ε) = ε(1 − 1) = 0, mδ

S(ωi) = (1 − δ)mS(ωi), which is also non-negative, as
1 − δ = 1 + ε/(1 − ε) = (1 − ε)/(1 − ε) + ε/(1 − ε) = 1/(1 − ε) > 0. Just the same
procedure we can use for correction of any PBF on |Ωn| = n, with the only negative belief
mass m(Ωn).

In general, we have to correct all negative belief masses, of any focal element |X| > 1.
We can do it in three different ways:
(i) local correction of m(X), related to the only focal element X ⊂ Ω and its subsets,
(ii) layered correction of all m(X), s.t. |X| = k, related only to focal elements |Y | ≤ k,
(iii) global correction which correct all the focal elements with negative masses together.

Motivated by the above solution of the simplest PBF case we will try to generalize
discounting as it follows.

Local discounting on X ⊂ Ω: m⌜X⌝δ(A) = (1 − δ)m(A) for any A ⊂ X, m⌜X⌝δ(X) =
m(X) + δ

∑
A⊂X m(A) and m⌜X⌝δ(A) = m(A) for other subsets A ⊆ Ω, i.e., for A ̸⊆ X.

Property 1: If X is disjoint with all focal elements of the same and less cardinality which
are not its subsets (X ∩ Y = ∅ for all |Y | ≤ |X| s.t. Y ̸⊆ X) we can describe reasonable
property of this definition of local discounting: (bel⌜X⌝δ(A) = (1−δ)bel(A) for any A ⊂ X,
bel⌜X⌝δ(A) = bel(A) if A ̸⊂ X).
Property 2: If X is disjoint with all focal elements of the same cardinality, we can describe
the following property of this definition of local discounting: (bel⌜X⌝δ(A) = (1− δ)bel(A)
for any A ⊂ X, (1−δ)bel(A) ≤ bel⌜X⌝δ(A) ≤ bel(A) for any |A| < |X| : A ̸⊂ X&A∩X ̸= ∅,
m⌜X⌝δ(A) = m(A) otherwise.
Example 2 Let suppose |Ω7| = 7, with only two focal elements of cardinality 3, |Ai| = 3:
A1 = {ω1, ω2, ω3}, A2 = {ω4, ω5, ω6}. Property 2 holds for both bel⌜Ai⌝δ. If further
m(X) = 0 for any X ⊆ A1∩A2, property 1 also holds for both bel⌜Ai⌝δ. If there are added
f.e.s A3 = {ω4, ω5, ω7}, A4 = {ω5, ω6, ω7}, the properties does hold only for bel⌜A2⌝δ.

Hence, the above useful properties does not hold for general PBFs. Jeffreys belJ has
often focal elements intersecting with the others of the same cardinality. Thus for our
reason the definition of local discounting should be improved in the future.
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Cardinality or k-discounting for 1 < k ≤ n: mkδ(A) = (1−δ)m(A) for any A : |A| < k,

mkδ(A) = m(A)+ δ
∑

B⊂A
m(A)∑

B⊂C:|C|=k m(C)m(B) for any |A| = k, and mkδ(A) = m(A) for

any |A| > k.
The formula - more precisely the coefficient of m(B) seems to be rather complicated

here, nevertheless we need to distribute any m(B) among subsets of cardinality k, resp.
just among all C, such that B⊂C & |C|= k.
Observation 1 We can observe that belkδ(A) = (1−δ)bel(A) for |X| < k and (1− δ)bel(A)
≤ belkδ(A) ≤ bel(A) for |A| ≥ k: the first equality holds for m(A) = 0 and the second if
there is the only one focal element of cardinality k, specially for k = n. [To be proved]
Observation 2 We can observem⌜Ωn⌝δ(A) = belnδ(A) = belδ(A) for |Ωn| = n. Thus both
local and cardinality discounting are generalization of the original Shafer’s discounting.
Proof. m⌜Ωn⌝δ(Ωn) = m(Ωn) + δ ·

∑
A⊂Ωn

m(A) = (1 − δ)m(Ωn) + δm(Ωn) + δ ·∑
A⊂Ωn

m(A) = (1−δ)m(Ωn)+δ(m(Ωn)+
∑

A⊂Ωn
m(A)) = (1−δ)m(Ωn)+δ = mδ(Ωn).

mnδ(Ωn) = m(Ωn) + δ ·
∑

B⊂Ωn
m(Ωn)/m(Ωn) · m(B) = (1 − δ)m(Ωn) + δm(Ωn) + δ ·∑

B⊂Ωn
m(B)) = (1− δ)m(Ωn) + δ = mδ(Ωn).

5 Reduction of Over-Belief by Generalized Discounting

5.1 General Remarks on PBF Correction

Motivated by the successful Example 1, we have generalized belief discounting to allow
analogous correction of general PBFs in the previous section.

As we have not yet been fully successful with the generalization of local discounting
for general PBFs while preserving the ratios of belief masses, we resort to using only
cardinality-based discounting in our corrections here. It affects all focal elements of a given
cardinality (it distributes the discounted belief mass among all of them) and, similarly to
classical Shafer discounting, adds the discounted mass to only one cardinality. Thus, our
local and global corrections are in fact mixtures of local/global and layered corrections.

We must correct all belief masses < 0, i.e., such that
∑

B⊂A m(B) > bel(A), i.e., with
ratio R(A) = bel(A)/

∑
B⊂A < 1. If the lowest ratio among focal elements of cardinality

k is used, then the strongest correction is performed, and the entire cardinality level is
corrected. If the highest ratio is used, the smallest correction is performed, and only
the focal element with that ratio is corrected. Note that a more complex formula for
distributing the discounted belief mass is applied in cardinality discounting compared
to classical discounting, and thus determining δ is also more complex, even though the
underlying idea is analogous to that in Example 1.

5.2 Local, Layered, and Global Corrections of PBFs

1 Local correction should be the most precise, nevertheless it appears more complicated
both from the theoretical point of view and also due to its computational complexity. As
the theoretical part is not yet fully investigated, we adopt a mixture of local and layered
approaches, correcting entire cardinality levels or individual focal elements one by one.
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2 Layered correction is a compromise approach that corrects entire cardinality levels.

3 Global correction should correct all negative belief masses of the entire PBF together,
if possible. Nevertheless, we again use only a mixture with layered correction.

5.3 Local Correction Algorithms

5.3.1 Algorithm 1-ugr

For each cardinality with negative pseudo-belief mass(es), we repeatedly utilize cardi-
nality discounting with minimal correction discount rates (i.e., upward from minimal
correction), correcting focal elements of cardinality k one by one using discount rates
δA = −

∑
|B|=k m(B)/

∑
C⊂A m(C) for |A| = k, ordered from minimal to maximal, cor-

recting pseudo-belief mass m(A) if it is negative.

Algorithm 1
Compute pseudo mJ by Möbius transformation from belJ , i.e., from the
lower bounds of estimated confidence intervals;
For all X ⊆ Ωn:

m1(X) := mJ(X),
R(X) := min(1, belJ(X)/

∑
Y⊂X mJ(X)) for |X| > 1, belJ(X) > 0,

R(X) := 1 for |X| = 1 or belJ(X) = 0 or
∑

Y⊂X mJ(X) = 0.
n := |Ωn|;
For k = 2, ..., n:

rk := max|X|=k R(X),
If rk < 1 Then RFE := {X ⊆ Ωn | |X| = k}

While RFE ̸= ∅:
AFE := {X ∈ RFE | with max

∑
Y ∈RFE mk−1(Y )}

sumA :=
∑

B⊂A mk−1(B) for some A ∈ AFE,
δA := −

∑
|B|=k mk−1(B)/sumA,

mk(X) := (1− δA) ·mk−1(X) for |X| < k,
mk(X) := mk−1(X)+

∣∣mk−1(X) ·
∑

Y⊂X m(Y )/sumA

∣∣ for |X| = k,

mk(Ωn) := m(Ωn) +
∑

|X|=k

(
mk−1(X)/sumA ·

∑
Y ̸⊂X mk−1(Y )

)
Else For all X ⊆ Ωn: mk(X) := mk−1(X);
% Now, m(X) ≥ 0 for all X s.t. |X| ≤ k

For all X ⊆ Ωn: m(X) := mn(X).

In the case of our cybersecurity data example from Daniel et al. (2025), there are four
negative pseudo-belief masses of 3-element focal elements: m({ω1, ω2, ω3}) = −0.03139,
m({ω1, ω2, ω4}) = −0.03158,m({ω1, ω3, ω4}) = −0.03159, andm({ω2, ω3, ω4}) = −0.03157
(see Table 1 and also the red values in Table 2). The corresponding discount rates are:
δ(123) = 0.155935, δ(234) = 0.044932, δ(124) = 0.002343, δ(134) = 0.000130. For the final
mass assignment further denoted as m1 and the corresponding BF bel1, see Tables 2 and
3. The belief function bel1 is in fact a composition of four 3-discountings:

bel1 = (((bel
3δ(123)
J )3δ(234))3δ(124))3δ(134) .
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5.3.2 Algorithm 1-dgr

We utilize cardinality discounting with the maximal correction rate (i.e., the highest rate
necessary to correct all negative belief masses of focal elements of cardinality k). Since this
correction always affects all focal elements of cardinality k simultaneously, it essentially
corresponds to Algorithm 2 from the next subsection.

5.3.3 Algorithms 1-ulr and 1-dlr

These algorithms aim to be closer to truly local corrections, either upward from the
minimal or downward from the maximal correction. However, it is still under investigation
whether it is possible to define an improved version of local discounting that preserves
belief mass proportions as much as possible.

5.4 Layered Correction Algorithm

We apply cardinality discounting with the maximal discount rate, i.e., the minimal rate
that corrects all negative belief masses of focal elements of a given cardinality k. This
correction thus always affects all focal elements of that cardinality together.

In the case of our cybersecurity data example from Daniel et al. (2025), the maxi-
mal discount rate is δ(134) = 0.2211. Since negative pseudo-belief masses only appear
at cardinality 3, the resulting BF further denoted bel2 is a simple application of 3-

discounting: bel2 = bel
3δ(134)
J , see Tables 2 and 3. Note that this discount rate corresponds

to {ω1, ω3, ω4}, which was the last focal element corrected in Algorithm 1-ugr. Never-
theless, the discount rate differs because here it is applied directly to the original belJ ,
whereas in Algorithm 1-ugr it was applied after three previous corrections.

Algorithm 2. Layered Correction
Compute pseudo mJ by Möbius transformation from belJ ;
For all X ⊆ Ωn:

m1(X) := mJ(X),
R(X) := min(1, belJ(X)/

∑
Y⊂X mJ(X)) for |X| > 1, belJ(X) > 0,

R(X) := 1 for |X| = 1 or belJ(X) = 0 or
∑

Y⊂X mJ(X) = 0,
n := |Ωn|;
For k = 2, . . . , n:

rk := min|X|=k R(X),
If rk < 1 Then

sumδ := min|X|=k

∑
B⊂X mk−1(B),

δk := −
∑

|B|=k mk−1(B)/sumδ,

mk(X) := (1− δk) ·mk−1(X) for |X| < k,
mk(X) := mk−1(X)+|mk−1(X)·

∑
Y⊂X mk−1(Y )/sumδ| for |X| = k,

mk(Ω) := mk−1(Ωn)+
∑

|X|=k

(
mk−1(X)/sumδ ·

∑
Y ̸⊂X mk−1(Y )

)
,

Else For all X ⊆ Ωn: mk(X) := mk−1(X);
% mk−1(X) ≥ 0 for all |X| ≤ k

For all X ⊆ Ωn: m(X) := mn(X).

Milan Daniel, Radim Jiroušek, Václav Kratochvíl

111



5.5 Global Correction Algorithm(s)

Unfortunately, we do not yet have a truly global correction. Since cardinality discounting
only corrects one cardinality level at a time, this method corresponds to an upside-down
layered discounting — starting from cardinality n downward.

In the cybersecurity data example, there is only one cardinality (3) with negative

pseudo-belief masses. Thus, the result of this approach is again bel3 = bel
3δ(134)
J .

Algorithm 3. Global Correction
Compute pseudo mJ by Möbius transformation from belJ ; n := |Ωn|;
For all X ⊆ Ωn:

m1(X) := mJ(X),
R(X) := min(1, belJ(X)/

∑
Y⊂X mJ(X)) for |X| > 1, belJ(X) > 0,

R(X) := 1 for |X| = 1 or belJ(X) = 0 or
∑

Y⊂X mJ(X) = 0;
For k = n, n− 1, . . . , 2:

rk := min|X|=k R(X),
If rk < 1 Then

sumδ := min|X|=k

∑
B⊂X mk−1(B),

δk := −
∑

|B|=k mk−1(B)/sumδ,

mk(X) := (1− δk) ·mk−1(X) for |X| < k,
mk(X) := mk−1(X)+|mk−1(X)·

∑
Y⊂X mk−1(Y )/sumδ| for |X| = k,

mk(Ω) := mk−1(Ωn)+
∑

|X|=k

(
mk−1(X)/sumδ ·

∑
Y ̸⊂X mk−1(Y )

)
,

Else For all X ⊆ Ωn: mk(X) := mk−1(X);
% mk−1(X) ≥ 0 for all |X| ≤ k

For all X ⊆ Ωn: m(X) := mn(X).

5.5.1 Alternative Algorithms

There are two ideas for alternative algorithms. The first is a layered approach that
mirrors Algorithm 1 in reverse: stepwise correction from the smallest to the largest R(X)
within each cardinality, moving downward from n to 2. The second is an open question:
whether it is possible to define some generalized discounting operation that can correct
all “negative” cardinalities at once.

6 Comparison on Cybersecurity Data Example

Let us compare lower and advanced lower approximations described in Daniel et al. (2025)
with the approaches studied here. Specially, with geometric cardinality-weighted mini-
mization (CW) and Dubois-Prade entropy (HD) and also with local and layered correction
based on generalized discounting.

As all studied approaches are just in the process of their development, also our im-
plementations are still in progress. Thus, we currently have correct comparable results
only on 4-element frames of discernment now. General procedures are still in the middle
of their tuning. Hence we will compare our approaches on the simplest case defined on
cybersecurity data by Table 2 in Daniel et al. (2025): having 52 data records on the
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4-element frame of discernment. For approximated/corrected belief mass assignments see
Table 2, for approximated/corrected BFs see Table 3. Note that indices of m1, m2, bel1,
bel2 refer results of Algorithms 1 and 2 here, not intermediate steps of their processing.

We skip here upper approximations from Daniel et al. (2025) as their results are not
BFs in general, as it was presented there. In the case of Table 4 (there) f(a) is even
more general than pseudo-belief function as the sum of corresponding belief masses over
all subsets of Ω is greater than 1. We also skip zero objective (ZO) and Sparsity (SP)
geometric approximation, as ZO with its zero objective function returns an ad-hoc BF
from the corresponding polytope and SP assigns all belief masses to singletons, thus a
large information is added there and the belief structure of pseudo-belief belJ is completely
lost there.

Finally, we have to recall that both correction Algorithms 2 and 3 produce the same
results on our simple data example, having negative pseudo-belief masses only on focal
elements of cardinality 3. Having our still limited experience with pseudo-belief functions
based on Jeffreys confidence interval, we have a hypothesis, the Jeffreys PBFs on |Ω| = 4
have either no negative pseudo-belief masses or have negative belief masses only on focal
elements of cardinality 3, hence Algorithms 2 and 3 both produce the same results on any
data on any 4-element frame.

Table 2: Comparion pseudo-belief masses derived from Jeffreys intervals mJ = mg with
degree of confidence α = 0.05 on cybersecurity data on |Ω| = 4 with its corrections: mf

and mf∗ from Daniel et al. (2025),mCW and mHD obtained by geometric Cardinality-
Weighted and Dubois-Prade entropy, m1 and m2 by correction Algorithms 1 and 2.

A belJ(A)
∑

B⊊AmJ(B) mJ(A) mf (A) mf∗(A) mCW (A)mHD(A) m1(A) m2(A)

{ω1} 0.1635 0 0.16346 0.1635 0.1635 0.1635 0.1739 0.1314 0.1273
{ω2} 0.2114 0 0.21145 0.2114 0.2114 0.2114 0.2219 0.1700 0.1647
{ω3} 0.1792 0 0.17920 0.1792 0.1792 0.1792 0.1897 0.1441 0.1396
{ω4} 0.0496 0 0.04962 0.0496 0.0496 0.0496 0.0603 0.0399 0.0387

{ω1, ω2} 0.4606 0.3749 0.08567 0.0682 0.0857 0.0810 0.0647 0.0689 0.0667
{ω1, ω3} 0.4226 0.3427 0.07998 0.0648 0.0643 0.0754 0.0590 0.0643 0.0623
{ω1, ω4} 0.2615 0.2131 0.04845 0.0367 0.0327 0.0438 0.0273 0.0390 0.0377
{ω2, ω3} 0.4798 0.3901 0.08919 0.0756 0.0735 0.0892 0.0683 0.0717 0.0695
{ω2, ω4} 0.3135 0.2611 0.05240 0.0422 0.0366 0.0524 0.0313 0.0421 0.0408
{ω3, ω4} 0.2786 0.2288 0.04982 0.0420 0.0497 0.0498 0.0287 0.0409 0.0388

{ω1, ω2, ω3} 0.7776 0.8089 -0.03139 0.0149 0 0 0 0 0.0131
{ω1, ω2, ω4} 0.5795 0.6111 -0.03158 0.0078 0 0 0 0 0.0022
{ω1, ω3, ω4} 0.5389 0.5705 -0.03159 0.0031 0 0 0 0 0
{ω2, ω3, ω4} 0.6001 0.6317 -0.03157 0 0 0 0 0 0.0034

Ω 1.0000 0.8830 0.11690 0.0409 0.0538 0 0.0749 0.1884 0.1952

What can we see in the tables?

The important is that both f and f∗ and also both m1 and m2 not increase or even
decrease their value comparing with g = belJ , i.e., all four are ≤ g; this corresponds to the
fact that f and f∗ are lower approximation and beli’s are constructed using generalized
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Table 3: Comparison of belief functions — corrected pseudo-beliefs derived from Jeffreys
intervals with degree of confidence α = 0.05 on cybersecurity data

A belJ(A)
∑

b⊊amJ(A) mJ(A) f(A) f∗(A) belCW (A)belHD(A) bel1(A) bel2(A)

{ω1} 0.1635 0.0000 0.16346 0.1635 0.1635 0.1635 0.1739 0.1314 0.1273
{ω2} 0.2114 0.0000 0.21145 0.2114 0.2114 0.2114 0.2219 0.1700 0.1647
{ω3} 0.1792 0.0000 0.17920 0.1792 0.1792 0.1792 0.1897 0.1441 0.1396
{ω4} 0.0496 0.0000 0.04962 0.0496 0.0496 0.0496 0.0603 0.0399 0.0387

{ω1, ω2} 0.4606 0.3749 0.08567 0.4431 0.4606 0.4560 0.4606 0.3704 0.3587
{ω1, ω3} 0.4226 0.3427 0.07998 0.4075 0.4069 0.4180 0.4226 0.3399 0.3292
{ω1, ω4} 0.2615 0.2131 0.04845 0.2498 0.2457 0.2569 0.2615 0.2103 0.2037
{ω2, ω3} 0.4798 0.3901 0.08919 0.4663 0.4642 0.4798 0.4798 0.3859 0.3738
{ω2, ω4} 0.3135 0.2611 0.05240 0.3033 0.2977 0.3135 0.3135 0.2521 0.2442
{ω3, ω4} 0.2786 0.2288 0.04982 0.2708 0.2785 0.2786 0.2786 0.2241 0.2170

{ω1, ω2, ω3} 0.7776 0.8089 -0.03139 0.7776 0.7776 0.7997 0.7776 0.6505 0.6432
{ω1, ω2, ω4} 0.5795 0.6111 -0.03158 0.5795 0.5795 0.6018 0.5795 0.4914 0.4782
{ω1, ω3, ω4} 0.5389 0.5705 -0.03159 0.5389 0.5389 0.5613 0.5389 0.4588 0.4444
{ω2, ω3, ω4} 0.6001 0.6317 -0.03157 0.6001 0.6001 0.6317 0.6001 0.5080 0.4954

Ω 1.0000 0.8831 0.11690 1.0000 1.0000 0.9954 1.0000 1.0000 1.0000

discounting. Thus all these corrections decreases information of the original PBF g.
Moreover, it holds bel2 ≤ bel1 ≤ f ≤ g and also bel2 ≤ bel1 ≤ f∗ ≤ g, while f and f∗ are
mutually ≤-incomparable. bel2 ≤ bel1, thus bel1 is closer to g, nevertheless it has higher
computational complexity, which does not play any role on our small example on |Ω| = 4.
Both f and f∗ are even closer to original g, nevertheless they use ad-hoc negative belief
mass redistribution, which may despite closeness to g to add a piece of ad-hoc information,
while both bel1 and bel2 satisfy all belief proportions at any cardinality of A ⊂ Ω, hence
they better keeps the belief structure of the original PBF g = belJ .

belCW is ≤-incomparable both with belHD and g while belHD ≥ g, thus also ≥ all other
which are ≤ g. belCW ≥ bel1, bel2, f and f∗. Thus both these geometric corrections add
some extra information. belCW has a strange ad-hoc feature: that belief of some couples
are increased ({ω1, ω2},{ω1, ω3},{ω1, ω4}), while the other keep the same belief mass as
the original PBF g has ({ω2, ω3},{ω2, ω4},{ω3, ω4}). Hence, there is a challenging open
problem: finding more convenient optimization criteria for pseudo-belief correction.

We can summarize our ≤-comparison by the following schema.

bel2 bel1

f

f ∗

g belDP

belCW

Unfortunately, negative pseudo-belief masses are relatively quite small and their values
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are almost the same (differ on 5th decimal place) in the compared example, thus also
the differences of their corrections are rather similar. Hence we have to compare our
approaches not only on greater frame of discernment but also on various cases on Ω4.

Finally, we have to note that this comparison is related only to the one simple case
or real data on very small frame of discernment. It is rather a presentation how we can
compare our approaches in near future having processed more examples.
One of the interesting open questions is which relations from the ≤-comparison schema
are general, which of them are frequent, and which of them are rare or even exceptional.

7 Conclusion

Following our preceding contribution Daniel et al. (2025), we have proposed and presented
several methods for transforming pseudo-belief functions into classical belief functions.
The investigated procedures are based on fundamentally different approaches to correcting
pseudo-beliefs. All the presented methods have been compared with those from Daniel
et al. (2025) using a simple example based on real cybersecurity data. The implementation
of our algorithms is currently under development. This will allow us to perform more
comprehensive comparisons on larger frames of discernment and to address several open
questions that have emerged in this interesting area of research.
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Abstract

Bayesian network modelling is an established, powerful, descriptive tool for the
representation of large, uncertain systems. However, the very expressiveness of
Bayesian networks can introduce fresh challenges due to the large number of re-
lationships they often model. It is thus essential to supplement any available data
with elicited expert judgements. This in turn leads to two key challenges: the cogni-
tive burden of these judgement is often very high, and there are a very large number
of judgements required to obtain a full probability model.

We can mitigate both issues by introducing assumptions such as independence
of causal influences (ICI) on the local structures throughout the network, restricting
the parameter space of each conditional probability table. However, the use of
ICI is often unjustified and overly strong. In this paper, we relax this assumption
by partitioning the parents into blocks which themselves independently influence
the child, producing the surjective independence of causal influences (SICI) model.
We demonstrate that this modification can dramatically ease the burden of any
necessary expert judgement elicitation while ensuring faithful belief representations.
This further reduces the client resources required to fully construct a model.

1 Introduction

Bayesian network (BN) modelling (see e.g. Korb and Nicholson (2011); Pearl (1988)) has
now been a highly established, reliable and intuitive tool among statisticians, computer
scientists and AI practitioners for a number of decades. One powerful use of BNs is as a
decision support tool - modelling a complex real-world system to test potential policies
before implementation by a decision centre (DC) (see e.g. Jensen and Nielsen (2007); Korb
and Nicholson (2011); Smith (2010)). This use of BNs has become widespread in the 21st
century due to the increased complexity and interconnectedness of the environments in
which many decision problems are based.
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One fundamental challenge - which we have experienced in many applications - of BN
modelling, especially for decision support, is the lack of sufficient data for fully calibrating
a model (French et al., 2021; Werner et al., 2017). BNs piece together sub-systems from
a variety of distinct domains, leading to a large number of complex relationships with
high-order interactions needing to be modelled (see examples in Korb and Nicholson
(2011); Barons et al. (2022a)). We therefore often need to rely on expert judgement to
parameterise each of these relationships (see e.g. Burgman (2015); French et al. (2021);
O’Hagan et al. (2006); Werner et al. (2017)).

Expert judgement elicitation does not, however, come without its own problems. If
the system is too complex to be modelled through the available data, an insufficiently
managed elicitation process can easily become intractable (Werner et al., 2017). This can
happen in several ways - a lack of available, sufficiently knowledgeable experts; a lack of
time and money available for eliciting this knowledge; the inability to suppress cognitive
biases during the elicitation; and the difficulty of translating experience and knowledge
into the required probabilistic assessments (Korb and Nicholson, 2011; Woudenberg et al.,
2015; Burgman, 2015; O’Hagan, 2019; O’Hagan et al., 2006). These issues form the so-
called “knowledge bottleneck” (Korb and Nicholson, 2011).

Even if the above issues are addressed through careful structuring of the elicitation
process, two significant problems persist. The first is simply the number of probabilistic
judgements that are required to embellish the whole network (Smith, 2010). The second
is that the judgements required from experts are often highly complex due to high-order
interactions that are present in BNs, and because the judgements required from experts
are usually probabilistic (see Woudenberg et al. (2015) for an example of this in practice).
These issues lead to a high elicitation burden for the experts (Werner et al., 2017). They
often become fatigued and more susceptible to a number of cognitive biases when this bur-
den is high, threatening to corrupt the judgements they provide even further (Burgman,
2015; Barons et al., 2022b). One way to reduce this elicitation burden is to restrict the
model space through applying local structure assumptions across the network, often by
assuming particular local causal interaction models (Zagorecki and Druzdzel, 2006).

A popular class of causal interaction models relies on the assumption of independence
of causal influence (ICI - see e.g. Heckerman (1993); Zhang and Poole (1996)) which
assumes that each parent node influences the child node independently. ICI has been
utilised within many sub-classes of local BN structure models such as noisy-OR (Pearl,
1988) and its extensions (Dı́ez, 1993; Henrion, 1989; Srinivas, 1993), as well as in CPT
interpolation methods such as those reviewed by Mkrtchyan et al. (2016). Despite this, we
have found that, while it does simplify the elicitation process, its underlying assumptions
are usually too strong and rigid to faithfully represent experts’ beliefs in complex systems.

In this paper, we present a simple, practicable methodology for modifying a network
structure into a form that better incorporates the ICI assumption, while allowing more
freedom for interactions between parents for whom the original ICI model would be too
rigid. Like the ICI model, our new modified local network structure model - named
the surjective independence of causal influences (SICI) model - introduces latent causal
mechanisms acting as mediators between the parent set and the child node. Whereas
ICI sets a bijection between the parents and these mechanisms, SICI uses a more general
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surjective mapping between these sets, allowing the parents to be partitioned into blocks
that themselves exhibit ICI. We can therefore modify existing approximate CPT popula-
tion methods for use in the SICI framework. The SICI model thereby allows quantitative
embellishment of a BN to be performed with a significantly reduced burden in a way that
is flexible enough to more faithfully model expert beliefs about the real-world system.

The paper is laid out as follows. In Section 2, we review Bayesian networks and
explore how they can be elicited through expert judgement. In Section 3, we explore
the assumption of independence of causal influences and detail some of its uses. In
Section 4, we introduce the surjective independence of causal influences model, detailing
its mathematical foundations and giving some practical examples of such models. We
explore how this modified network structure more flexibly accommodates the assumption
of ICI, enabling efficient yet faithful elicitation of BN models. We finish in Section 5 with
a discussion about this new methodology and future research directions.

2 Bayesian Networks and their Elicitation

In this paper, we assume that we require at least some expert judgement to be embedded
into the model. Such a BN may be referred to as a Bayesian belief network (BBN).
There are two main stages to building such a network. The first is the construction of the
network structure - i.e. which variables to include, how to define them, the possible values
they have and which variables to draw edges between. This is referred to as the qualitative
stage of the process, utilising qualitative or soft elicitation of expert judgements (see Cain
(2001); Korb and Nicholson (2011); and Wilkerson and Smith (2021)).

The second stage concerns quantifying the relationships within the network. Mod-
elling discrete BNs, as we assume in this paper, and as is common in practice, involves
populating each child node’s conditional probability table (CPT). This is the quantita-
tive stage of the process, utilising quantitative elicitation of expert judgements (see Cain
(2001); Korb and Nicholson (2011); and O’Hagan et al. (2006)).

The qualitative elicitation process typically consists of natural language discussions
with domain experts in order to understand how they picture the structure of the real-
world system. In contrast, the quantitative elicitation process can involve a high number
of probabilistic judgements about high-order interactions that those not trained in prob-
ability struggle to instinctively comprehend. This renders the quantitative elicitation
process the most burdensome stage for experts. The number of probabilistic judgements
required to populate each CPT is one part of this problem. Consider the child node Y
with parent nodes X = {X1, . . . , Xn}. Let l1, . . . , ln denote the number of possible states
for each of the parent nodes, and lc that for the child. It can easily be checked that there
are (

∏n
i=1 li) · (lc − 1) probabilities to be determined to fully populate the CPT of Y |X.

The number of probabilistic judgements required across the network can quickly become
enormous. This, combined with the high cognitive burden that probabilistic judgements
and high-order interactions bring, makes direct quantitative elicitation often intractable.

The question of how we can reduce the elicitation burden faced by experts is there-
fore of high importance. Methods for structuring the quantitative elicitation process
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such as the Delphi method (Rowe and Wright, 1999), the Sheffield Elicitation Framework
(SHELF; Gosling, 2018) and the IDEA protocol (Hanea et al., 2017) mitigate the effects
of cognitive biases when providing probabilistic judgements, somewhat reducing the cog-
nitive burden faced by experts. However, these methods do not reduce the number of
probabilistic judgements required, nor do they remove the high-order interactions or the
probabilistic nature of the required judgements. There is therefore scope for reducing the
elicitation burden further than what these methods provide. The main question is how
to do this while maintaining faithfulness of the model.

Consequently, methods have been developed for simplifying the structures found
within BNs to reduce the number of quantitative assessments required to fully embel-
lish the model. Variables modelled in a BN are often influenced by just a small subset
of the other variables in the network through mechanisms that are invariant to variables
outside this local structure (Pearl, 2009). The local structure we refer to in this paper
simply considers a node and its set of parent nodes. This local structure can be modified
without impacting other local structures in the network due to the highly compartmen-
talised structure a BN exhibits. In this way, these local structures can be simplified
through some assumption about how the causal mechanisms operate between a child and
its set of parents.

A number of local structure models have been developed that ease the quantitative
elicitation process by embedding some such assumption. Many of these models require
all nodes to be binary, including noisy-OR (Pearl, 1988) and its extensions (Henrion,
1989; Lemmer and Gossink, 2004; Quintanar-Gago and Nelson, 2021), and the intercausal
cancellation model (Woudenberg et al., 2015). A notable example which allows for n-ary
nodes is the noisy-MAX model (Dı́ez, 1993; Srinivas, 1993). Further details and extensions
of these models can be seen in Dı́ez and Druzdzel (2006). Other methods have been
developed to interpolate or otherwise approximate missing CPT values, often just from
assessments of the influence of each parent, also reducing the quantity and complexity
of the required quantitative judgements. Some such methods are analysed in Mkrtchyan
et al. (2016), and some more recent approximate CPT population methods can be seen
in Hassall et al. (2019); Phillipson et al. (2021) and Mascaro and Woodberry (2022).
Both these CPT approximation methods and the above local structure models restrict
the parameter space for each CPT, enabling each CPT to be approximated by a much
smaller number of expert judgements than direct elicitation of the original CPT.

These methods each construct CPTs through the influence of each individual parent,
or through linear interpolation between elicited rows of the CPT considering one parent
change at a time. The modelled information therefore often solely concerns the influence of
each individual parent, ignoring any interactions between parents. Some approximation to
the conditional probability mass function of the child is used that combines these marginal
contributions without embedding any interaction terms. Such an approximation would
be valid if the influence of each parent on the child node was independent of the values
taken by the other parents - an assumption known as independence of causal influences.
In the next section, we explore this key assumption so that we can develop methodology
addressing the representation of local network structures that justifies the use of models
that utilise this property.
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3 Independence of Causal Influences

Though models utilising independence of causal influence (ICI) had been used implicitly
before (such as in Pearl, 1988), the concept was first formally introduced under the name
‘causal independence’ by Heckerman (1993), later renamed ‘independence of causal influ-
ences’ (ICI) by Zhang and Yan (1998). ICI is a local structure assumption that simplifies
the embellishment of a BN, tackling the challenges of BN calibration and quantitative
elicitation discussed in Section 2. However, we have found that the ICI model is too
strong and rigid to faithfully model expert beliefs about many real-world systems.

Consider a BN whose structure has already been elicited, and denote the child node
of a local structure by Y . Let its parents be written as Pa(Y ) = X = {X1, . . . , Xn}. We
will assume that no two parents are adjacent for simplicity, though this need not be the
case. The initial, unmodified local structure for the child node Y is given in Figure 1.

X1 X2 X3 X4 Xn

Y

. . .

Figure 1: Initial local structure consisting of child node Y and its parent set X

Now suppose we know, through expert judgement or otherwise, that each parent
independently influences the value taken by the child, and thus this local structure satisfies
ICI. This can be thought of as each parent influencing the child node through its own
independent causal mechanism. We can therefore modify our representation of the local
structure by introducing a set of mechanisms, one for each parent (see e.g. Heckerman,
1993; Heckerman and Breese, 1996; van Gerven et al., 2008). We denote these mechanisms
by M = {M1, . . . ,Mn} where each mechanism typically has the same set of potential
values as Y . The mechanisms explicitly quantify the effect of each parent individually
on the child, converting the parent value into a probability mass function over the same
states as the child. The mechanisms are combined through the deterministic function f ,
mapping the outputs of the mechanisms to a value taken by the child. The CPT of Y |X
is calculated through the following definition of an ICI model (van Gerven et al., 2008):

p(y|x) =
∑

f(m)=y

n∏
i=1

p(mi|xi). (1)

The ICI model structure is shown in Figure 2. ICI has been extended by Zagorecki and
Druzdzel (2006) to allow the combination function f to be stochastic, and other extensions
and properties of ICI have been explored by Heckerman and Breese (1996).

A key benefit of the ICI model is in the number of parameters required to populate the
CPT of the child. The number of parameters in the CPT of Y |X without the ICI assump-
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Y

M1 M2 M3 M4 Mn

X1 X2 X3 X4 Xn

y = f(m)

. . .

. . .

Figure 2: Local ICI model structure

tion grows exponentially in the number of parents, n. When assuming the ICI model,
this often reduces to a linear growth (van Gerven et al., 2008), significantly reducing the
parameter space and thus the resource requirements for the quantitative elicitation. Fur-
ther, this structure helps elicit more accurate judgements due to the reduced cognitive
burden it brings, and the model becomes more accessible for clients.

Some of the models described in Section 2 can easily be written as ICI models. For
example, consider the noisy-OR model (Pearl, 1988) over a set of binary nodes. This
model introduces inhibitor nodes that then define each of the mechanisms as presented
here; a mechanism Mj takes the value 1 (or ‘true’ etc.) if the cause is present (i.e. Xj = 1)
and the inhibitor node is false (taking value 0), else it takes value 0. Then the function f
is simply the deterministic OR function; if any of the mechanisms Mj take the value 1, the
effect will be present (i.e. Y = 1) (Heckerman and Breese, 1996). A similar construction is
simple for the noisy-MAX model (Dı́ez, 1993; Srinivas, 1993) which models n-ary variables
with the combination function f being the deterministic MAX function (Heckerman and
Breese, 1996). Many other models and methods given in Section 2 implicitly assume this
structure, assuming that the probability mass function of the child can be approximated
through the combination of contributions made individually by each parent.

In the ICI model, an important underlying assumption is that there exists a bijection
between the parents and the latent mechanisms. In practice, this would require that
each parent in the real-world system affects its child through a mechanism unique to that
variable, and that these mechanisms operate independently of each other. We argue that
this is an excessively strong assumption, rendering the ICI model too restrictive as it
does not allow any interactions between parents’ causal mechanisms. In the next section,
we present the SICI model which generalises the ICI model, allowing for some low-order
interactions between parents.
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4 The Surjective ICI Model

The surjective independence of causal influences (SICI) model generalises the ICI model
by allowing the mapping between the parent set X and the mechanism set M to be
a surjection rather than a bijection. This surjective mapping allows the modeller to
introduce typically basic, low-level interactions between some parents, usually through a
composition of deterministic logical operators that can easily be elicited from experts. A
consequence of this is that the number of mechanisms, m, introduced in the SICI model
is bounded above by the number of mechanisms introduced in the ICI model - i.e. m ≤ n.
We denote the surjective mapping by ϕ : X → M. This surjective relationship allows
multiple parents to feed into the same mechanism where they combine through the parent-
mechanism combination function f(·). The mechanisms then combine in much the same
way as they do in the ICI model through the mechanism-child combination function f ,
though we assume this function to be stochastic to allow for greater flexibility in the CPT
parameters. This does not introduce much complexity as CPT approximation methods
utilising the ICI assumption (such as those in Section 2) can be applied to approximate
the CPT of Y |M in a justifiable way, given that the surjection is constructed to exhibit
ICI among the mechanism nodes. The stochasticity of f also allows the functions f(·) to
be deterministic, enabling basic interactions to be modelled with ease - though these can
also be modelled stochastically within the SICI model.

Of course, the partition that best exhibits ICI across the mechanism nodes may be
the partition formed of the singleton parents - in which case m = n and ϕ becomes
the bijection seen in the ICI model. Thus it is clear to see that the SICI model is
a generalisation of the ICI model. Hence the SICI model can accommodate the ICI
assumption through ϕ at least as well as, and often better than, the ICI model.

Through the elicitation of the functions f and f(·), we can simply determine the prob-
ability mass functions p(mi|x(i)), where x(i) = ϕ−1(mi) denotes the parents of mechanism
mi, as well as the probability mass function p(y|m) for the child node - which may be
implicit within the CPT approximation for Y |X. We can then use the following definition
to obtain the original CPT of Y |X, analogous to that for the ICI model:

p(y|x) =
∑
m

p(y|m)p(m|x) =
∑
m

(
p(y|m)

m∏
i=1

p(mi|x(i))

)
. (2)

A graphical representation of the SICI model for a choice of surjection ϕ is shown
in Figure 3. Note that we can always ensure the SICI model is planar (i.e. a tree) by
ordering the parents and mechanisms such that ϕ(X1) = M1, ϕ(Xn) = Mm and:

∀ i ∈ {1, . . . , n− 1}, k ∈ {1, . . . , n− i},
ϕ(Xi) = ϕ(Xi+k) =⇒ ϕ(Xi) = ϕ(Xi+1) = . . . = ϕ(Xi+k−1) = ϕ(Xi+k).

(3)

Below we introduce a causal interaction model that is a member of the SICI model
family. This is a generalisation of the noisy-OR model (Pearl, 1988) which we name
the surjective noisy-OR model. In this model, the parent set is partitioned into blocks
that share a common inhibitor variable; parents in the same block feed into a shared
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Y

M1 M2 Mm

X1 X2 X3 X4 Xn

f(1) f(2) f(m)

f

. . .

. . .

Figure 3: SICI model with ϕ−1(M1) = {X1, X2, X3}, ϕ(X4) = M2 and ϕ(Xn) = Mm

mechanism node, say, Mi, just as described above for the general SICI model, but with
an additional inhibitor node Ii also feeding into the mechanism Mi for each i = 1, . . . ,m.
The parent-mechanism combination function for mechanism Mi is now denoted f(i)∧¬Ii,
where f(i), as before, describes how the parents in the block collectively influence the child
through their common causal mechanism. The mechanism node now also depends on this
causal mechanism not being inhibited by Ii. The mechanism-child combination function
is simply the deterministic OR function over the mechanisms. This model satisfies the
definition of the SICI model, and is shown in Figure 4 for a given mapping ϕ on 6 parents.
Note that, while the functions f(i) need to be determined, the number of quantitative
parameters to be determined has fallen from 6 for the standard noisy-OR model to 3 for
the surjective noisy-OR model - in general giving a saving of n−m parameters.

Y

M1 M2 M3

X1 X2 X3 I1 X4 X5 I2 X6 I3

f(1) ∧ ¬I1 f(2) ∧ ¬I2 f(3) ∧ ¬I3

y = f(m) =
3∨

i=1

mi

Figure 4: The surjective noisy-OR Model - a member of the SICI model family

Finally, we briefly mention how the SICI model better accommodates many existing
CPT approximation methods compared to the ICI model. While many such methods ex-
ist, we demonstrate this with Hassall’s algorithm (Hassall et al., 2019) due to its simplicity.
Hassall’s algorithm uses linear interpolation for each parent over its possible states onto
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the set [0, 1] in combination with an elicited influence score wi for the parent to quantify
the effect of the parent’s state on the child. This requires only n quantitative judgements,
a significant reduction compared to direct elicitation of the full CPT.

We can consider Hassall’s algorithm as a form of ICI model which allows the mecha-
nism nodes to be defined deterministically and the child node to be defined stochastically.
This is, of course, a rather simple form of ICI model, but shares the same essence as the
originally defined ICI model. Considering Hassall’s algorithm for the case where each
node is binary, it can easily be checked that we obtain the following:

P(Y = 1|X = x) =

n∑
i=1

wiXi

n∑
i=1

wi

. (4)

By reversing the stochasticity in the ICI model, the probability mass function of Y |X
simply becomes that of Y |M. This is what happens for Hassall’s algorithm by defining
Mi = wiXi. This is a very restrictive probability mass function in just the same way as
the ICI model is restrictive; both embed the same underlying assumption of ICI.

Hassall’s algorithm can be made less restrictive and more applicable to many domains
by embedding it within the SICI framework. To do this, the parent set is partitioned and
the parent-mechanism combination functions are elicited from experts. Then, a weight can
be elicited per mechanism, requiring m ≤ n such judgements, to reflect the influence score
of each mechanism through which subsets of parents combine to impact the child node.
Equation 4 would then be amended to sum over the m mechanisms, with the numerator
substituting Mi in place of each Xi term. This allows a more faithful approximation of the
CPT to be constructed while maintaining a heavily reduced elicitation burden through
significant parameter savings compared to direct elicitation.

5 Discussion

In this paper, we introduce the surjective independence of causal influences (SICI) model
as a generalisation of the ICI model. The SICI model is easily elicited through natural
language conversations with experts and naturally combines with existing CPT approx-
imation methods that facilitate efficient quantitative elicitation of ICI structures - here
applied to subsets of the parent set. The SICI model is less restrictive than the ICI model,
allowing interactions between parents and easily permitting both types of combination
function to be stochastic. The interactions can be embedded through simple composi-
tions of deterministic logical operates, or more complex, possibly stochastic, relationships
if necessary. This can be achieved with few, if any, quantitative expert judgements. The
CPT for Y |M in the SICI model can be justifiably approximated through existing CPT
approximation methods alluded to in Section 2 through the embedding of the ICI assump-
tion in the partition of the parent set - as demonstrated in Section 4 with the surjective
noisy-OR model and Hassall’s algorithm. This reduces the quantity and complexity of
the required expert judgements by introducing significant parameter savings to the lo-
cal structure. The SICI model does introduce complexity to the qualitative stage of the
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elicitation, though this is far less burdensome for experts than a complex quantitative
elicitation process. We therefore argue that this shift in complexity comes with a net
benefit. As a result, the SICI methodology facilitates quicker achievement of the mod-
elling objectives while significantly reducing client resource requirements. In addition
to the ability to model interactions, the SICI model can handle large parent sets more
efficiently than the ICI model, eliminating the practical need to compromise on small
parent sets. These factors ensure the elicited model is more faithful than what is possible
through the use of the ICI model, giving the client crucial faith in the model outputs.

The underlying assumption of ICI is not one that we have found to be appropriate
in many practical modelling domains. The SICI methodology satisfies the clear need
to generalise the ICI model to weaken this assumption, enabling faithful BN modelling
with minimal client resource requirements. Our next steps in the development of the
SICI methodology are to create a complete BN model for an existing research application
of ours fully utilising the SICI methodology; to compare this model to an existing BN
model for the same application that does not utilise SICI; to explore the performance of
different subclasses of SICI model (such as one that has no deterministic relationships);
and to develop a complete framework for the construction of elicited BN models that
fully incorporates this SICI methodology with adapted existing quantitative elicitation
methodologies. However, SICI is, of course, not the only method for efficient CPT ap-
proximation, and we will continue to explore and report on these methods going forward.
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Abstract

Microorganisms are fundamental to the functioning of every ecosystem on Earth.
Yet, the majority of microbial species remain uncultured and uncharacterized. Ex-
panding our understanding or generating hypotheses about how different factors
affect species can help accelerate the discovery of new insights. Species Distribu-
tion Modeling (SDM) has traditionally been the primary approach for gaining such
insights. However, previous models have often struggled with capturing non-linear
responses and have largely focused on environmental predictors. In this paper, we
instead explore an additive Gaussian Process (GP) framework to jointly predict
species responses to environmental features and spatial effects, while also leveraging
model interpretability to enable domain analysis. The model is compared to existing
baseline models across several real-world datasets, showing promising results. We
demonstrate how the interpretable nature of the model can provide insight into the
relationship between environmental features and species community compositions as
well as support uncertainty estimation for species response curves.

1 Introduction

The distribution of species over geographical scales is governed by a complex set of factors,
and understanding these factors is crucial for the conservation of biodiversity, ecosystem
management, and climate change research (Timmis et al., 2017). While Species Dis-
tribution Modeling (SDM) (Miller, 2010) has traditionally focused on larger organisms,
microbial life also plays a key role in the functioning of ecosystems. However, microbial
SDM is challenging due to differences in the observation of occurrences and the physiology
of microbes compared to eukaryotes (e.g., plants and animals).

Microbial distributions can be examined as functions of several distinct classes of ex-
planatory features. Environmental features, such as pH and temperature, can be counted
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as characteristics that determine the suitable environmental space for a species. The rela-
tionship between species and the environment is mediated by the physiology of the species,
which can be represented (often not completely) in the model using species-specific traits
(Tremlová and Münzbergová, 2007). The coordinates of which a microbe is found can
also be used as an explanatory feature, as the spatial distance between sites can influence
how likely two sites should be similar. Species can migrate and be dispersed, increasing
the chance of detection at sites not necessarily suitable for them (Malard and Guisan,
2023). Other species are also a relevant set of features because species-species interactions
(e.g., mutualism or competition) can further constrain the chance of observing a given
species. Ultimately, the combination of these feature sets can shed light on the holistic
explanation of the biogeographical patterns of microbes (Malard and Guisan, 2023).

A primary goal of SDM is to identify the drivers of species distribution. A continuation
of this is to obtain insight into the environmental niche of the species, such as through
species response curves, charting the probability of species occurrence across environmen-
tal gradients. This requires a model that can capture and reason about the complex and
non-linear effects of environmental features, as well as spatial effects. Established SDM
frameworks (Tikhonov et al., 2020; Phillips et al., 2006) cannot natively capture such po-
tentially non-linear relationships between the species and the environmental features. For
example, were species able to only live in a specific range of a feature, a linear relation-
ship would be unable to capture such a relation. Accurate uncertainty quantification is
equally critical in this domain: field observations are often sparse or unevenly distributed,
so practitioners must know where predictions are trustworthy and where limited evidence
could render management decisions risky. Gaussian processes (GPs) (Williams and Ras-
mussen, 2006) naturally fulfill this need of functional flexibility and principled uncertainty
estimates, making them a natural choice for the present study.

In this paper, we propose an additive GP-based framework for the analysis and inter-
pretation of microbial SDM, integrating environmental and spatial features. We explore
the proposed model based on a large real-world dataset (Singleton et al., 2024), comprising
more than 15000 species and 2300 geo-located sample sites across Denmark. For evalu-
ating the predictive performance of the model, we compare with three baseline methods
over two additional real-world datasets, showing promising results. The implementation
of the framework is publicly available on the project’s GitHub repository.1

2 Related Work

Species Distribution Modeling (SDM) provides a principled way to analyze and predict
how species are arranged across space and time, by relating their occurrences to environ-
mental features (Elith and Leathwick, 2009; Araújo et al., 2019). SDM started with the
use of percentile-based envelope methods (Nix et al., 1986) and then Generalized Linear
Models (GLMs) and Generalized Additive Models (GAMs) (James et al., 2013).Mod-
ern SDM is based on machine-learning strategies such as maximum-entropy modeling
(Phillips et al., 2006) and ensemble models (Araújo and New, 2007). These approaches

1github.com/MicrobialDarkMatter/Biogeography

Thomas Heede, Abdulkadir Çelikkanat, Francesco Delogu, Andres R. Masegosa, Mads Albertsen,
Thomas Dyhre Nielsen

129



established a solid baseline, yet they typically ignored two ecological realities: (i) organ-
isms do not stay in the same place – they disperse and migrate – so purely environmental
niches seldom tell the full story, and (ii) many relationships between species and their
environment are non-linear (Valavi et al., 2022).

Recent work, therefore, augments environmental predictors with an explicit spatial
term. Adding coordinates, distance-based kernels, or latent spatial effects helps account
for detections in sites that appear environmentally unsuitable but are reachable through
dispersal (Malard and Guisan, 2023). A relevant recent example is the Spatial Implicit
Neural Representation of Cole et al. (2023), which learns a continuous field over geography
and can fill large data gaps seamlessly.

A widely adopted probabilistic framework that unifies environmental, spatial, and
species-specific trait information is HMSC (Tikhonov et al., 2020). HMSC embeds linear
environmental effects, spatial information, and species-specific traits into one Bayesian
hierarchical model, giving ecologists a coherent toolbox for joint species analysis. Un-
fortunately, its linear environmental assumption is restrictive: true ecological responses
often peak, plateau, or threshold.

Gaussian Processes naturally overcome this limitation. They offer a non-parametric,
uncertainty-aware way to capture smooth yet flexible responses (Williams and Rasmussen,
2006). Additive GP models can tie spatial proximity and environmental similarity to-
gether so that two sites co-vary only when both their environment and locations are alike
(Vanhatalo et al., 2020). Multi-output GPs (MOGPs) generalize to whole communities,
modeling several species jointly and thus borrowing strength across taxa while still al-
lowing non-linear effects (Alvarez and Lawrence, 2011). In head-to-head evaluations with
HMSC and other baselines, MOGPs yield superior predictive accuracy whenever envi-
ronmental responses deviate from linearity, though current implementations usually omit
traits or spatial components (Ingram et al., 2020).

Interpretability is another essential feature: practitioners want to translate complex
models into ecological insight. Species-specific response curves – the probability of pres-
ence as each covariate varies – are a popular diagnostic (Hurford et al., 2019; Bazzichetto
et al., 2023). Early Bayesian curve models that imposed Gaussian shapes (Schurr et al.,
2012) or hierarchical logistic regressions (Jansen and Oksanen, 2013) improved flexibility,
but either enforced symmetry or failed to quantify posterior uncertainty fully. Modern
GP-based curves inherit both flexibility and calibrated uncertainties, partly resolving
these issues.

Finally, while SDM methods were designed for macro-organisms, they are increasingly
applied to microbial communities (Delgado-Baquerizo et al., 2018; Mod et al., 2021).
Microbial SDMs must cope with compositional sequencing data, extreme sparsity, and
blurred taxonomic resolution; nonetheless, linking environmental features to microbial
biogeography promises fresh ecological insights (Barberán et al., 2014).

Together, these developments motivate the use of integrative, non-linear, and inter-
pretable models – such as the one we explore in this work – that marry environmental
and spatial information in a single coherent open-box framework.
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3 Methodology

To model and understand the factors shaping species distributions, we require a struc-
tured representation of ecological data that captures both environmental conditions and
spatial characteristics. In microbial ecology, this includes not only the presence or absence
of species across locations but also detailed descriptions of site-specific environmental fea-
tures and spatial coordinates that may influence ecological responses. Below we formalize
this setup and introduce the notation used throughout the paper.

We work with presence-absence data for J species surveyed at I sampling sites.
Each site i provides three kinds of information: (i) Occurrence – a binary matrix
Y ∈ {0, 1}I×J , Yij = 1 if species j is observed at site i, 0 otherwise; (ii) Environ-
ment – an environmental feature matrix X ∈ RI×E , whose E columns record variables
such as pH, temperature, or soil moisture for each site; (iii) Spatial – a coordinate matrix
S ∈ RI×2, giving longitude and latitude (in radians) for every site.

These three matrices – Y (occurrence), X (environment), and S (spatial) – constitute
the full input to the species-distribution model analyzed in the remainder of the paper.

3.1 Multi-output Gaussian Process

We assume that at each site i, the occurrence of species j follows a Bernoulli distribution:

Yij ∼ Bern(σ(ηij)), (1)

where σ(·) is the logistic function. Inspired by Ingram et al. (2020), we employ a multi-
output Gaussian process (GP) model, which assumes that the response function of each
species i (or, more precisely, ηij) is given by a linear combination of nl non-linear functions
that each follow a GP model. These functions are defined over the environmental features
and can thus be interpreted as latent function representations of these features. The
latent functions are combined with species-specific weights to capture the environmental
responses of the individual species.

η(i,j) :=

nl∑
l=1

f(i,l)w(l,j) + bj , (2)

where f(:,l) ∼ GP (0, κθl(x, x
′)) for each latent feature l ∈ {1, . . . , nl}. The latent functions

are thus shared across species, and species with similar presence/absence patterns will
therefore have similar weights. The prior distribution for the weights w(l,j) are defined so
that w(l,j) ∼ N (0, 1) for each (l, j) ∈ [nl] × [J ]. Lastly, bj ∼ N(0, 1) is a species-specific
bias term, independent of the sampling site i.

For the experimental results in Section 4 we employ an RBF kernel defined over
environmental feature pairs

(
X(i,:),X(i′,:)

)
. We use θl = {ℓl, cl} to denote length scale and

coefficient parameters, and we place an Automatic Relevance Determination (ARD) prior
(Wipf and Nagarajan, 2007) on each of the length scales to capture feature importance.
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For the spatial correlation among the sampling sites, we follow Tikhonov et al. (2020)
and augment the model with an additive spatial component:

η(i,j) :=

nl∑
l=1

f(i,l)w(l,j)︸ ︷︷ ︸
Environment

+

nm∑
m=1

g(i,m)v(m,j)︸ ︷︷ ︸
Spatial

+ bj . (3)

We place a GP prior on the columns of g ∈ RI×nm : g(:,m) ∼ GP (0, καm
(x, x′)) for

each latent dimension m ∈ [nm] and v(m,j) ∼ N (0, 1). In our experiments, we again

use a standard RBF kernel καm
(·, ·) with input pairs

(
S(i,:),S(i′,:)

)
. Due to numerical

instability, we transform the coordinates through standard normalization. As each dataset
only contains smaller regions of Earth, the discrepancy from calculating the distances in
Euclidean space is deemed tolerable.

For scalability and efficient learning and inference, we employ a variational sparse
Gaussian process approximation (Hensman et al., 2015). Specifically, we introduce in-
ducing points for both the environmental (f(:,l)) and spatial (g(:,m)) latent processes and
adopt a generalized mean-field variational distribution:

q(f ,w,g,v,b,θ,α) =

nl∏
l=1

q(f(:,l))

nm∏
m=1

q(g(:,m))
∏
l,j

q(wl,j)
∏
m,j

q(vm,j)

J∏
j=1

q(bj)q(α)q(β).

The variational distributions for f and g are constructed using sparse GP approxima-
tions via learnable inducing points Hensman et al. (2015), and the weights (w,v) and bias
term (b) are assumed to follow Gaussian variational posteriors. We have used a Gamma
distribution for the hyperparameters of the kernels, (θ,α), to ensure positivity.

For model learning we optimize the Evidence Lower Bound using stochastic gradient
descent, with mini-batching over sites to handle large datasets. For each latent dimension
and environmental feature, we learn a separate length scale value (ℓ(l,e)), which allows us
to determine the input relevance similar to Williams and Rasmussen (2006, Section 5.1).
The ARD priors on the kernel length scales are jointly optimized to enable data-driven
selection of relevant environmental features. This strategy allows us to infer the latent
structure while preserving the interpretability of species-environment relationships.

Compared with the HMSC framework Tikhonov et al. (2020), the model presented
here do not assume linear environmental effects instead learns fully non-linear response
surfaces for each environmental feature while modeling spatial autocorrelation through a
separate GP component. Furthermore, whereas the multi-output GP (MOGP) Ingram
et al. (2020) jointly shares latent environmental functions across species, it does not in-
clude any explicit spatial process, so it integrates geographic and environmental factors.
Our formulation retains the cross-species sharing of environmental structure but aug-
ments it with an additive spatial GP so that environmental and spatial features can be
interrogated independently. Finally, the use of ARD priors and a scalable sparse varia-
tional inference scheme allows our model to yield species-specific response curves, feature
importance, and calibrated uncertainties for large species communities.

Joint Additive Gaussian Processes for Microbial Species Distribution Modeling

132



4 Experiments

In this section, we present both quantitative and qualitative experimental results to assess
the effectiveness of our proposed additive multi-output Gaussian Process (GP) model for
species distribution modeling presented in Section 3.1. Using three real-world datasets
with distinct characteristics (described in Section 4.1), we benchmark our model against
three established baseline methods— Logistic Regression (LR), MOGP (Ingram et al.,
2020), and HMSC (Tikhonov et al., 2020) — across several standard evaluation metrics
(Section 4.2). Our experiments are designed to evaluate not only predictive accuracy but
also the interpretability of the model. In particular, in Section 4.3, we explore how the
inferred latent functions and species-specific weights has the potential to provide valuable
insights into domain properties, including the interplay between environmental conditions
and species community composition.

4.1 Data Sources

For model evaluation, we consider three different datasets. The Microflora Danica (MfD)
dataset (Singleton et al., 2024), which motivated this work, originally contains approx-
imately 10,000 sample sites. After preprocessing to retain only those sites with reliable
spatial coordinates and no missing data, we are left with 2,337 sample sites for our exper-
iments. The dataset includes nearly 20,000 species, but is filtered down to 15,013 species,
as around 5,000 species are not observed in the selected sites. The Butterfly dataset
(Ovaskainen et al., 2016) is one of the commonly used benchmark datasets in ecology. It
was sampled across a grid of 10× 10 kilometers in all of Great Britain. The last dataset,
NY, consists of microbial species in Central Park, New York (NY) (Ramirez et al., 2014)2.
All environmental variables are standard normalized. Summary details of the datasets
used in the experiments can be found in Table 1.

Dataset #Sites (I) #Species (J) #Env (E) Location

Microbes, MfD 2,337 15,013 105 Denmark
Butterfly 2,609 55 4 Great Britain

Microbes, NY 579 12599 4 Central Park

Table 1: Characteristics of the datasets used in the experiments. Each sam-
ple site across all three datasets includes latitude and longitude coordinates.

The three datasets exhibit significantly different characteristics. For instance, the two
microbial datasets (that is, MfD and NY ) are considerably more sparse than the Butterfly
dataset, as illustrated in Figure 1: 16% of the species in the MfD dataset occurs less than
3 times and 41% of the species occur between 3 and 23 times out of the 2,337 samples.
A similar trend is also visible for the NY dataset, except that no species are observed in

2The NY dataset is available from microbeatlas.org
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less than 0.1% of the samples. In contrast to microbial datasets, the Butterfly dataset is
less sparse, with 40% of the species occurring in more than half of the samples.

Figure 1: Percentage of species for different prevalence frequencies overall
sample sites. For example, for the MfD dataset, approximately 16% of the
species occur in at most 0.1% of all sample sites.

4.2 Quantitative results

To evaluate the performance of the proposed model, we compare with three baseline
models: Logistic Regression (LR) (Hosmer Jr et al., 2013), MOGP (Ingram et al., 2020),
andHMSC (Tikhonov et al., 2020) across four metrics: Receiver Operating Characteristic
Area Under the Curve (ROC AUC), Negative Log Likelihood (NLL), Mean Absolute
Error (MAE), and Precision/Recall Area Under the Curve (PR AUC). For the analysis,
the datasets are split such that 80% of the data is used for training and 20% is used for
testing. Species occurring in less than 10 samples are removed. The results are averaged
over five runs, but the standard deviations were found to be negligible.

The models are trained for 200 epochs, until convergence with a learning rate of 0.01
optimizing the ELBO. For the results reported in this section, both of the proposed models
have nl = 10 latent functions, f , and use 200 inducing points for the environmental GP.
The spatial model variant includes nm = 5 latent functions, g, and uses 200 inducing
points for the spatial GP. Where applicable, MOGP and HMSC utilize the same set of
parameters.

The hyperparameters were chosen based on preliminary experiments into model sensi-
tivity w.r.t. changes in latent features and inducing points. We observed that the number
of latent features (nl) for the environmental GP is the most significant hyperparame-
ter. For its low values, the model is unable to capture the complexities of environmental
features.

The results of the evaluation is shown in Table 2. It is worth noting that for LR, a
separate model is trained for each individual species, whereas the other methods learn
across all species simultaneously. All models are able to be run with less than 16 GB
RAM, with execution times in minutes.
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Our proposed model consistently outperforms both MOGP and HMSC across all eval-
uation metrics and datasets, with the version incorporating spatial features achieving the
strongest overall performance. These results underscore the benefits of modeling non-
linear relationships between species and environmental variables—something HMSC does
not support—as well as the value of jointly incorporating environmental and spatial in-
formation -in opposite to MOGP.

Interestingly, the relatively simple model logistic regression (LR) occasionally matches
or even slightly outperforms more sophisticated approaches, particularly in the NY dataset.
This is a well-known phenomenon in machine learning, where simpler models can perform
well in low-signal or low-complexity settings. Nonetheless, in such cases, the performance
gap between LR and our method remains small, further emphasizing the robustness and
adaptability of our proposed framework.

Baselines Ours
LR MOGP HMSC E E + S

M
fD

ROC AUC ↑ 0.847 0.820 0.802 0.877 0.881
PR AUC ↑ 0.354 0.310 0.299 0.395 0.408
NLL ↓ 0.197 0.260 0.243 0.235 0.231
MAE ↓ 0.101 0.109 0.121 0.094 0.094

B
u
tt
e
rfl

y ROC AUC ↑ 0.866 0.854 0.844 0.865 0.905
PR AUC ↑ 0.722 0.709 0.686 0.721 0.781
NLL ↓ 0.296 0.341 0.315 0.347 0.312
MAE ↓ 0.186 0.185 0.205 0.177 0.149

N
Y

ROC AUC ↑ 0.654 0.568 0.619 0.643 0.642
PR AUC ↑ 0.403 0.348 0.386 0.402 0.402
NLL ↓ 0.484 0.512 0.513 0.523 0.522
MAE ↓ 0.310 0.340 0.361 0.305 0.306

Table 2: Model performance across datasets, averaged over five runs. The
best results are shown in bold, second-best results are underlined.

4.3 Qualitative results

This section offers a qualitative analysis of the learned model, using the MfD dataset to
showcase how this model has the potential to support deeper ecological insight. Rather
than providing an exhaustive exploration, our goal is to illustrate the model’s potential
for uncovering meaningful patterns and guiding further investigation in this domain.

Response curves with uncertainty

Response curves translate a fitted SDM model into an intuitive ecological picture: they
show how the predicted probability of encountering a species changes as a single environ-
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mental feature is swept across its observed range, while all other features remain at the
values actually recorded. Such curves let an ecologist read off optima, tolerance limits, or
threshold effects at a glance and provide concrete guidance for management interventions
(e.g., “keep soil pH below 6.2 to deter S. aureus”).

Because our model is fully Bayesian, every response curve comes with a posterior
distribution, not just a single line. We draw functions from the posterior predictive to
compute a point wise mean curve together with credibility bands that widen where data
are sparse or where the species shows highly variable behavior. These quantified uncer-
tainties are crucial: they tell the analyst when an apparent preference is well supported
and when it may be an artifact of limited data. Figure 2 illustrates this output, plotting
the mean response (solid line) and its 95% credibility interval (shaded) for two species
under different pH levels.

Figure 2: Response curves for pH for two species: the left-hand panel present
the marginal curves obtained by averaging across all sites, while the right-
hand panel show the site-specific curves for one selected location. Dotted
lines trace a kernel-density estimate of the empirical pH distribution in the
full dataset, and the shaded ribbons mark 95% credible intervals.

In Figure 2, we observe model prediction of how species 521 and 2260 are responding
to changes in pH. On the left, we show the site-invariant response P (Y |pH) and on the
right, we show the site-specific response P (Y |pH,D(i)). Each approach has its own merits.
The site-invariant version can shed light on how a species might respond under controlled
conditions, such as when cultivating it in a laboratory, by abstracting away site-specific
factors. In contrast, the site-specific version captures how changes to a variable, like
pH, affect species at a particular location. For example, imagine a farmer who knows the
environmental conditions of a field and has access to biochemicals to adjust soil pH. Using
the site-specific model, one could predict how those changes would impact the species.

Predicting the occurrence probabilities with the site-invariant approach, species 521
and 2260 are expected to be occurring with their highest probability for pH in ranges 4 to
5 and 4.5 to 5.5, respectively. For the site-specific approach, we can be much more certain
of the species occurrence for larger intervals, with near certainty of being present for pH
ranges from 4 to 5 and 5 to 6 for species 521 and 2260, respectively. Both approaches show
an increase in uncertainty where the kernel density estimate is low. They also converge
towards the logits, which prior mean is influenced by the bias term, making them converge
towards the marginal probability of observing the individual species.
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Clustering of Species

Figure 3: Proportion of species
occurrence in different land us-
ages for five species clusters.

The proposed model in Section 3.1 includes species-
specific weights (i.e., w(l,j) in Equation 3) that model
the contributions of the shared latent environmental
functions to the species occurrence. The weights asso-
ciated with a particular species can thus be interpreted
as a latent representation of the species, which can be
used as a basis for species clustering. For illustration,
we have performed a k-means clustering (with k = 5)
of the species based on the mean values of their latent
weight representations. The relative number of species
belonging to each of the five clusters can be interpreted
as an (abstract) representation of a species community.
Figure 3 shows the conditional distribution of species for
four different types of land use. Encouragingly, we see
a strong relationship between the land use type and the
species community composition, which supports that
idea that the model has the potential to capture mean-
ing biological insights.

5 Conclusion

In this paper, we have explored the use of a modeling framework that relies on additive
Gaussian processes to model the distribution of species that, in contrast to previous
proposals, combines (non-linear) environmental and spatial features. Beyond predicting
species occurrence with higher quality, the open-box nature of the presented approach
has the potential to facilitate the analysis of the impact of environmental features (e.g.,
pH) on the presence of given species – by the use of response curves – while accounting
for the inherent uncertainty due to limited and noisy data. Our framework demonstrates
superior or comparable performance to state-of-the-art models across multiple datasets.
Importantly, we prioritize interpretability over black-box designs, enabling biologists to
derive meaningful insights from the model’s outputs.

Despite its strengths, the proposed architecture has various limitations. The current
framework assumes presence-absence observations, while microbial species datasets of-
ten consist of relative abundances (i.e., counts). Additionally, our model does not yet
account for observation noise, species traits, or phylogenetic relationships—factors that
could further enhance predictive accuracy and ecological interpretability. Since collecting
microbial species data is time-consuming and costly, data, sparsity also poses a challenge.

Our work serves as a foundation for several promising extensions. As a future work,
we will incorporate species traits and phylogenetic tree information to better capture ge-
nomic and evolutionary influences. Extending the model to handle relative abundance
data, and explicitly modeling observation noise and missing data mechanisms to improve
robustness are other promising research directions. We will also leverage hyperbolic em-
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beddings to efficiently represent phylogenetic structure in lower-dimensional latent spaces,
avoiding the need for additional dimensionality reduction operations for interpretability.
Furthermore, exploring species interactions and alternative likelihood formulations could
broaden the model’s applicability.
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Abstract

The advantage of the interval priority weight estimation from a crisp pairwise
comparison matrix has been shown over the crisp priority weight estimation when the
DM’s evaluation is assumed to be vague. However, the usefulness of the estimated
interval priority weights in the decision analysis has not yet been shown. In this
paper, we show the decision analysis based on the maximin, maximax, and minimax
regret criteria under interval priority weights. A deeper decision analysis using
interval priority weights is demonstrated in three examples.

1 Introduction

Analytic Hierarchy Process (AHP) (Saaty, 1980; Saaty and Vargas, 2012) is a structural
and analytic approach to multiple criteria decision problems. The pairwise comparison
matrix (PCM) given by the decision maker (DM) is usually inconsistent as human eval-
uation is not precise. The consistency index is defined, and when it is in the acceptable
range, the priority weights are estimated by minimizing the errors, where the inconsis-
tency is regarded as an error. On the other hand, considering that the inconsistency of the
PCM comes from the vague evaluation, the interval AHP (Sugihara and Tanaka, 2001)
was proposed. In this approach, the interval priority weights instead of crisp ones are
estimated. Because the original method estimates too narrow interval priority weights,
various estimation methods of interval priority weights are proposed (Innan and Inuiguchi,
2024). It is shown that the accuracy scores in the problems of ordering alternatives using
the estimated several interval priority weights are better than those by the crisp priority
weights estimated by eigenvalue and geometric mean methods of the classical AHP (see
Inuiguchi et al. (2022, 2025)). However, the usefulness of the interval priority weights in
the decision analysis has not yet been studied considerably. The estimated interval prior-
ity weights reflect the degree of inconsistency of the given PCM in their widths, although
the crisp priority weights of the classical AHP have no inconsistency. Therefore, a more
detailed analysis is expected by considering the vagueness of the priority weights.
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In this paper, using the best-performed estimation method (Inuiguchi et al., 2025)
of interval priority weights in accuracy scores in the previous numerical experiments, the
usefulness of interval priority weights is demonstrated by didactic numerical examples. We
consider examples where sufficiently consistent PCMs are given. Among many conceivable
decision analyses using interval priority weights, we apply a few famous decision rules
under uncertainty. In the analysis, the nonuniqueness (Inuiguchi, 2016) of the solution to
the estimation problem of interval priority weights is fully introduced. More concretely,
the proposed decision analysis uses a set of solutions obtained from the standard solution
satisfying center normalization.

This paper is organized as follows. Next section describes the estimation method of
interval priority weights used in this paper. It is the best performed method. Decision
analyses under interval priority weights are described in Section 3. In Section 4, the
decision problem treated in this paper is explained. Then three examples are given to
demonstrate the differences of the analyses between the classical and Interval AHP.

2 Estimation Method of Interval Priority Weights

The estimation method of interval priority weights used in this paper is explained. It
performs the best in numerical experiments so far (Inuiguchi et al., 2025). Given a
PCM A = (aij), calculating n preliminary interval priority weight vectors composed of
Wi(k) = [wL

i (k), w
U
i (k)], i ∈ N = {1, 2, ..., n} by the following procedure for each k ∈ N ,

we obtain an estimated interval priority weight vector composed of Ŵi =
∑

k∈N W(k)/n,
i ∈ N , where the PCM A = (aij) satisfies aij = 1/aji > 0, i < j, i, j ∈ N and aii = 1,
i ∈ N and we impose the constraints, aij ∈ Wi(k)/Wj(k) (the reproducibility of aij),∑

i∈N\j w
L
i + wU

j ≤ 1,
∑

i∈N\j w
U
i + wL

j ≥ 1, j ∈ N (the normality condition of Wi(k),

i ∈ N), and
∑

i∈N (wL
i + wU

i ) = 2 (center normalization of Wi(k), i ∈ N).

⟨1⟩ Estimate wi(k), i ∈ N \ k by the EV method of the classical AHP, where N \ k =
N \{k}. The ratios of the centers of Wi(k), i ∈ N \k are fixed by the raios between
wi(k), i ∈ N \ k.

⟨2⟩ Minimize the sum of widths of Wi(k), i ∈ N \ k and the width of Wk(k), lexico-
graphically, subject to the constraints of the reproducibility of aij , the normality
condition of Wi(k), i ∈ N , the center normalization of Wi(k), i ∈ N , and the equal-
ity of the ratios of the centers of Wi(k), i ∈ N \ k to the ratios between wi(k),
i ∈ N \ k obtained in ⟨1⟩.

Given Ŵi, i ∈ N , we obtain the minimum and maximum solutions by tL and tU
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defined by

tL =
1

min
i∈N

wL
i +

∑
i∈N\j

wU
j

 , (1)

tU =
1

max
i∈N

wU
i +

∑
i∈N\j

wL
j

 . (2)

Then, the following set of interval priority weight vectors is obtained as the solution set
of the estimation problem:

W =
{
tŴi, i ∈ N

∣∣∣ t ∈ [tL, tU]
}
. (3)

We note that the consistency of the PCM A = (aij) is evaluated by a consistency
index C.I. and a consistency ratio C.R. (Saaty and Vargas, 2012) defined by

C.I. =
λmax − n

n− 1
, C.R. =

C.I.

R.I.
, (4)

where λmax is the largest eigenvalue of A and R.I. (Saaty and Vargas, 2012) is the ran-
domness index defined by the average of the resulting consistency index C.I. depending
on the order of the matrix. It is known that we may accept the priority weights obtained
from PCM A when its C.I. or C.R. is not greater than 0.1.

3 Decision Analysis under Interval Priority Weights

We consider a multiple criteria decision making (MCDM) problem with m alternatives
ok, k ∈ M = {1, 2, ...,m} whose marginal utility score in the i-th criteria is given as
ui(ok) (i ∈ N). Because the criteria weight vector is obtained as a set of interval priority
weight vectors, one of the decision rules under uncertainty (French, 1986) is applied to
order the alternatives. We assume that the DM evaluates the criteria weights vaguely by
a consistent interval PCM but we including the DM cannot know which interval priority
weight vector is used for the evaluation of alternatives, or the interval priority weight
vector can change by the DM’s mood, the situation, and the time. Namely, the multiplier
t ∈ [tL, tU] is not known but assumed to take a value in the range. Therefore, t ∈ [tL, tU]
is treated as a parameter and the various decision rules under uncertainty (French, 1986)
are applied under interval priority weights tŴi, i ∈ N for the decision analysis. In this
paper, we consider the maximin rule, the maximax rule, and the minimax regret rule as
the decision rules under uncertainty Inuiguchi et al. (2022)．

For each t ∈ [tL, tU], the maximin rule evaluates an alternative ok by the worst to-
tal utility score Ǔ(ok|t) obtained as the optimal value of the linear programming (LP)
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problem,

min Ǔ(ok|t) =
∑
i∈N

ui(ok)wi

sub. to
∑
i∈N

wi = 1, twL
i ≤ wi ≤ twU

i , i ∈ N,
(5)

and orders alternatives ok, k ∈ N in the decreasing order of Ǔ(ok|t). Namely, the larger
Ǔ(ok|t), the better.

Similarly, for each t ∈ [tL, tU], the maximax rule evaluates an alternative ok by the
best total utility score Û(ok|t) obtained as the optimal value of the LP problem,

max Û(ok|t) =
∑
i∈N

ui(ok)wi

sub. to
∑
i∈N

wi = 1, twL
i ≤ wi ≤ twU

i , i ∈ N,
(6)

and orders alternatives ok, k ∈ N in the decreasing order of Û(ok|t). Namely, the larger
Û(ok|t), the better.

Finally, for each t ∈ [tL, tU], the minimax regret rule evaluates first the worst disad-
vantage of an alternative ok over another alternative ol by the maximum utility difference
ďU(ok, ol|t) obtained as the optimal value of the LP problem,

max ďU(ok, ol|t) =
∑
i∈N

(ui(ol)− ui(ok))wi

sub. to
∑
i∈N

wi = 1, twL
i ≤ wi ≤ twU

i , i ∈ N.
(7)

Then the maximum regret R(ok|t) of an alternative ok is defined by

R(ok|t) = max
l∈N\k

ďU(ok, ol|t). (8)

Accordingly, this rule orders alternatives ok, k ∈ N in the increasing order of R(ok|t).
Namely, the smaller R(ok|t), the better.

We note that LP problems (5), (6) and (7) are solved simlply by a greedy method.
From this fact, we know that Ǔ(ok|t), Û(ok|t) and R(ok|t) are relatively easily obtained
as a piecewise linear function of t.

Consider a utility score obtained by multiplying the marginal utility score by the
lower bound of interval priority weight in each criterion. We understand this utility score
shows the fundamental score because wi, i ∈ N obtained by solving LP problems (5),
(6) and (7) are not less than the lower bounds twL

i , i ∈ N . As the sum of lower bounds
of interval priority weights is not greater than 1, the total score is not composed only of
fundamental scores but bonus scores. The bonus score is obtained by assigning the bonus
weight to criteria and the assignment of the bonus weight is different by the decision rule.
In the maximin rule, bonus weights are assigned to the criteria having the bad marginal
scores to see the harsh evaluation. In the maximax rule, bonus weights are assigned to
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the criteria having good marginal scores to see the lenient evaluation. Finally, in each
maximum utility difference evaluation, bonus weights are assigned to criteria having big
exceeding marginal scores to see the terrible losses. We note that the bonus weights are
bounded by the widths of interval priority weights, i.e., the differences between the upper
and lower bounds.

Parameter t controls the ratio of the fundamental score to the total utility score. Let
L be the sum of lower bounds of the interval priority weights, i.e., L =

∑
i∈N wL

i . For
t ∈ [tL, tU], we have tL < 1 as far as

∑
i∈N wL

i <
∑

i∈N wU
i . For t ∈ [tL, tU], 100tL% is

assigned to the fundamental score, and 100(1− tL)% is assigned to the bonus score in the
total utility score. Therefore, the fundamental score ratio becomes the minimum when
t = tL and the maximum when t = tU.

4 The Setting of MCDM Problem

Any MCDM problem can be treated by the interval AHP. In this paper, we consider an
MCDM problem for ordering alternatives in the setting of the rookie draft in professional
baseball (Kinoshita, 2006). This MCDM problem considers five criteria, C1: ‘Physical
Fitness’, C2: ‘Good Taste’, C3: ‘Personality’, C4: ‘Circumstance’, and C5: ‘Talent’.
Using those criteria, three players A, B, and C, which are alternatives o1, o2, and o3,
respectively should be ordered. The DM gives the PCM A (Kinoshita, 2006) defined by

A =


1 3 3 4 5
1
3 1 1 2 3
1
3 1 1 2 3
1
4

1
2

1
2 1 3

1
5

1
3

1
3

1
3 1

 . (9)

The consistency index and ratio are obtained as C.I. = 0.0279553 and C.R. = 0.02496.
Both of them are sufficiently less than 0.1, and thus the preference information expressed
by A is considered consistent.

In the classical AHP, the crisp priority weights wi, i ∈ N are estimated by the EV
method and the GM method (Saaty, 1980; Saaty and Vargas, 2012). In the EV method,
the normalized eigenvector w satisfying

Aw = λmaxw, (10)

is calculated as the estimated crisp priority weight vector. On the other hand, in the GM
method, the i-th component of the crisp priority weight vector w is calculated by

wi =

 n∏
j=1

aij

 1
n

n∑
k=1

 n∏
j=1

akj

 1
n

, i ∈ N. (11)
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By the EV method, the crisp priority weights wi, i ∈ N of the criteria Ci, i ∈ N are
obtained as

w1 = 0.455525, w2 = 0.183092, w3 = 0.183092, w4 = 0.116967, w5 = 0.0613244.
(12)

Similarly, by the GM method, the crisp priority weights ωi, i ∈ N of the criteria Ci, i ∈ N
are obtained as

ω1 = 0.454727, ω2 = 0.184885, ω3 = 0.184885, ω4 = 0.115159, ω5 = 0.0603434. (13)

The obtained crisp priority weights are similar between the EV and GM methods. We
use the crisp priority weights wi, i ∈ N obtained by the EV method.

On the other hand, applying the estimation method of interval priority weights de-
scribed in Section 2, we obtain the following interval priority weights satisfying the center
normalization:

W1 = [0.436191, 0.457725], W2 = [0.152574, 0.214312], W3 = [0.152574, 0.214312],
W4 = [0.093944, 0.147591], W5 = [0.033225, 0.097551].

(14)
Then, from (1) and (2), we obtain

tL = 0.937062 and tU = 1.072002. (15)

In what follows, using three MCDM problems with three alternatives (m = 3), which
are different in sets of three alternatives, we demonstrate the usefulness of the estimated
interval priority weights in the decision analysis.

4.1 MCDM Problem I

We consider the MCDM problem where the marginal utility scores u(oj) of alternatives
oj , j = 1, 2, 3 under each criterion Ci, i ∈ N are given in Table 1. Those marginal utility
scores are given in the book (Kinoshita, 2006). The total utility scores V (oj), j = 1, 2, 3
of three alternatives using the crisp priority weights wi, i ∈ N are obtained as

V (o1) = 0.223324, V (o2) = 0.376315, V (o3) = 0.400361. (16)

Then, we obtain the preference order, o3 ≻ o2 ≻ o1 for the DM, where oj ≻ ok means
that the DM prefers oj to ok.

On the other hand, using the set of interval priority weight vectors, {(tW1, ..., tWn)
T |

t ∈ [tL, tU]}, the minimum total utility score Ǔ(ok|t) and the maximum total utility score

Table 1: The marginal utility scores of three alternatives of MCDM Problem I
C1 C2 C3 C4 C5

o1 0.105 0.649 0.098 0.2 0.25
o2 0.637 0.072 0.187 0.2 0.25
o3 0.258 0.279 0.715 0.6 0.5
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Figure 1: Ǔ(ok|t) and Û(ok|t) in the MCDM problem I

Û(ok|t) are obtained as shown in Figure 1. From Figure 1, we confirm Ǔ(o3|t) ≥ Ǔ(o2|t) ≥
Ǔ(o1|t) and Û(o3|t) ≥ Û(o2|t) ≥ Û(o1|t). Therefore, we think that the preference order
o3 ≻ o2 ≻ o1 obtained by the EV method is reasonable. In this example, without
calculating the minimax regret R(ok|t), we may conclude the preference order o3 ≻ o2 ≻ o1
is adequate. As shown in this example, the decision analysis using the interval priority
weights may corroborate the result obtained in the classical AHP.

4.2 MCDM Problem II

We consider the MCDM problem where the marginal utility scores u(oj) of alternatives
oj , j = 1, 2, 3 under each criterion Ci, i ∈ N are given in Table 2. The total utility scores
V (oj), j = 1, 2, 3 of three alternatives of Table 2 using the crisp priority weights wi, i ∈ N
are obtained as

V (o1) = 0.381441, V (o2) = 0.384809, V (o3) = 0.380260. (17)

Although the differences are small, the preference order of the three alternatives given in
Table 2 is estimated as o2 ≻ o1 ≻ o3.

Table 2: The marginal utility scores of three alternatives of MCDM Problem II
C1 C2 C3 C4 C5

o1 0.637 0.1 0.187 0.2 0.25
o2 0.26 0.265 0.78 0.5 0.27
o3 0.38 0.378 0.378 0.378 0.4
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Figure 2: Ǔ(ok|t) and Û(ok|t) in the MCDM problem II

Using the set of interval priority weight vectors, {(tW1, ..., tWn)
T | t ∈ [tL, tU]}, the

minimum total utility score Ǔ(ok|t) and the maximum total utility score Û(ok|t) are
obtained as shown in Figure 2. The scale of the vertical axis in Figure 2 is finer than that
in Figure 1. Although the variation ranges of the minimum total utility scores Ǔ(ok|t),
k = 1, 2, 3 and the maximum total utility scores Û(ok|t), k = 1, 2, 3 are small, the variation
patterns are different to a certain extent. There are big overlaps among the interval total
utility scores of those three alternatives. The alternative o2 takes the smallest minimum
total utility score among three alternatives for every t ∈ [tL, tU]. Nevertheless, the largest
difference in minimum total utility scores from the other alternatives is less than 0.02. On
the contrary, the maximum total utility score of the alternative o2 is significantly larger
than the others. Therefore, o2 can be the best alternative. However, if the DM wants
to avert strongly from the worst result and accept rather small total utility scores, the
alternative o3 can be recommended. o1 is completely worse than o3 when t is small. This
fact comes from the fact that o1 takes the smallest marginal scores in all criteria except
C1.

For t ∈ [tL, tU], we obtain maximum regret R(ok|t) as shown in Figure 3. From
Figure 3, although the alternative o1 takes the smallest maximum regret for large t ∈
[tL, tU], it takes the largest maximum regret in a wide range of t ∈ [tL, tU]. Moreover,
its largest maximum regret is larger than the other two alternatives and the difference is
more than 0.01. Considering those facts, the alternative o1 is not a good solution. From
Figure 3, the alternative o2 is a good solution from the viewpoint of the maximum regret.

In this example, the results are the same as in the classical AHP in the sense that o2
is the best. On the other hand, the results are different as the preference order between
o1 and o2 reverses.
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Figure 3: R(ok|t) in the MCDM problem II

4.3 MCDM Problem III

We consider the MCDM problem where the marginal utility scores u(oj) of alternatives
oj , j = 1, 2, 3 under each criterion Ci, i ∈ N are given in Table 3. The total utility scores
V (ok), k = 1, 2, 3 using crisp priority weights obtained by the EV method are

V (o1) = 0.399709, V (o2) = 0.399509, V (o3) = 0.399075. (18)

Again the differences among those total utility scores are very small and we obtain the
preference order o1 ≻ o2 ≻ o3. As the differences are very small, the DM wonders whether
this preference order should be accepted as the final decision.

The minimum total utility score Ǔ(ok|t) and the maximum total utility score Û(ok|t)
are obtained as shown in Figure 4 using the set of interval priority weight vectors,
{(tW1, ..., tWn)

T | t ∈ [tL, tU]}. The scale of the vertical axis in Figure 4 is finer than that
in Figure 2, i.e., much finer than that in Figure 1.

As shown in the MCDM problem II, although the variation ranges of the minimum
total utility scores Ǔ(ok|t), k = 1, 2, 3 and the maximum total utility scores Û(ok|t),
k = 1, 2, 3 are small, their variation patterns are different. There are big overlaps among
the interval total utility scores of those three alternatives, and the minimum and maximum

Table 3: The marginal utility scores of three alternatives of MCDM Problem III
C1 C2 C3 C4 C5

o1 0.648 0.12 0.17 0.23 0.4
o2 0.28 0.3 0.69 0.55 0.43
o3 0.322 0.414 0.414 0.414 0.854
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Figure 4: Ǔ(ok|t) and Û(ok|t) in the MCDM problem III

total utilities are close to one another. Generally speaking, it is difficult to tell which is
the best from Figure 4. However, if we had to select one alternative, we would take the
alternative o3 because the variations of the minimum and maximum total utility scores
Ǔ(o3|t) and Û(o3|t) are comparatively small.

Then we calculate the maximum regret R(ok|t) for t ∈ [tL, tU] and k = 1, 2, 3. We
obtain Figure 5. From Figure 5, the alternative o1 takes the smallest maximum regret
when t is large, i.e., when the ratio of the fundamental score is large. When the DM does
not decide how large the ratio of the fundamental score is, the alternative o1 is not always
a good solution because the variation of its maximum regret is too large. However, if the
DM accepts the difference of maximum regrets at most 0.02, the alternative o1 would be
the best because of its good performance when t is large. When t is small, i.e., when the
ratio of the fundamental score is small, the alternative o3 would be good as its maximum
regret is smallest or near smallest. If the decision maker prefers the stable maximum
regret, i.e., the maximum regret not greater than 0.03, the alternative o3 is the best.

In this example, the result of the analysis using interval priority weights is very differ-
ent from that using priority weights of the classical AHP because o2 is never recommended
while it is the best in the classical AHP.

In the proposed analysis using interval priority weights, the recommended alternative
can depend on the DM, more precisely, her/his evaluation attitude and policy, i.e., harsh
or lenient, and the importance of the fundamental score.
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Figure 5: R(ok|t) in the MCDM problem III

5 Concluding Remarks

We have demonstrated a few possible analyses using interval priority weights under a crisp
PCM that is considered consistent. When the crisp total utility scores are sufficiently
different in the classical AHP, the result in the interval AHP will not be very different.
However, as shown in subsections 4.2 and 4.3, when the crisp total utility scores are
close, the result in the interval AHP can be different. In our analysis, the recommended
alternative depends on the DM’s evaluation attitude and policy, i.e., harsh or lenient, and
the importance of the fundamental score.

The vagueness of evaluation estimated from a given crisp PCM is preserved in the
interval priority weights. This vagueness makes the analyses richer than the classical AHP.
The proposed analysis by the interval AHP does not require the additional preference data
from the DM. We obtain the result of the analysis from the same crisp PCM. For the
final recommendation, we may ask the DM about her/his evaluation attitude and style.

We do not intend to replace the classical AHP with the interval AHP. We want to
recommend the analysts to use the interval AHP together with the classical AHP for
getting a second opinion.

In the analysis of the interval AHP, we can know the possible orders of alternatives
obtained from the given PCM. Then we may apply the interval AHP to the PCM whose
consistency is not sufficient for the primary decision analysis. By this primary analysis, we
may find which part of the data in the given PCM would be questionable. The application
to the interval AHP to the inconsistent PCM would be one of the future topics.
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Abstract

Planning efficient tram schedules for municipal transportation presents signifi-
cant challenges, often relying on time-consuming manual methods that struggle with
network changes and complexity. This paper introduces a genetic algorithm-based
heuristic approach to automate and optimize tram timetabling. The heuristic was
evaluated on three selected subsets of the Prague tram network with different size.
The largest example is a problem potentially computationally infeasible for non-
heuristic approaches due to its vast combinatorial space. Results demonstrate that
the proposed heuristic significantly accelerates the scheduling process, improves ser-
vice levels by optimizing vehicle distribution and minimizing wait times, and reduces
manual effort, offering a more efficient and adaptable tool for municipal transport
planning.

Keywords: Tram Scheduling, Timetabling, Genetic Algorithm, Heuristic Optimization,
Public Transport, Urban Mobility, Prague Tram Network

1 Introduction

Efficiently planning tram schedules, specifically departure timetables, for municipal trans-
portation systems represents a complex challenge with far-reaching consequences for
commuters, city inhabitants, and overall traffic flow. Current practices frequently in-
volve manual adjustments across multiple spreadsheets, demanding significant expertise
from planners to identify viable schedule combinations (Guihaire and Hao (2008)). This
methodology is not only time-consuming but also struggles to adapt readily to network
alterations, such as those necessitated by construction diversions, placing considerable
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strain on planning personnel. Furthermore, suboptimal scheduling can result in dimin-
ished service quality – manifested as irregular headways, poor connections, and excessive
passenger wait times – and inflated operational expenditures due to inefficient resource
utilization (Pietrzak and Pietrzak (2022), Shelat et al. (2022)).

The structure of a timetable profoundly impacts the operational quality of public
transport. From the passenger’s viewpoint, key decision factors for choosing a transport
mode hinge on reliability and travel time. Consequently, the waiting time experienced by
passengers is a critical component of mode choice (Shelat et al., 2021a). This encompasses
waiting not just for vehicles on a specific route, but for all public transport services op-
erating within the same inter-stop segment. An optimally designed schedule should aim
to maximize the even distribution of trams along shared track sections, thereby mini-
mizing passenger wait times and enhancing the overall travel experience. The scheduling
process is further complicated by additional considerations, including interconnections
between different tram routes, requirements for modal transfers (e.g., with metro or bus
lines), constraints imposed by physical infrastructure like tram stop capacity (especially
at termini or busy junctions) and street congestion affecting travel time reliability, and
the broader demands of urban mobility patterns which fluctuate throughout the day and
week (Shi et al., 2017).

Addressing these challenges requires moving beyond traditional manual methods to-
wards more automated and optimized approaches. This paper proposes and evaluates
a heuristic optimization technique based on Genetic Algorithms (GAs) specifically tai-
lored for the large-scale tram network scheduling problem. We aim to develop a tool that
can generate high-quality, robust, and adaptable tram timetables significantly faster than
manual methods, while explicitly optimizing for passenger service quality and operational
efficiency.

In the context of Prague, the tram network is one of the densest and most intensively
used in Europe, with more than 150 kilometers of lines and almost 30 regular daily lines
serving hundreds of thousands of passengers daily. The operational complexity of such
a system is significant, especially in the city centre where multiple lines share the same
route sections, resulting in track capacity at the limit of operational capacity (pid (2025)).
This makes creating the optimal timetable a really challenging task. In this article we
use results and observation provided in Chmelová (2025), which describes the Prague
tram network in detail, work on basic concepts, and provides exact solutions for simple
scheduling cases.

The remainder of this paper is structured as follows: Section 2 provides a review of
public transport scheduling current state and optimization techniques. Section 3 formally
defines the tram scheduling problem and its constraints as well as details of the proposed
Genetic Algorithm heuristic, including its components and objective function formulation.
Section 4 describes the experiment with the Prague tram network. In this section the
comparison with exact solution is performed first and then a larger case is solved. Finally,
Section 5 concludes the paper and suggests avenues for future research.
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2 Timetable Scheduling

Public transport scheduling has been an active area of research for decades, falling under
the broader category of vehicle routing and scheduling problems. The specific task of
timetable generation aims to determine the departure times for all trips of all routes
within a given planning horizon.

2.1 Common Approach in Modern City Infrastructure

Public transport timetable scheduling varies across cities, reflecting diverse operational
strategies, technological advancements, and policy priorities. While some cities rely on
traditional methods, others have adopted innovative approaches to enhance efficiency and
passenger satisfaction. For example, in Beijing, the integration of big data analytics into
bus scheduling has marked a significant shift from manual methods. By leveraging vast
amounts of GPS and smart card data, a data-driven timetable optimization model was
developed. This model considers time-dependent running times and passenger demand,
aiming to maximize passenger volume while adhering to operational constraints (Zhao
et al. (2020)).

In Kaunas, Lithuania, the VIVALDI project introduced the PIKAS software to opti-
mize public transport schedules. This system allowed for the adjustment of timetables
based on fluctuating passenger flows throughout the day, improving service quality and
coordination among buses, trolleybuses, and microbuses (CIVITAS Initiative (2011)).

Zurich, Switzerland, employs the ”Zurich model,” emphasizing a dense network with
short headways and high priority at intersections. This approach has maintained a high
public transport modal share by ensuring reliability and efficiency without extensive un-
derground infrastructure (Moglestue (2005)).

In Copenhagen, the public transport network employs a hybrid approach combin-
ing both schedule-based and frequency-based services. The A-bus lines and the Metro
operate on high-frequency intervals, allowing passengers to use these services without
consulting specific timetables during peak hours. This system enhances flexibility and
reduces waiting times. Conversely, services like the S-train and regional buses adhere to
fixed schedules, catering to areas with lower demand. This dual system is designed to
optimize efficiency and meet diverse passenger needs across the city (Eltved et al. (2018)).

These examples illustrate the spectrum of timetable scheduling practices, from data-
driven optimization in Beijing to frequency-based models in Copenhagen, each tailored
to local needs and technological capabilities.

2.2 Traditional and Analytical Methods

Historically, timetabling relied heavily on manual methods based on planner experience
and simple rules of thumb. While effective in smaller systems, these methods become
intractable for large, complex networks. Early analytical approaches often involved net-
work flow models or queuing theory, but these typically required simplifying assumptions
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that limited their applicability to real-world scenarios (e.g., in trams scheduling nicely
over-viewed in Törnquist (2006)).

Integer programming (IP) formulations have been proposed (e.g., very early article
by Ryan and Foster (1981)), capable of finding optimal solutions for smaller problems.
However, the combinatorial complexity of timetabling, especially with synchronization
constraints and large networks, renders exact IP methods computationally infeasible for
practical, large-scale applications like metropolitan tram networks.

To address these challenges, some cities have adopted advanced software solutions.
For instance, Transportes Sul do Tejo (TST), a public transport operator in the Lisbon
metropolitan area, implemented Optibus’ timetable optimization software. This allowed
TST to significantly reduce planning time and improve operational efficiency, achieving
a 10% reduction in peak vehicle requirements (Optibus (2023)).

2.3 Heuristic and Metaheuristic Approaches

Given the computational difficulty, research has increasingly focused on heuristic and
metaheuristic techniques. These methods aim to find near-optimal solutions within rea-
sonable computational time. For example, simulated annealing (Fan and Machemehl,
2006) and tabu search (Krajewska and Kopfer, 2009) have been applied to various public
transport scheduling problems. Genetic Algorithms (GAs), inspired by natural evolution,
have proven particularly effective for complex combinatorial optimization problems due
to their ability to explore large solution spaces effectively. It is used, for example, in
Naumov (2020).

Genetic Algorithms (GAs) have been effectively applied to various public transport
scheduling problems due to their ability to explore large solution spaces. In railway
systems, Arenas et al. Arenas et al. (2014) and Yao et al. Yao et al. (2022) demonstrated
their use in periodic timetabling and dense traffic corridors. For bus networks, GAs
have been used to optimize schedules while minimizing environmental impacts Zhao et al.
(2020) and improving electric bus operations based on demand data Wang et al. (2024).
Applications to tram scheduling are less common, but Popescu and Dumitrescu Popescu
and Dumitrescu (2021) applied a GA to optimize tram operations in congested areas
using AVL data. Our study builds on this foundation, targeting the specific challenges of
large-scale tram networks with shared tracks and multi-line coordination.

However, applications specifically focused on the nuances of large-scale tram network
timetabling, considering factors like shared track sections and detailed passenger waiting
time minimization across multiple interacting lines, are less common. This study aims to
fill this gap by developing a tailored GA heuristic.

2.4 Factors and Parameters Affecting Scheduling

When constructing a timetable using heuristic methods, such as Genetic Algorithms
(GAs), a key component is the design of the objective function. This function guides
the optimization process and must reflect the real-world goals of both passengers and op-
erators. However, not all parameters are equally important. At this stage, we distinguish
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between core (crucial) factors that must be included from the beginning and others that
can be added later to refine the solution.

This prioritization reflects three main considerations. First, we emphasize parameters
with a direct impact on perceived service quality, such as regularity and waiting time,
which are among the most influential factors in mode choice and user satisfaction van
Oort and van Nes (2011); Shelat et al. (2021b). Second, we consider operational feasibil-
ity—certain infrastructure constraints (e.g., platform capacity or turnaround times) are
indispensable for schedule validity. Third, we account for the increasing modeling com-
plexity: while energy efficiency or workload balancing are desirable, they require richer
data and complex formulations, making them more appropriate for later stages Cats and
Jenelius (2014).

Crucial parameters:

• Waiting time for passengers: Especially on shared track segments, overall waiting
time is minimized when vehicle departures are evenly distributed (Shelat et al.,
2021b).

• Headway regularity: Avoiding bunching and ensuring uniform vehicle spacing im-
proves both service reliability and perceived frequency (Ceder, 2007).

• Transfer coordination: Aligning departure times at interchange points can signifi-
cantly reduce total travel time and improve network accessibility (van Oort and van
Nes, 2011).

• Infrastructure constraints: These include stop and depot capacities, available turn-
back facilities, and signal timing restrictions. If violated, a schedule is physically
infeasible.

Secondary parameters:

• Energy consumption: Scheduling that avoids simultaneous acceleration of multiple
vehicles can reduce power demand spikes, as discussed by Naumov and Dmitriev
(2020).

• Vehicle and driver workload balance: Even distribution of vehicle usage and crew
shifts supports long-term operational sustainability.

• Robustness to disturbances: Timetables can be designed to better absorb delays by
incorporating slack or buffer times (Cats and Jenelius, 2014).

At this stage, we focus only on the crucial parameters that directly affect user experi-
ence and operational feasibility. These serve as the foundation for the first version of our
objective function.

3 Problem Formulation

Let the tram network be represented by a set of routes R and a set of stops S. Each route
r ∈ R consists of an ordered sequence of stops. Let each stop in the set S be indexed
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using natural indexing. Let the subset Sr be the set of stops visited by a single route.
The goal is to determine the departure time dr,k for the k-th trip of each route r ∈ R
from its starting terminal in the planning horizon (e.g., the morning peak period).

3.1 Constraints

Several constraints must be satisfied:

• Headway Constraints: Minimum and maximum time intervals between consec-
utive trips on the same route must be respected to maintain service frequency and
prevent vehicle bunching.

Hmin ≤ dr,k+1 − dr,k ≤ Hmax

• Travel Time Constraints: The time taken to travel between stops is assumed
based on operational data. This determines arrival times at downstream stops
based on departure times. Individual times of the route r to travel between stops
are described by the matrix

T = {tri,j ; i, j ∈ {1, 2, . . . , |S|}},

where ti,j = inf for non-existent connections.

• Synchronization Constraints: Desired time intervals for transfers between spe-
cific connecting routes at transfer stops must be maintained.

Syncmin ≤ (Arrr′,j′ −Depr,j) ≤ Syncmax

(where Arr and Dep are arrival/departure times at the transfer stop j for routes r′

and r).

• Stop Capacity Constraints: The number of trams simultaneously occupying a
stop (especially termini or platforms) cannot exceed its physical capacity ci, i ∈
{1, 2, . . . , |S|}.

3.2 Genetic Algorithm Heuristic

The core decision variables are the discretized departure times (dr,k) for each trip (k) of
every tram route (r) within the planning period. Each individual in the genetic algorithm
is the departures vector, each chromosome is a single tram departure for a single trip. In
the GA process we use following mechanisms

• Mutation is simply altering a single chromosome to a different departure time. The
driving parameter sets probability of a single chromosome mutation.

• Crossover randomly mixes departure times of two parents. In case crossover hap-
pens, we keep only offspring. The driving parameter sets the probability of crossover
occurrence.

• Elitism is a driving parameter which sets the number of top scoring individuals
which go to the next iteration unchanged.
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Objective Function & Prague Specific Settings

The objective function, or fitness function F , evaluates the quality of a proposed timetable.
It combines several key performance indicators into a single weighted score allowing plan-
ners to prioritize specific goals. The main components considered are:

• Passenger Wait Time Minimization: Aims to reduce passenger waiting by
evenly distributing trams, especially on shared tracks.

• Synchronization Quality: Penalizes poor connections at transfer points to im-
prove network accessibility.

• Headway Regularity: Promotes uniform spacing between trams on the same
route to enhance service reliability.

• Constraint Violation Penalties: Discourages solutions that violate operational
constraints like stop capacity.

In the experimental part we work with the tram lines of Prague. In Prague tram lines
planning, times are rounded to the nearest minute. It is always assumed that a tram stays
at a stop for the minute it arrives. Also, during the individual time horizon, each tram
operates with the same interval T ∗ during the whole horizon. This reduces the problem
to find only the first departure time dr,1.

In this article we aim only at minimization of passenger wait time while satisfying
constraints. The fitness function optimizes intervals between individual trams visiting
stops where each stop si ∈ S has its own weight wi influencing its importance in the
network. With aiq,r as the interval of two routes q, r at the stop i

âiq,r =

{
|((dq,1 + tsq1,i) mod T ∗)− ((dr,1 + tsr1,i) mod T ∗)|, i ∈ Sq ∩ Sr

0, otherwise

aiq,r = min(âiq,r , T ∗ − âiq,r)

the fitness function is defined as

F = −
∑
si∈S

wi

∑
∀q,r∈R

aiq,r

4 Prague Tram Network Case Study

This section details the application and evaluation of the proposed genetic algorithm-
based heuristic using the Prague tram network as a real-world case study. Prague tram
network is one of Europe’s densest and most utilized tram systems, featuring over 150
kilometers of lines and nearly 30 regular daily routes that serve hundreds of thousands
of passengers each day. The network’s complexity is particularly high in the city center,
where multiple lines share track sections, often operating at the limits of track capacity.
This shared infrastructure makes optimal timetable coordination exceptionally challeng-
ing. The network comprises 26 main tram lines, which translates to 52 directional routes
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ID No. of stops No. of lines Solver time [s]
1 12 7 3.51
2 65 7 19.81
3 12 20 75600 (unfinished)

Table 1: Example cases settings

when considering both directions of travel. Practical implication for GA algorithm are
discussed in 3.2.

Having this settings, for a single time period like the peak hour in Prague with 52
directional routes and an 8-minute departure window T ∗ = 8, the number of poten-
tial combinations is enormous 852. Considering multiple trips per route and finer time
discretization would make the search space astronomically larger.

4.1 Scheduling Task

The goal is to generate a timetable that optimizes the objective function, focusing on
minimizing passenger waiting time while respecting operational constraints.

To evaluate the proposed genetic algorithm heuristic, we applied it to three problems
for comparison against solutions obtained via exact, non-heuristic optimization meth-
ods, providing a benchmark to assess the heuristic’s accuracy and efficiency in controlled
scenarios. We use three examples described and optimized in Chmelová (2025). These
origin by sub-selecting specific lines and stops from the Prague’s network and performing
computations only for this sub-selection. Settings of three cases is detail in Table 1.

4.2 Simulation & Results

The GA test was performed on a desktop computer running Intel core i5 chip with 48GB
RAM. We used different settings of parameters for GA, with each set of parameters 10
runs were performed. As results we show the ratio against the optimal value (exact
solution) and the percentage of runs which were able to obtain optimum. We measure
the time for a single run. The simulation runs for a defined number of iteration and we
observe the iteration with the last improvement of the target value.

For the case of the first example consult Figure 1. This plot shows behaviour based
on chosen parameters. It is clearly visible that high levels of mutation degrades solution.
Crossover parameter does not provide significant stable changes across different popula-
tion sizes. We can also observe that higher level of elitism yields better results. Based
on this observation we show results for crossover and mutation parameters set to 0.25,
elitism to 20 in the remaining experiments.

Figure 4.2 displays scoring and time results for the first case. For each population
size the algorithm was able to find an optimal solution in at least one case out of 10.
The lowest averaged ratio against optimal value is 0.91. Nevertheless, only the smallest
population with few generations did not found optimal solution in any of 10 repetition.
For all others we were able to obtain optimum at least once. We can observe linear growth
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of time with population size and number of iterations. Observing the last change of the
objective value shows that lower number of iterations is possible, although the increase
for 200 iterations clearly shows that in some cases even a late iteration provides changes
of fitness. The time of exact solution is 3.5s, GA with the smallest settings take 8.4s (10
runs in the set) and 15.1s for the second smallest case. For larger population it takes
significantly longer, although for practical application it is still reasonable timing.

Figure 3 shows results for remaining two cases in the same way as described in the
paragraph above. In the third case, the exact solution was not reached after 75600 seconds
and we compare GA results to the best integer solution found by the optimization method
in that time. As a result, we are able to find better solution in some runs. The shortest
time for case 2 and 3 is 40s and 11s respectively. In the second case it is still larger
than the exact solution. In the third case it is significantly lower and we can say that
capabilities of exact solution hit its threshold. The increase in times for GA method is
linear in terms of number of lines and stops which makes it usable for even large networks.

Figure 1: default

Figure 2: Results of the GA optimizing the first case. Averaged values out of instances
with the same settings (10 runs). mutation prob = 0.5, crossover prob = 0.5, elitism =
20
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Figure 3: Results of the GA optimizing the second and third case. Averaged values out
of instances with the same settings (10 runs). mutation prob = 0.5, crossover prob = 0.5,
elitism = 20

5 Conclusion and Future Work

The proposed genetic algorithm efficiently provides high-quality, feasible solutions for
tram scheduling, as demonstrated on benchmark cases. It effectively distributes tram
departures on shared sections to minimize average passenger waiting times, with resulting
timetables adhering to crucial operational constraints. Experiments confirm the algorithm
achieves near-optimal results in reasonable times.

This work offers a method for an automated tool for transportation planners, speeding
up timetable generation and reducing manual work. It improves adaptability to network
changes and optimizes schedules based on defined objectives, enhancing passenger service
and resource efficiency. Unlike current methods, this heuristic allows planners to weight
criteria and optimize for specific goals, providing a practical solution for complex urban
tram networks like Prague’s.

This paper presents a promising method to provide tram line planners with an effective
tool for creating new, more efficient timetables faster. Follow-up research is needed to:

• evaluate different objective functions and different interval options,

• include model changes and interconnections,

• improve the usage of passengers headcount,

• compute more complex test cases, and

• compare theoretical timetables with the real one.
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Abstract
Our work is motivated by the applications of probabilistic models in the social

sciences, in which surveys and questionnaires are typically used to collect respon-
dents’ opinions via a Likert scale. The dividing lines between the states on the Likert
scale are vague, so it is natural to interpret them using fuzzy numbers instead of
integers. We treat the true model variables as hidden continuous variables, the val-
ues of which are observed only through their fuzzified counterparts. This approach
seems more conceptually appropriate in the context of surveys and questionnaires,
since the modeled variables are continuous by nature but are only observed on a
fuzzy, discrete scale. Probabilistic inference with continuous variables is challenging
when the assumption of normality of the variables’ distribution is violated, which
is particularly true for variables modeling polarizing issues. We approximate con-
tinuous, multidimensional probability distributions using an F-transform composed
of basic functions with central points, called nodes, at a multidimensional grid. We
illustrate the suggested approach using a small Bayesian network model of data from
the survey “Dividing Lines in Czech Society.”

1 Introduction
Uncertainty can manifest in multiple ways. One aspect is the likelihood of a variable’s
state, typically expressed as a probability. Another aspect is the vagueness of a variable’s
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state, which can be represented by a fuzzy set.
Our work is motivated by the application of probabilistic models in the social sciences,

where surveys and questionnaires are commonly used to collect respondents’ opinions via
a Likert scale. Likert scales consist of several states, which are usually represented by a set
of consecutive integers. A seven-point Likert scale, for example, has the following states:
(1) strongly disagree, (2) disagree, (3) somewhat disagree, (4) neutral, (5) somewhat
agree, (6) agree, and (7) strongly agree. The dividing lines between these states are
vague, so it is natural to interpret them using fuzzy sets.

Bayesian networks (Pearl, 1988; Jensen and Nielsen, 2007; Koller and Friedman, 2009)
) are probabilistic graphical models in which directed acyclic graphs are used to model
relations between random variables. Pan and Liu introduced fuzzy Bayesian networks
in (Pan and Liu, 2000). Their formalism fuzzifies a Bayesian network by replacing con-
tinuous variables with discrete ones. The mapping between the two is approximated
by a conditional Gaussian distribution. The second form replaces continuous variables
with discrete partners only when necessary and uses conditional Gaussian regression for
continuous dependencies.

We treat continuous variables as hidden variables, observing their values only through
their fuzzified counterparts. We extend Bayesian networks with additional variables.
Each additional variable represents a fuzzy observation of the corresponding unobserved
continuous variable. In the context of surveys and questionnaires, this approach seems
more conceptually appropriate, since the modeled variables are continuous by nature
but are observed on a fuzzy, discrete scale. Unfortunately, this proposal makes infer-
ence challenging because it must be performed with continuous variables. Furthermore,
the assumption of normality of the variables’ distribution is often significantly violated.
Quite often, probability distributions have several modes. This is particularly true of
polarizing issues. Therefore, we approximate the continuous, multidimensional probabil-
ity distributions of our fuzzy Bayesian network using the F-transform (?)perfilieva-2006,
perfilieva-2008), which is composed of basic functions with central points (called nodes)
at a multidimensional grid. We illustrate the suggested approach using data from the
survey “Dividing Lines in Czech Society”, discussed in (Buchtík, 2023).

The paper is organized as follows: In Section 2 we introduce the necessary terminology
from the fuzzy set theory and present three types of membership functions used in this
paper. These membership functions form the basis of F-transform and its inverse and
they are described in Section 3. Finally, in Section 4 the F-transform using Gaussian
basic functions is applied to inference in a small Bayesian network. We conclude the
paper with a discussion of future research directions.

2 Fuzzy sets and fuzzy partitions
In this paper we will treat the studied variables as continuous random variables that
are hidden and their values are observed only through their fuzzified counterparts with
their values from a Likert scale1. This idea is not entirely new since some authors have

1In this paper we consider the Likert scale with seven values, i.e., n = 7.
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already suggested to identify each Likert response category with a fuzzy set (Gil and
González-Rodríguez, 2012).

A fuzzy set is a pair (U,A) where U is a set (often required to be non-empty) and A
is a mapping from universe U to [0, 1] referred as the membership function. The fuzzy
set is often identified with its membership function. An observation X = k of a random
variable X, where k is a value from the Likert scale {1, . . . , n} will be interpreted as a
fuzzy set Ak : [1, n] → [0, 1].

A family of fuzzy sets {Ak, k = 1, . . . , n} where all Ak are defined on the same universe
U is called fuzzy partition. In this paper the universe U will be an interval of real numbers
[a, b]. In Figure 1 we present examples of two fuzzy partitions that we discuss in more
detail later in this section. In Perfilieva (2006) a fuzzy partition A1, . . . , An of [a, b]
satisfying so called Ruspini conditions was introduced. Let x1 < . . . < xn be fixed nodes
from the interval of real numbers [a, b] such that x1 = a, xn = b and n ≥ 2.

Definition 1 (Ruspini partition). We say that the fuzzy sets A1, . . . , An, identified with
their membership functions defined on [a, b], establish a Ruspini partition of [a, b] if they
fulfill the following conditions for k = 1, . . . , n:

1. Ak : [a, b] → [0, 1], Ak(xk) = 1;

2. Ak(x) = 0 if x ̸∈ (xk−1, xk+1), where for uniformity of notation, we set x0 = a and
xn+1 = b;

3. Ak(x) is continuous;

4. Ak(x), for k = 2, . . . , n, strictly increases on [xk−1, xk] and Ak(x), for k = 1, . . . , n−
1, strictly decreases on [xk, xk+1];

5. for all x ∈ [a, b],
n∑

k=1

Ak(x) = 1.

The membership functions A1, . . . , An are called basic functions. A point x ∈ [a, b] is
covered by basic function Ak if Ak(x) > 0. The shape of the basic functions is not prede-
termined, so it can be selected based on additional requirements (such as smoothness).

The first basic function considered in this paper is the Gaussian function defined for
x ∈ [a, b] as:

Ak(x) =
1

σk
X ·

√
2π

exp

(
− (x− ckX)2

2 · (σk
X)2

)
where parameters are the values σk

X of the standard deviation and the means ckX specify
centers of the fuzzy sets2. In the following experiments, we always positioned the centers

2In all our experiments we assume that standard deviations are equal, i.e. σ1
X = . . . = σ7

X .
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Figure 1: Fuzzy partitions using Gaussian (left), triangular (middle), and Π-curves (right)
basic functions.

at certain points of the considered grid3. This fuzzy partition does not satisfy the con-
ditions of the Ruspini partition. See the right hand side of Figure 1 where the top black
curve corresponds to the sum of values of all seven basic functions.

The second option we consider are triangular functions. Each basic function Tk is
specified by its center ckX and its width wk

X for x ∈ [a, b] as:

Tk(x) = max

{
0, 1− 2|x− ckX |

wk
X

}

Another option, commonly used in the fuzzy sets applications are Π-curves. They are
named after their shape that for certain parametrizations resemble the letter Π. They
are composed from the so called S-functions defined for x, u, v ∈ [a, b], u < v as:

S(x, u, v) =


0 if x ≤ u

2
(

x−u
v−u

)2

if u < x ≤ u+v
2

1− 2
(

x−v
v−u

)2

if u+v
2 < x ≤ v

1 if v < x

In this paper we will use Π-curves defined for x ∈ [1, 7] as:

Πk(x) = S(x, k − s, k)− S(x, k, k + s) ,

where k are coordinates of the centers of individual basic functions and s is their span.4.
The advantage of this fuzzy transformation is that for the above parametrization satisfies
the Ruspini condition.

3The position of centers could be considered as another parameter to be specified with the help of a
domain expert or by an optimization algorithm.

4In this paper we use k ∈ {1, . . . , 7} with s = 1 or k ∈ {1, 4, 7} with s = 2.
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Since the fuzzy transformations of two variables X and Y are independent then an
observation X = i, Y = j, where i, j are the Likert values in data can be interpreted as a
two-dimensional fuzzy set with the basic function

fi,j(x, y|cX , cY , σX , σY ) = fi(x|cX , σX) · fi(y|cY , σY )

=
1

2 · π · σX · σY
exp−1

2
·
(
(x− cX)2

σ2
X

+
(y − cY )

2

σ2
Y

)
where the parameters are the standard deviations σX and σY of X and Y , respectively
and the mean values cX , cY that specifies the center of the fuzzy set5. Similarly, for the
Π-curves we get

Πi,j(x, y) = Πi(x) ·Πj(y) .

3 F-transform
In this section, we briefly introduce F-transform - a technique that we will use to ap-
proximate multidimensional probability distributions. In this paper, F-transform is used
to represent a discrete probability distribution by a finite set of its F-transform compo-
nents. We present the definition of F-transform (Perfilieva, 2006) for a discrete probability
distribution of two variables6 defined on the grid

X = X1 × X2 = {1, . . . , N} × {1, . . . ,M} .

Let A1, . . . , An and B1, . . . , Bm be basic functions. Further, let A1, . . . , An : [1, N ] →
[0, 1] and B1, . . . , Bm : [1,M ] → [0, 1] be fuzzy partitions of [1, N ] and [1,M ], respectively.
Assume that the grid X is sufficiently dense with respect to the chosen partitions, which
means that (∀k)(∃x ∈ X1) : Ak(x) > 0, and (∀l)(∃y ∈ X2 : Bl(y) > 0.
Definition 2. A n×m matrix U of real numbers is called F-transform of P with respect
to {A1, . . . , An} and {B1, . . . , Bm} if for all k = 1, . . . , n, l = 1, . . . ,m,

Ukl =

∑M
j=1

∑N
i=1 P (X = xi, Y = yj) ·Ak(xi) ·Bl(yj)∑M

j=1

∑N
i=1Ak(xi) ·Bl(yj)

. (1)

The elements Ukl are called components of F-transform.
In Figure 2 we illustrate F-transform computation for a single variable X (Referendum

about EU) resulting in the vector

(U1, U2, U3, U4, U5, U6, U7) = ( 0.168, 0.101, 0.101, 0.144, 0.087, 0.107, 0.197 ) .

We can try to reconstruct the original probability distribution P and in this way get
an approximation P̂ of P by the application of the inverse F-transform to its F-transform
represented by matrix U .

5In all our experiments we assume that standard deviations are equal, i.e. σ1
X = σ1

Y = . . . = σ7
X = σ7

Y
and also the correlation ρX,Y between X and Y in the basic function fi,j is zero.

6The generalization to more dimensional probability distributions is straightforward.
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Figure 2: Illustration of the F-transform computations using Gaussian basic functions.
The values denoted by dots from the Gaussian curve and from the corresponding columns
are multiplied and all products are summed up. The last plot on the bottom right is the
result of the inverse F-transform for the full interval [1, 7].

Definition 3. The inverse F-transform maps U to P̂ : X → [0, 1] with respect to
{A1, . . . , An} and {B1, . . . , Bm} and it is defined as follows:

P̂ (X = xi, Y = yj) =

∑n
k=1

∑m
l=1 Ukl ·Ak(i) ·Bl(j)∑n

k=1

∑m
l=1Ak(i) ·Bl(j)

. (2)

In Figure 3 we compare the square root error of the F-transform approximations
on a regular 7x7 and 3x3 grids with respect to the original distribution for two variables
(Geopolitcs and Referendum about EU), both reported using the seven-value Likert scale.
It is not surprising that the F-transform on the 7x7 grid is able to fit perfectly the original
table if the fuzziness is very low. More interesting and useful are approximations on the
sparser grid 3x3. In this way we achieve a compression of the original table and since the
application of F-transform corresponds to smoothing we can expect that these compressed
probability tables represent well the actual values. In our experiment we use triangular
and Gaussian fuzzy membership functions.

In Figure 4 we can compare the original probability distribution having 7x7 values with
its approximations using F-transform on a regular 3x3 grid. The Gaussian membership
function has both sigma values equal to 0.8. The triangular fuzzy membership function
has both width values equal to 3. The Π-curves membership function has the parameter
s = 1.8. The Gaussian and Π-curves membership functions seem preferable for the
consequent computations since their better correspond to the original table.

With the increasing value of the standard deviation σ the number of modes of the
probability distribution is decreasing. We note that rather than an optimization task to
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Figure 3: Square root error of the F-transform approximations on a regular 7x7 and 3x3
grids using Gaussian (left), triangular (middle), and Π-curves (right) basic functions.

be solved it is a task for a domain expert to decide how the variables relate, e.g., how
many modes the probability distribution is expected to have.

4 BN inference using F-transform
To illustrate the application of F-transform for probabilistic inference in Bayesian net-
works we use the dataset from the survey “Dividing Lines in Czech Society” (Buchtík,
2023). This survey contained 30 pairs of contradictory statements related to Czech soci-
ety, denoted A1, . . . , A30, 14 pairs of contradictory statements that relate to the respon-
dents personally, denoted D1, . . . , D14, and answers to several demographic questions.
The dataset contains answers of 1661 respondents. We performed a projection on the
original dataset, retaining only four variables:

A15 Geopolitics: integral part of Western Europe (1) vs. neutral bridge (7),

A18 Referendum about EU: leave (1) vs. stay (7),

A19 Czech Society after 1989: the right direction (1) vs. the wrong direction (7), and

D11 Personal benefits from the EU membership: beneficial (1) vs. non-beneficial (7).

In Figure 5, we present the Bayesian network structure representing the relationships
between these four variables learned by optimizing the BIC score.

For the illustration of the suggested method we will use a simple but still interesting
scenario. Assume two of three child variables were observed and we want to compute
the conditional probability of the parent variable and the remaining child. Without loss
of generality assume that Ai = a and Aj = b was observed and we want to compute
conditional probability distributions P (D|Ai = a,Aj = b) and P (Ak|Ai = a,Aj = b). We
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Figure 4: Comparison of the original probability table (top) and its F-transform approx-
imations on a regular 3x3 grid using Gaussian (topright), triangular (bottomleft) and
Π-curves (bottomright) membership functions.
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Figure 5: Bayesian network representing relations between four variables from the “Di-
viding Lines in Czech Society” survey.

perform the following computations for all combinations of values c of Ak and d of D:

ψ(D = d) = P (Ai = a|D = d) · P (Aj = b|D = d) · P (D = d) (3)
p =

∑
d

ψ(D = d) (4)

P (D = d|Ai = a,Aj = b) =
1

p
· ψ(D = d) (5)

P (Ak = c|Ai = a,Aj = b) =
∑
d

P (Ak = c|D = d) · P (D = d|Ai = a,Aj = b) , (6)

where p denotes the probability of evidence P (Ai = a,Aj = b) and serves as the normaliza-
tion constant. In the context of our example, assume Ai = A15, Aj = A18, Ak = A19, and
D = D11. Then the formulas (3), (4), and (5) correspond to the multiplication of one row
of probability table P (A15, D11) corresponding to A15 = a with one row of P (A18, D11)
corresponding to A18 = b and normalizing the resulting vector. The formula (6) is multi-
plication of each column of probability table P (A19, D11) with corresponding element of
the resulting vector and computing the marginal sums over all columns.

All two-dimensional distributions used in the above computations are parametrized
on the 3x3 grid. Note that instead of 3 · 7 · 7 = 147 parameters required for the original
discrete model only 3 · 3 · 3 = 27 parameters are needed. Generally, for complex models
the savings using F-transform can be substantially larger and may correspond to a shift
from an intractable to a tractable model. in Figure 7 (left) the mean square error of the
approximation is presented as a function of σ of the Gaussian basic function for the two
versions of F-transform (not-normalized and normalized). We can see that the lowest
error is achieved by the not-normalized version with σ = 0.8. On the right hand side of
this figure an example of the comparison of a conditional probability distribution in the
original model and its approximation is presented. In the plot P (A19|A15 = 1, A18 = 3) is
presented. Note that the observation A18 = 3 is not on the 3x3 grid but it does not pose
any problem in the inference algorithm since using the inverse F-transform the probability
distribution given any value of A18 from interval [1, 7] can be estimated.
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Figure 6: Matrices of the F-transform on a 3x3 grid (top) and their corresponding ap-
proximations after the inverse F-transform (bottom).
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5 Conclusions
We have argued that Likert scale can be naturally interpreted using fuzzy sets. F-
transform can be used to approximate probability tables in Bayesian networks, which
can lead to computationally more efficient probabilistic inference. However, this paper
represents a starting point and future developments in several directions are necessary.

Efficient inference procedure is still to be described and implemented. We would
like to use keypoints instead of regular grids selected so that they represent well the
modelled probability distribution with least memory requirements. A procedure for the
combination of two probability tables with different keypoints is to be devised. Another
dimension to be explored are more general shapes of membership functions in more di-
mensional transformations, e.g. using general covariance matrix instead of just a diagonal
one.

The F-transform representation of the probability distribution resembles Kernel Den-
sity Estimates (Rosenblatt, 1956; Silverman, 1986). They differ in that the Kernel Density
Estimates place basic functions at every datapoint in the dataset. However, some of the
procedures used there may be useful also for the F-transform representation.
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Abstract

Probabilistic graphical models, particularly Bayesian networks, provide a flexi-
ble framework for representing dependencies among random variables and have been
widely applied in domains such as medicine, biology, and educational testing. Our
work focuses on BN2A networks - a specialized bipartite Bayesian network architec-
ture, where the first layer consists of hidden variables and the second layer consists
of observed variables. In BN2A models all variables are assumed to be binary. The
variables in the second layer depend on the variables in the first layer and this de-
pendence is characterized by conditional probability tables representing Noisy-AND
models. In this work, we propose an Expectation-Maximization (EM) algorithm for
learning the structure of BN2A models, that is, for learning the relationship be-
tween hidden variables and observed variables. To validate our structural learning
algorithm, we designed two experiments using educational assessment data. For the
first experiment, we used synthetic data generated from a BN2A model that we
previously defined, while for the second experiment we used a well-known real-world
dataset in the field of Cognitive Diagnostic Models, the Fraction Subtraction dataset.
Our proposed algorithm has interesting potential use cases. One key application is
to generate a reasonably accurate BN2A structure model for educational diagnosis,
particularly in scenarios where no prior model exists. Depending on the required
level of accuracy, the estimated model can be used directly to analyze skill profiles
or serve as an initial framework for test designers, who can further refine it before
implementation.

1 Introduction

Bayesian networks are a popular framework for modeling probabilistic relationships be-
tween random variables and have been used successfully in educational tests (Almond
et al. (2015), Vomlel (2004)). There is interest in a particular type of Bayesian networks
we have called BN2A, which are characterized as bipartite networks, where the first layer
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consists of hidden variables (which commonly represent skills) and the second layer con-
sists of observed variables (which represent questions in a test). In BN2A models all
variables are assumed to be binary. The variables in the second layer depend on the
variables in the first layer and this dependence is characterized by conditional probabil-
ity tables (CPTs) representing a Noisy-AND model. In Fig. 1 we give an example of a
directed bipartite graph that can define the structure of a BN2A model.

X1 X2X3

Y1 Y2Y3 Y4 Y5Y6Y7 Y8Y9 Y10 Y11Y12

Figure 1: BN2A model with three hidden variables and 12 observed variables.

This paper is structured as follows. In Section 2 we formally introduce the BN2A
model and present their corresponding CPTs, leaky Noisy-AND. In Section 3 we present
an algorithm for learning the structure of the BN2A models while in Section 4, we illus-
trate how this algorithm works conducting two experiments. For the first experiment,
we used synthetic data generated from a BN2A model that we previously defined, while
for the second experiment we used a well-known real-world dataset in the field of Cogni-
tive Diagnostic Models, the Fraction Subtraction dataset (Tatsuoka, 2002). Finally, we
summarise the contribution of this paper and discuss our future work in Section 5.

2 BN2A model

Let X denote the vector (X1, . . . , XK) of K hidden variables, and similarly let Y denote
the vector (Y1, . . . , YL) of L observed dependent variables. The hidden variables are also
called attributes or skills in the context of cognitive diagnostic models (CDMs), and
observed dependent variables are usually called items or questions in the same context.
All variables are assumed to be binary, taking states from {0, 1}. The state space of the
multidimensional variable X is denoted X and is equal to the Cartesian product of the
state spaces of Xk, k = 1, . . . ,K:

X = ×K
k=1Xk = {0, 1}K . (1)
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Similarly, the state space of multidimensional variable Y is denoted Y and is equal to the
Cartesian product of state spaces of Yℓ, ℓ = 1, . . . , L:

Y = ×L
ℓ=1Yℓ = {0, 1}L . (2)

The basic building blocks of a BN2A model are conditional probability tables (CPTs)
specified in the form of a Noisy-AND model. Let Yℓ be an observed dependent variable
and pa(Yℓ) be the subset of indexes of related variables from X. They are referred to as
the parents of Yℓ.

Definition 1 (Noisy-AND model).
A conditional probability table P (Yℓ|Xpa(Yℓ)) represents a Noisy-AND model if

P (Yℓ = yℓ|Xpa(Yℓ) = xpa(Yℓ)) =


qℓ,0 ·

∏
i∈pa(Yℓ)

(qℓ,i)
(1−xi) if yℓ = 1

1− qℓ,0 ·
∏

i∈pa(Yℓ)

(qℓ,i)
(1−xi) if yℓ = 0.

(3)

Note that if xi = 1 then (qℓ,i)
(1−xi) = 1 and if xi = 0 then (qℓ,i)

(1−xi) = qℓ,i. The
interpretation is that if Xi = 1, then this variable definitely enters the AND relation
with the value 1. If Xi = 0, then there is still a probability qℓ,i that it enters the
AND relation with value 1. The model also contains an auxiliary parent X0 which is
always 0 and thus enters the AND relation with probability qℓ,0 for the value 1. This
probability is traditionally called leak probability and allows non-zero probability of Yℓ =
0 even if all parents of Yℓ have value 1. In CDM, this model is known as the Reduced
Reparametrized Unified Model (RRUM) (Hartz and Roussos, 2008) and it is a special
case of the Generalized Noisy Inputs, Deterministic AND (GNIDA) gate model (de la
Torre, 2011).

The prior probability of the hidden skill for k = 1, . . . ,K is defined as

P (Xk = xk) = (pk)
xk(1− pk)

(1−xk) , (4)

which means that if xk = 1 then it is pk and if xk = 0 then it equals 1− pk.
Now we are ready to define a special class of Bayesian network models with hidden

variables, called BN2A model.

Definition 2 (BN2A model).
A BN2A model is a pair (G,P ), where G is a directed bipartite graph with its nodes divided
into two layers. The nodes of the first layer correspond to the hidden variables X1, . . . , XK

and the nodes of the second layer correspond to the observed variables Y1, . . . , YL. All edges
are directed from a node of the first layer to a node of the second layer. The symbol P
refers to the joint probability distribution over the variables corresponding to the nodes of
the graph G. The probability distribution is parameterized by a vector of model parameters
(p,q):

(p,q) =
(
(pk)k∈{1,...,K}, (qℓ,k)ℓ∈{1,...,L},k∈{0}∪pa(Yℓ)

)
. (5)
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The bipartite graph G of a BN2A model can also be specified by an incidence matrix,
in the context of CDM, traditionally denoted byQ. AQ-matrix is an L×K binary matrix,
with entriesQℓ,k ∈ {0, 1} that indicate whether or not the ℓth observed dependent variable
is linked to the kth hidden variable:

Q[ℓ, k] =

{
1 if Xk ∈ pa(Yℓ)
0 otherwise.

3 Structural learning

As previously mentioned, our primary focus lies in applying BN2A models to educational
testing. In practice, education experts often possess test outcome data but lack a pre-
defined cognitive model structure. This creates a fundamental need for computational
tools that can automatically learn the underlying model structure from available data —
particularly important since BN2A models can not only effectively represent the relation-
ship between latent skills and observed responses, but are also inherently interpretable
for educational applications.

In this section we propose a method for learning the structure of a BN2A model from
data D where states of variables Y are observed but variables X are hidden, i.e., their
states are unobserved. The algorithm is basically a version of the structural EM algorithm
proposed by Friedman (1998).

We further assume that the number K of hidden variables is known.1 Clearly, a naive
approach of evaluating all possible BN2A structures would quickly become intractable for
larger values of K and L.

Recall that L denotes the dimension of the vector of observed variablesY = (Y1, . . . , YL)
and K denotes the dimension of the vector of hidden variables X = (X1, . . . , XK). Let
for all x ∈ X the function N(x) denote the number of occurrences of vector x in data D.
Similarly, let for all (x,y) ∈ X × Y the function N(x,y) denote the estimated number2

of occurrences of vector (x,y) in completed data C consisting of values of (X,Y).

3.1 Algorithm

The structure learning algorithm is presented in Algorithm 1. This algorithm requires a
dataset D consisting of n data vectors with values of Y and the dimension K of X as its
input. In general, the algorithm alternates between two major steps - the E-step and the
M-step as described below.

1Generally, one can consider K also as a free parameter and from best models of different K values
select one that maximizes an evaluation criteria, which in our study is BIC.

2The number of occurrences is computed as their expected number. Therefore, the numerical values
are non-negative real numbers, i.e., they need not (and typically they are not) natural numbers. This
does not cause any problems in subsequent computations.
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Input : D – dataset consisting of n data vectors with values of Y
K – the dimension of X
Q′ – initial Q matrix, e.g. the unit L×K matrix
(p,q) – initial parameter values, e.g. GDINA(D,Q′,K, “RRUM”)

Output: Q – the Q-matrix of BN2A
p – prior probabilities of the hidden variables
q – parameters of the Noisy-AND models

Set Q as the zero L×K matrix;
while Q ̸= Q′ do

if Q is not the zero L×K matrix then
Q′ ← Q;

end
E-step
for x ∈ {0, 1}K do

P (x) =
∏K

k=1(pi)
xi · (1− pi)

1−xi ;
for ℓ ∈ {1, . . . , L} do

pa(Yℓ) = {k ∈ {1, . . . ,K} : Q′[ℓ, k] = 1};
R = {0} ∪ pa(Yℓ) ;
P (Yℓ = 1|x) =

∏
i∈R(qℓ,i)

1−xi ;
P (Yℓ = 0|x) = 1−

∏
i∈R(qℓ,i)

1−xi ;

end

end
M-step

p = (N(x1)
n , . . . , N(xk)

n );
for ℓ ∈ {1, . . . , L} do

M = {1, . . . , L} \ {ℓ};
N(x, yℓ) =

∑
yM

N(x,y);

BIC∗ = −∞;
for R ⊆ {1, . . . ,K} do

for (xR, yℓ) ∈ {0, 1}|R|+1 do
S = {1, . . . ,K} \R;
N(xR, yℓ) =

∑
xS

N(x, yℓ) ;

end
qℓ,R = argmaxq′ LL(q′);

BIC = LL(qℓ,R)− logn
2 · (|R|+ 1);

if BIC > BIC∗ then
BIC∗ = BIC;
qℓ = qℓ,R;
for k ∈ {1, . . . ,K} do

Q[ℓ, k]← I(k ∈ R) ;
end

end

end

end

end

Algorithm 1: Learning the structure of BN2A.

Structural Learning of BN2A models

180



E-step

In the E-step it is assumed a model structure specified by a matrixQ is known. In the first
iteration we assume the structure is a complete graph represented by an all-ones matrix
Q. For the given Q the parameters of Noisy-AND models of all CPTs are learned using
an R library called GDINA (Ma and de la Torre, 2020) for the particular RRUM model,
which is equivalent to the BN2A model. These parameters are then used to estimate
values of hidden variables. In this way a complete data set C is created.

M-step

The complete data C represent the input of the M-step. In this step a BN2A model
that best describes the data is learned. As the model quality criteria the well-known BIC
criterion is used. It is the log-likelihood penalized by a penalty proportional to the number
of model parameters. The important observation is that the learning algorithm finds the
best parent set and optimal parameters independently for each variable Yℓ, ℓ = 1, . . . , L,
which still guarantees the global optimality. This does not hold for general Bayesian
networks since the independent learning may result in directed cycles that are forbidden.
But for models with their structure defined by a bipartite graph the global optimality
is guaranteed since bipartite graphs cannot contain directed cycles. For each considered
parent set the parameters of the Noisy-AND model maximizing the log-likelihood for the
given data are learned using a gradient method and its BIC is computed. Then, the
parent set with the maximum BIC is selected, and based on it, the corresponding row of
the matrix Q is formed, which serves as input for the E-step. An important observation is
that the log-likelihood of Noisy-AND is a nicely shaped function with a unique maximum.
This follows from the concavity of the log-likelihood of the Noisy-AND function:

LL(qℓ) =
∑
xR

N(xR, Yℓ = 1) · log
∏
i∈T

(qℓ,i)
1−xi

+
∑
xR

N(xR, Yℓ = 0) · log

(
1−

∏
i∈T

(qℓ,i)
1−xi

)
. (6)

The concavity can be proven similarly as in (Vomlel et al., 2023, Lemma 1).

4 Experiments

To show how Algorithm 1 works, we conducted two experiments. For the first experiment,
we used synthetic data generated from a BN2A model representing a test consisting of
12 items measuring three skills, while for the second experiment we used a well-known
real-world dataset in the field of Cognitive Diagnostic Models, the Fraction Subtraction
dataset (Tatsuoka, 2002).
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4.1 A BN2A model with K = 3 and L = 12

For the first experiment, we used the structure shown in Figure 1 which presents de-
pendencies of 12 questions on three proposed skills. In this model, note that that six
questions require only one skill, while the others questions require two skills to be an-
swered correctly.

As in any knowledge domain, some skills are easy to master and others are difficult;
thus, tests typically require skills of varying mastery prevalence in the population. In our
experiment, the simulated proportion of skill mastery (prior probabilities of mastering the
skills) was set as p1 = 0.8, p2 = 0.6, and p3 = 0.4. The leak parameters qℓ,0 represent the
probability of answering question ℓ correctly when the student masters all required skills.
These parameters were selected to range from 0.6 to 0.9. The failure parameters qℓ,k act
as penalty factors for lacking the k-th skill when answering question ℓ. These parameters
were randomly chosen in the range of 0.1 to 0.4 to have a realistic model. With the
structure in Figure 1 and the above parameters, we randomly generated a dataset D of
size n = 104 —a feasible sample size for large-scale standardized tests.

Before running the algorithm, we randomly created ten initial vectors in the parameter
space. For each, we computed the log-likelihood of the complete model (unit Q-matrix)
using the GDINA library (Ma and de la Torre, 2020), and initialized the algorithm using
the parameter vector corresponding to the highest log-likelihood value. This helps avoid
getting stuck in a local maximum. Once we execute Algorithm 1 using the dataset D
and the proposed number of latent variables (K = 3), the model structure was correctly
learned in the first iteration, and was completed in the second iteration, confirming that
the structure was the same in both iterations.

The algorithm learned the correct structure but with a different labeling of the hidden
variables. To facilitate the comparison of the results we have permuted the columns of
the learned model. Table 1 compares the prior probabilities for each skill, while Table 2
compares the leak and failure parameters for each test question. In Table 2, a dash (-)
indicates that there is no relationship between the question and the corresponding skill.
In general, it can be seen that, for the learned model, the prior probabilities and the leak
and failure parameters are close to the original model.

p1 p2 p3
0.800 0.600 0.400

p1 p2 p3
0.7943 0.5954 0.4028

Table 1: Comparison of prior probabilities for skill mastery: original values (left) and
learned values (right).

4.2 Tatsuoka’s fraction subtraction dataset

The fraction subtraction test (Tatsuoka and Tatsuoka, 1987) was designed as a diagnostic
tool to detect common error patterns and maladaptive solution strategies in fraction
arithmetic. A detailed presentation of the test questions appears in Table 3.

Structural Learning of BN2A models

182



ℓ qℓ,0 qℓ,1 qℓ,2 qℓ,3
1 0.900 0.400 - -
2 0.800 0.200 0.100 -
3 0.700 0.100 - 0.300
4 0.600 - 0.200 0.100
5 0.700 - 0.200 -
6 0.800 - - 0.300
7 0.950 0.300 - -
8 0.850 0.400 0.200 -
9 0.750 0.300 - 0.200
10 0.650 - 0.200 0.400
11 0.750 - 0.100 -
12 0.850 - - 0.200

ℓ qℓ,0 qℓ,1 qℓ,2 qℓ,3
1 0.8936 0.3707 - -
2 0.7885 0.1942 0.1079 -
3 0.6836 0.0725 - 0.3059
4 0.5990 - 0.1897 0.0895
5 0.6916 - 0.2097 -
6 0.7867 - - 0.2965
7 0.9473 0.2889 - -
8 0.8522 0.4057 0.2092 -
9 0.7363 0.2969 - 0.1917
10 0.6378 - 0.1905 0.3929
11 0.7438 - 0.1070 -
12 0.8457 - - 0.2016

Table 2: Comparison of leak and failure parameters: original values (left) and learned
values (right).

The fraction subtraction dataset has become a benchmark in cognitive diagnostic
modeling research, serving as a foundational testbed for over three decades. This seminal
dataset has been extensively used to develop, validate, and compare diagnostic classifica-
tion models due to its well-documented cognitive structure and pedagogical relevance. Its
popularity stems from the clear mapping between mathematical skills and item responses,
making it an ideal case study for educational testing research. The dataset’s widespread
adoption across numerous studies (e.g., de la Torre and Douglas (2004), DeCarlo (2011),
Culpepper (2019)) establishes it as a gold standard for evaluating new methodological
approaches in cognitive diagnosis.

The dataset contains binary response patterns from N = 536 middle school students on
J = 20 test questions. The data matrix (536 × 20) represents each student’s performance,
where rows correspond to individual students and columns represent test questions. A
value of 1 indicates a correct response, while 0 denotes an incorrect response.

Fraction subtraction problems were constructed to include the basic skills required
for solving problems correctly, such as borrowing, converting a whole number to a simple
fraction, and getting the common denominator. Each question assesses combinations
of eight core cognitive skills. Table 4 displays the operational definitions of the eight
measured skills while Table 5 (left) shows the corresponding skill-question mapping (Q-
matrix) for the Fraction subtraction test.

Several noteworthy observations emerge from examining Tatsuoka’s proposed Q-matrix.
First, the importance of the skill X7 (Subtract numerators) becomes evident, as it is re-
quired for all test items except Y9. Second, half of the measured skills (specifically X1, X3,
X6, and X8) appear in no more than three questions each. This distribution aligns with
both the skill definitions and question requirements: for instance, while many problems
involve mixed numbers (whole numbers with fractions), only specific items like Y7, Y15

and Y19 necessitate skill X1 (Convert a whole number to a fraction) for their solution.
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No. Question No. Question

1 5

3
− 3

4
11 4 1

3
− 2 4

3

2 3

4
− 3

8
12 11

8
− 1

8

3 5

6
− 1

9
13 3 3

8
− 2 5

6

4 3 1

2
− 2 3

2
14 3 4

5
− 3 2

5

5 4 3

5
− 3 4

10
15 2− 1

3

6 6

7
− 4

7
16 4 5

7
− 1 4

7

7 3− 2 1

5
17 7 3

5
− 2 4

5

8 2

3
− 2

3
18 4 1

10
− 2 8

10

9 3 7

8
− 2 19 4− 1 4

3

10 4 4

12
− 2 7

12
20 4 1

3
− 1 5

3

Table 3: Tatsuoka’s Fraction subtraction test

In our experiment, we tested different values of K ranging from 2 to 5. Table 5 (right)
presents the learned Q-matrix and represents the optimal question-skill relationships for
K = 5. To compare the two Q-matrices in Table 5, we computed their BIC values:
the Tatsuoka expert-defined Q-matrix yields -5,303.9, while our data-learned Q-matrix
achieves -4,635.5. This result suggests that our model, despite its lower dimensionality (5
vs. 8 skills), captures the data’s essential structure more parsimoniously.

When learning a model’s structure solely from response data, the latent variables lack
explicit definitions. However, by analyzing the test items and their associations with
learned skills (hidden variables), we can interpret these relationships. Our analysis of the
learned Q-matrix reveals two significant patterns:

Skill X4 appears in all items except Y18, aligning with Tatsuoka’s definition of ”Sub-
tract numerators” as a fundamental operation in fraction subtraction. Skill X2 is asso-
ciated with 15 of the 20 test items, with 12 of these matching Tatsuoka’s original classi-
fication as ”Separate a whole number from a fraction” - indicating the learned structure
successfully recovers this semantically meaningful dimension from response patterns alone.

Examining the learned model parameters, the prior probabilities are: p1 = 0.582, p2 =
0.525, p3 = 0.764, p4 = 0.805, and p5 = 0.707. Notably, the highest prior probability
corresponds to X4 (that we align with ”Subtract numerators”), suggesting this is a foun-
dational skill typically mastered even before formal fraction operation instruction.

Table 6 presents the corresponding BN2A model parameters (leak and failure parame-
ters) of the learned structure. The leak parameters (qℓ,0) generally exceed 0.8, consistent
with theoretical expectations - these represent the probability of correct response given
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Skill Description

X1 Convert a whole number to a fraction.
X2 Separate a whole number from a fraction.
X3 Simplify before subtracting.
X4 Find a common denominator.
X5 Borrow from whole number part.
X6 Column borrow to subtract the second numerator from the first.
X7 Subtract numerators.
X8 Reduce answers to simplest form.

Table 4: Skills definition for the Fraction subtraction test.

mastery of required skills. The single exception (q13,0 = 0.684) aligns with failure param-
eters that strongly penalize lack of skill mastery.

Finally, the BN2A model’s failure parameters (qℓ,k) quantify the performance penalty
for lacking specific skills per question. These values could help educators to: (a) identify
particularly skill-sensitive items, (b) develop targeted instructional interventions, and (c)
create adaptive assessment variants.

5 Discussion

In this paper, we focused on BN2A models—Bayesian networks where conditional proba-
bility tables (CPTs) are represented by Noisy-AND models with a bipartite graph struc-
ture, and all nodes in the first layer are hidden. These models are of particular interest
due to: a) their interpretability in educational testing contexts, and b) their parameter
efficiency: the number of parameters scales proportionally to K · L, significantly fewer
than in general bipartite Bayesian networks where CPTs can grow exponentially.

We proposed a Structural EM algorithm for learning the structure of BN2A models.
A key advantage of this approach is that it independently identifies the optimal parent
set and parameters for each observed variable while still guaranteeing global optimality,
a property not shared by general Bayesian network learning methods.

To validate the algorithm, we conducted two experiments. On synthetic data the algo-
rithm successfully recovered the ground-truth BN2A structure and estimated parameters
with high accuracy. On Real-world data – the Fraction Subtraction dataset (a benchmark
in Cognitive Diagnostic Modeling) – the algorithm learned a simpler model (with fewer
hidden variables) without sacrificing interpretability.

Our algorithm enables practical applications, such as generating data-driven BN2A
models for educational diagnostics—especially in settings where no prior expert-defined
model exists. Depending on accuracy requirements, the learned model can directly an-
alyze skill profiles, or serve as an initial framework for test designers to refine before
deployment. As a next step, we plan to apply this method to a large-scale dataset of
mathematics test results provided by the Czech Republic’s Ministry of Education, Youth,
and Sports.
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Skill

X1 X2 X3 X4 X5 X6 X7 X8

Y1 0 0 0 1 0 1 1 0
Y2 0 0 0 1 0 0 1 0
Y3 0 0 0 1 0 0 1 0
Y4 0 1 1 0 1 0 1 0
Y5 0 1 0 1 0 0 1 1
Y6 0 0 0 0 0 0 1 0
Y7 1 1 0 0 0 0 1 0
Y8 0 0 0 0 0 0 1 0
Y9 0 1 0 0 0 0 0 0
Y10 0 1 0 0 1 0 1 1
Y11 0 1 0 0 1 0 1 0
Y12 0 0 0 0 0 0 1 1
Y13 0 1 0 1 1 0 1 0
Y14 0 1 0 0 0 0 1 0
Y15 1 0 0 0 0 0 1 0
Y16 0 1 0 0 0 0 1 0
Y17 0 1 0 0 1 0 1 0
Y18 0 1 0 0 1 1 1 0
Y19 1 1 1 0 1 0 1 0
Y20 0 1 1 0 1 0 1 0

Skill

X1 X2 X3 X4 X5

Y1 0 0 1 1 1
Y2 0 0 0 1 1
Y3 0 0 0 1 1
Y4 0 1 0 1 1
Y5 1 1 1 1 1
Y6 0 0 0 1 0
Y7 1 1 0 1 0
Y8 0 1 0 1 1
Y9 1 0 1 1 0
Y10 0 1 0 1 1
Y11 0 1 0 1 1
Y12 0 1 0 1 0
Y13 0 1 0 1 1
Y14 0 1 0 1 0
Y15 1 1 0 1 1
Y16 0 1 1 1 1
Y17 1 1 0 1 0
Y18 0 1 0 0 1
Y19 1 1 0 1 1
Y20 0 1 0 1 1

Table 5: Q-matrix Structures: Original Expert-defined (Tatsuoka, left) and Data-driven
Learned (K = 5, right).

ℓ qℓ,0 qℓ,1 qℓ,2 qℓ,3 qℓ,4 qℓ,5
1 0.919 - - 0.819 0.020 0.076
2 0.969 - - - 0.031 0.031
3 0.885 - - - 0.023 0.005
4 0.903 - 0.254 - 0.735 0.699
5 1.000 0.799 0.838 0.555 0.418 0.499
6 0.953 - - - 0.149 -
7 0.974 0.316 0.310 - 0.001 -
8 0.952 - 0.758 - 0.666 0.795
9 0.878 0.674 - 0.843 0.411 -
10 0.813 - 0.091 - 0.043 0.532
11 0.941 - 0.108 - 0.144 0.874
12 0.952 - 0.808 - 0.154 -
13 0.684 - 0.100 - 0.011 0.128
14 0.963 - 0.823 - 0.029 -
15 0.977 0.572 0.427 - 0.053 0.453
16 0.992 - 0.818 0.767 0.084 0.921
17 0.948 0.812 0.067 - 0.052 -
18 0.813 - 0.214 - - 0.598
19 0.928 0.363 0.088 - 0.005 0.635
20 0.837 - 0.014 - 0.033 0.880

Table 6: Learned parameters of the BN2A model with K = 5.
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Abstract

Gene duplications constitute the main source of raw genetic material upon which
selection and other evolutionary forces act to generate new genes and gene func-
tions. Gene duplication explains the existence of multigene families and much of the
variation in gene number between organisms, populations, and species. Thus, un-
derstanding the mechanisms that drive the long-term retention of duplicated genes
(i.e., their duplicability) is essential to understand how genomic changes ultimately
contribute to phenotypic diversity and speciation. To classify genes according to
their duplicability, we evaluated several Bayesian network classifiers. In particular,
we compared models based on discretized variables, conditional Gaussian distribu-
tions and mixtures of polynomials to asses their performance in predicting gene
duplicability.

Key words: gene duplication; hybrid Bayesian networks; conditional Gaussian;
mixtures of polynomials.

1 Introduction

Among all the mechanisms involved in the origin of new genes and gene regions, gene
duplication provides the main source of raw genetic material upon which mutation, se-
lection and other evolutionary forces may act to evolve new or novel gene functions.
Gene duplicates arising from whole-genome duplications (WGDs or polyploidization)
(Carretero-Paulet and Van de Peer, 2020) involve the duplication of every gene in the
genome, whereas those arising from small-scale duplications (SSDs) involve only one to
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a few genes. Both WGDs and SSDs are widespread in plants and explain the existence
of multigene families and of most of the variation in gene number between organisms,
populations and species.

Although most gene duplicates are expected to neutrally accumulate deleterious mu-
tations and eventually become a non-functional pseudogene or be eliminated from the
genome, some of them are retained for longer evolutionary periods through the acqui-
sition of specialized and/or novel biological functions. Indeed, many instances of them
have been found at the basis of key morphological and metabolic adaptations of plants
to their sessile lifestyle and of desirable agronomic traits (Vélez-Bermúdez et al., 2015;
Quesada-Traver et al., 2022; Salojärvi et al., 2024). Therefore, understanding the mech-
anisms driving the long-term retention of genes after duplication, i.e., their duplicability,
is crucial to understanding how changes at the genome level ultimately translate into
phenotypic diversity and speciation.

Machine learning (Bishop and Nasrabadi, 2006; Murphy, 2012) techniques are now fun-
damental tools in many research areas. This field comprises a large amount of mathemati-
cal and statistical methods that have proven to be useful in a vast number of applications.
In particular, Libbrecht and Noble (2015) showed several applications of machine learning
techniques in genetics. Another relevant area is probabilistic machine learning (Bishop
and Nasrabadi, 2006; Murphy, 2012; Ghahramani, 2015; Koller and Friedman, 2009), in
which Bayesian Networks (BN), and more generally, probabilistic graphic models (PGMs),
play a relevant role.

The purpose of this work is to make a comparative analysis of various BN classifiers
for gene duplicability classification. In particular, we compare the performance of the
Naive Bayes (NB), Tree Augmented Naive Bayes (TAN), and a non-restricted structure
learned using the Hill-Climbing (HC) algorithm. These models are evaluated under dif-
ferent approaches to represent the conditional probability distributions (CPDs): discrete,
conditional Gaussian (CG), and mixtures of polynomials (MoP). Moreover, we learned
the aforementioned models with and without variable selection. The remainder of this
paper is organized as follows. Section 2 describes the Bayesian Networks, the structures
and CPD utilized, the variable selection method, the model validation approach, and the
data description and preprocessing steps. The performance of the models is analyzed and
discussed in Section 3. Finally, the main conclusions are presented in Section 4.

2 Methodology

From this point forward, uppercase letters will denote random variables, while lowercase
letters will represent specific values of a random variable. Boldfaced characters will in-
dicate random vectors (i.e., multidimensional random variables). The set of all possible
values of a random vector X (i.e., its support) will be denoted by ΩX .

2.1 Probabilistic graphical models: Bayesian networks

A Bayesian Network (BN) (Pearl, 1988) is a statistical multivariate model for a set
of variables X = {X1, . . . , Xn}, in which independence relations are encoded by the
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structure of an underlying Directed Acyclic Graph (DAG). More specifically, the DAG
consists of nodes that represent random variables and directed edges between pairs of
nodes, which indicate statistical dependencies. Each variable Xi, for i = 1, . . . , n, is
associated with a conditional probability distribution p(xi|Pa(xi)), given its parents in
the DAG, denoted as Pa(Xi). Consequently, the joint distribution of the random vector
X factorizes as

p(x1, . . . , xn) =

n∏
i=1

p(xi|Pa(xi)), ∀x1, . . . , xn ∈ ΩX1,...,Xn . (1)

A simple example of a BN representing the joint distribution of five variables, X1, X2,
X3, X4, and X5, is illustrated in Figure 1. This network encodes the following factoriza-
tion:

p(x1, x2, x3, x4, x5) = p(x1)p(x2|x1)p(x3|x1)p(x4|x2, x3)p(x5|x3).

X1

X2 X3

X4 X5

Figure 1: Example of a BN structure with five variables.

Originally proposed for discrete variables, BNs can also be used to model problems in
continuous domains or hybrid domains, where both continuous and discrete variables co-
exist. There are several approaches to modelling hybrid domains with BNs. A commonly
used method is to discretize the continuous variables, converting them into discrete ones
and treating them as if they were inherently discrete. However, this approach may lead
to a loss of information. Alternatively, to avoid discretization, the Conditional Gaussian
(CG) model (Lauritzen, 1996) is widely used, despite imposing two major restrictions
(i) continuous variables must follow a multivariate Gaussian distribution; (ii) discrete
variables can not have continuous parents in the graph. These limitations have motivated
the development of alternative approaches, such as Mixtures of Truncated Basis Functions
(MoTBFs) (Langseth et al., 2012).

Formally, let X be a mixed n-dimensional random vector. Let Y = {Y1, . . . , Yd} and
Z = {Zc, . . . , Zc} be the discrete and continuous parts of X, respectively, with d+ c = n.
Let ψ = {ψi(·)}∞i=0 with ψi : R → R define a collection of real basis functions. We say

that a function f̂ : ΩX → R+
0 is a mixture of truncated basis functions potential to level

k wrt. ψ if one of the following two conditions holds:

(i) f̂ can be written as

f̂(x) = f̂(y, z) =

k∑
i=0

c∏
j=1

a
(j)
i,yψi(zj), (2)
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where a
(j)
i,y are real numbers.

(ii) There is a partition I1, . . . , Im of ΩX for which the domain of the continuous vari-
ables, ΩZ , is divided into hyper-cubes and such that f is defined as

f(x) = fl(x) if x ∈ Il,

where each fl, l = 1, . . . ,m can be written in the form of (2).

An MoTBF potential is said to be a density if
∑

y∈ΩY

∫
ΩZ

f̂(y, z)dz = 1.

By defining ψ = {ψi(z) = zi}∞i=0, the MoTBF model reduces to a Mixture of Polyno-
mial (MoP) model (Langseth et al., 2012). For the purpose of comparing hybrid models,
both CG and MoP distributions were used to represent the conditional probability dis-
tributions (CPDs) associated with the continuous variables in the model.

One of the most successful applications of Bayesian networks is classification, a pre-
diction task in which a discrete target variable, C, referred to as the class, is forecasted
based on the values of a set of feature variables, X = {X1, . . . , Xn}. The predicted value,
c∗, of C is determined as the one that maximizes the posterior distribution of C given
the observed values of the features.

c∗ = arg max
c∈ΩC

p(c|x1, . . . , xn).

Note that, by Bayes’ theorem

p(c|x1, . . . , xn) =
p(c)p(x1, . . . , xn|c)
p(x1, . . . , xn)

∝ p(c)p(x1, . . . , xn)|c),

which implies that solving the classification problem requires computing an n-dimensional
distribution for X1, . . . , Xn given C. This problem can be simplified by representing the
joint distribution using a Bayesian network and leveraging the factorization encoded by
its structure, as given in Equation (1).

Bayesian networks classifiers: NB and TAN

BNs are known for their high-quality performance in classification tasks and their abil-
ity to model complex probability distributions, including both discrete and continuous
variables. In order to emphasize the importance of the class variable while reducing the
number of parameters to be estimated from data, certain restricted structures are typi-
cally used, such as the k-dependence Bayesian network classifiers (kDB) (Sahami, 1996).
In this type of model, the class variable is the parent of all other nodes, and each feature
can have up to k additional parents besides the class. The Naive Bayes (NB) model and
the Tree Augmented Naive Bayes (TAN) model are special cases of kDB, where k = 0
and k = 1, respectively.

Supposing that the feature variables of X are statistically independent of each other
given the class variable, NB is the simplest classifier. Therefore, the joint distribution of
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the NB model factorizes as

p(c, x1, . . . , xn) = p(c)

n∏
i=1

p(xi|c), ∀c, x1, . . . xn ∈ ΩC,X1,...,Xn .

Despite its strong independence assumption, NB often achieves remarkable classifica-
tion performance while keeping a small number of parameters that need to be estimated.
Figure 2a shows an example of the NB structure with four feature variables, where joint
distribution is factorized as follows:

p(c, x1, x2, x3, x4) = p(c)p(x1|c)p(x2|c)p(x3|c)p(x4|c).

C

X3X2X1 X4

(a)

C

X3X2X1 X4

(b)

Figure 2: Examples of (a) NB with four feature variables, and (b) TAN with four feature
variables and X3 as root.

In order to improve the performance of classification problems, Friedman et al. (1997)
introduced the Tree Augmented Naive Bayes (TAN) classifier, where each feature variable
is allowed to have another feature variable as a parent, besides the class, as long as the
resulting subgraph of feature variables forms a tree (i.e., it contains no directed cycles).
The feature that has the class as its only parent is called the root. Therefore, the TAN
model relaxes the independence assumption of NB. An example of a TAN structure with
four feature variables is shown in Figure 2b, and its probability distribution factorizes as:

p(c, x1, x2, x3, x4) = p(c)p(x1|c, x2)p(x2|c, x3)p(x3|c)p(x4|c, x3).

In general, kDB structures impose certain restrictions on the DAG from the outset.
In particular, NB and TAN are among those with the most constraints. To relax these
limitations, we also learned a model according to a non-restricted structure.

Non-restricted structure learning Bayesian Networks

Despite the performance of kDB, the structure of the DAG is restricted for each k. A
non-restricted structure can be learned using the Hill-Climbing algorithm (HC) (Russell
and Norvig, 2016). The objective of structure learning is to find the best DAG, G∗, such
that

G∗ = argmax
G

f(G|D), (3)

where f(G|D) is a scoring metric that evaluates the merit of any candidate DAG G.
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Being an iterative algorithm, HC usually starts with an empty graph (or a specific
structure from an expert), and in each iteration, three possible actions (addition, deletion,
or reversal of an edge between Xi → Xj) are applied to improve the score of the structure.
The Bayesian Information Criterion (BIC) was applied to maximize the scoring metric f
in Equation (3). An example of DAG learned by the HC algorithm is shown in Figure 3.

2.2 Variable selection

We used two different strategies for variable selection based on the structure of the BN
classifier. Firstly, in the case of HC, the Markov blanket (Koller and Friedman, 2009) of
the class variable C was used as the method for variable selection. The Markov blanket
of a node, consisting of its parents, its children, and the other parents of its children,
d-separates C from the remaining nodes in the network. Consequently, once the Markov
blanket is observed, the remaining feature variables provide no additional information for
computing the probability of C. Figure 3 shows an example of the Markov blanket of the
variable C.

C

X3

X1 X2

X4 X5

X6 X7

X8

Figure 3: Example of a DAG learned using the Hill-Climbing algorithm. Variables in the
Markov blanket of C are shaded in grey.

Secondly, a filter-wrapper approach was used for variable selection in both the NB and
TAN models. Unlike DAGs learned using the HC algorithm, in the case of NB and TAN,
all feature variables belong to the Markov blanket of the class C. Therefore, the Markov
blanket cannot be applied for feature selection in this case. The filter-wrapper approach
involves ranking the feature variables according to their conditional entropy with respect
to the class, resulting in an ordered set of feature variables. The first variable in this
set is used to train the initial model, and the remaining feature variables are sequentially
inserted, one by one, in the specified order. Whenever the inclusion of a variable increases
the accuracy of the model, it is retained; otherwise, it is excluded.

2.3 Validation of the model

In order to evaluate the predictive capability of the various models, the k-fold cross-
validation technique (Stone, 1974) was used. This technique randomly splits the dataset
into k subsets, and the method is repeated k times. In each iteration, one subset is used
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to test the model trained on the remaining k − 1 subsets. In this paper, a k−value of 10
was applied, and the global accuracy of the classification was taken as the performance
metric.

Then, the ten accuracy measures of the models were compared in two ways: first,
across the different DAG learning algorithms (i.e., NB, TAN, or HC), and second, across
the different CPD representations (discrete, CG and MoP). In other words, we compared
the performance of models with the same CPD representation but learned using different
DAG learning algorithms (and vice-versa), to see how the choice of DAG algorithm (or
CPD representation) affects the accuracy of the model. These comparisons were per-
formed using the Friedman test, followed by the Wilcoxon signed-rank test for pairwise
comparisons. For each test, a significance level of α = 0.05 was considered.

2.4 Data description and pre-processing

Data were mined from different repositories of biological sequence data, including Na-
tional Center for Biotechnology Information (NCBI) 1, UNIPROT 2 or INTERPRO 3;
comparative genomics platforms, including CoGe 4, PLAZA 5, or Phytozome 6; species-
specific genomics resources, such as TAIR (The Arabidopsis Information Resource 7);
biological network resources, including AraNet 8, STRING 9, or GEO (Gene Expression
Omnibus, 10); genome functional annotation databases, e.g. AraCyc 11; and proteomic
databases, e.g., qPTMplants 12.

The dataset built consists of 743 variables (continuous, binary and nominal) and each
variable describes a different characteristic of each gene, including:

• sequence-based features: exon/intron number and length, nucleotide or amino acid
composition, GC content, codon usage, sequence divergence, 5-methylcytosine hy-
permutations, selection rates, etc.

• biological-based features: phylogenetic distribution, AraCyc metabolic pathways,
Plant Slim GO terms, expression breadth and level, KEGG biochemical pathways,
essentiality, phenotype, etc.

• molecular-based features: epigenetic signatures and motifs notably methylation,
INTERPRO protein functional domains, protein post-translational modifications,
protein transmembrane domains, protein solvent accessibility, protein 2ary struc-
ture, protein molecular weight and isoelectric point, protein subcellular localization,
protein-protein interactors, etc.

This dataset contains over 27,000 observations, and the class variable, Duplicability, is
distributed as Yes (83%) and No (17%). In addition, some of the continuous variables had
missing values, which were replaced by their respective mean values, and the only binary

1 https://www.ncbi.nlm.nih.gov/ 2 https://www.uniprot.org/
3 https://www.ebi.ac.uk/interpro/ 4 https://genomevolution.org/coge/
5 https://bioinformatics.psb.ugent.be/plaza/ 6 https://phytozome.jgi.doe.gov/pz/portal.html
7 https://www.arabidopsis.org/ 8 https://www.inetbio.org/aranet/ 9 https://string-db.org/
10 https://www.ncbi.nlm.nih.gov/geo/ 11 https://www.plantcyc.org/databases/aracyc/15.0
12 http://qptmplants.omicsbio.info/

An experimental comparison of Bayesian network classifiers for duplicability detection

194



variable with missing values was transformed into a nominal variable with three values:
Yes, No, and Unknown. To fulfil the objective of this work – comparing BN models
in hybrid domains using different strategies for CPD representation, namely discrete,
CG and MoP distributions – a discretization method was chosen based on gain ratio
maximization, with at most five intervals (Catlett, 1991).

3 Results and discussion

In this work, we have built 15 different classification models, one for each combination
of CPD representation and DAG learning algorithm (including both selective and non-
selective versions). For parameter learning, models based on discrete or MoP distributions
have been learned using the MoTBFs package (Pérez Bernabé et al., 2020), whereas
models based on CG distributions have been learned using the bnlearn package (Scutari,
2010).

Regarding structural learning, the topology for both discrete and MoP models was
learned from the discretized dataset, while for the CG model, it was learned from the
original hybrid dataset. The implementation of the HC algorithm from the R package
bnlearn was used in all cases. The TAN implementation of bnlearn was used for the
discrete and MoP models, while a modified TAN implementation, following the Chow-
Liu scheme, was employed for the CG model to account for its topological restrictions.

A 10-fold cross-validation was carried out to test the predictive performance of the
classifiers. The mean accuracy of the models, computed from the k-fold cross validation,
along with the standard deviation, are shown in Table 1. The highest mean accuracy is
observed for the selective-NB with a CG representation (0.8675), closely followed by the
selective-TAN with MoP representation (0.8673). Only discrete NB, MoP TAN, and CG
NB models yielded a global accuracy lower than the baseline frequency of Duplicability
Yes class (83%). Regarding variability, the standard deviations are relatively low for most
models, with TAN model using MoPs exhibiting the highest variability.

DAG learning CPD representation
algorithm Discrete CG MoP

HC 0.8574 (0.0054) 0.8464 (0.0092) 0.865 (0.0043)
NB 0.7884 (0.0065) 0.8191 (0.0055) 0.8458 (0.0048)
TAN 0.8344 (0.0064) 0.8331 (0.0079) 0.8013 (0.0493)
Sel. NB 0.8347 (0.0056) 0.8675 (0.0030) 0.8646 (0.0053)
Sel. TAN 0.8425 (0.0078) 0.8538 (0.0063) 0.8673 (0.0051)

Table 1: Mean classification accuracy and standard deviation (in parenthesis) for each
trained model. The highest overall performance is highlighted in bold. MoP: Mixtures
of Polynomials; CG: Conditional Gaussian; Sel. NB: Selective-NB; Sel. TAN: Selective-
TAN.
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In order to compare the accuracy among the CPD representations (Discrete, MoP, and
CG) within each DAG learning algorithm (HC, NB, Selective-NB, TAN, Selective-TAN),
the Friedman test was applied. Whenever significant differences were found, a posthoc
Wilcoxon sign-rank test was conducted to compare pairs of CPD representations. Figure 4
illustrates these results for the selective models only (HC, Selective-NB, and Selective-
TAN).

For each DAG learning algorithm, the discrete CDP representation is consistently
outperformed by the hybrid ones (p-value < 0.05). In the case of hybrid representations,
the MoP CPD is never outperformed by CG and shows better performance in HC and
Selective-TAN (p-value ≥ 0.05). As for the non-selective TAN model, the Friedman test
did not show any significant difference between the CPD representations (p-value ≥ 0.05).

Figure 4: Box plots comparing model performance across CPD representations for each
selective DAG learning algorithm considered. Green-filled boxes indicate significant differ-
ences (post hoc analysis after Friedman test). Dis: Discrete; CG: Conditional Gaussian;
MoP: Mixture of Polynomials.

On the other hand, the Friedman test was applied to compare the classification accu-
racy among the DAG learning algorithms within each CPD representation. In general,
DAG learning algorithms with feature selection are never outperformed by their counter-
parts without variable selection, at the 5% significance level. Figure 5 illustrates these
results for the selective models only (HC, Selective-NB, and Selective-TAN).

Based on these results, the following observations can be made:

• In the case of discrete CPD, the HC structure is never outperformed and shows no
significant difference only when compared to the Selective-TAN structure. Further-
more, the Selective-NB structure is outperformed by both the HC and Selective-
TAN structures.

• In the case of MoP distributions, the post hoc analysis did not reveal significant dif-
ferences between structures with feature selection (p-values ≥ 0.05). In particular,
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Figure 5: Box plots comparing model performance among selective DAG learning algo-
rithms for each CPD representation considered. Green-filled boxes indicate significant
differences (post hoc analysis after Friedman test). Sel. NB: Selective-NB; Sel. TAN:
Selective-TAN.

HC outperforms models without variable selection, but fails to show significant dif-
ferences when compared to Selective-NB o Selective-TAN. Similarly, Selective-NB
performs better than the non-selective models (NB and TAN) but shows no signifi-
cant difference with respect to the other 2 selective models. The same behaviour is
observed for the Selective-TAN model.

• Regarding models using CG distributions, Selective-NB consistently outperformed
the other structures (p-value < 0.05). Furthermore, Selective-TAN was not outper-
formed by any of the remaining topologies. Similarly, HC performed better than the
non-selective models, worse than the Selective-NB, and comparably to the Selective
TAN.

4 Conclusion

This study enabled a comparative analysis of Bayesian network classifiers with different
topologies and CPD representations. Overall, DAG learning algorithms with feature
selection were never outperformed by their counterparts without variable selection. In
addition, hybrid models generally outperform discrete ones when continuous variables are
discretised. Concerning hybrid models, BNs based on the MoP distribution are never
outperformed by those using the CG model, and performed better in three out of the
five DAG learning algorithms considered. Furthermore, the MoP representation provides
some advantages over the CG model, as it does not impose structural restrictions and is
flexible enough to fit a wide range of distributions.

One of the main expected impacts of the approach described in this paper was to
obtain models that allow us to predict the duplicability of de novo annotated genes in
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a newly sequenced genome, including those of wild or orphan species or varieties—i.e.,
those traditionally understudied and underutilised but with great nutritional, agronomic,
and adaptive potential to local and changing environmental conditions (Carretero-Paulet
et al., 2025). As future work, the model will be tested in distant taxonomic groups, such
as animals or yeast. It is interesting to recall that repeated gene duplications in the
human genome result in so-called copy number variations (CNVs), which are commonly
associated with various neurological diseases and forms of cancer (Rice and McLysaght,
2017).
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Abstract

Computing maximum likelihood estimates in linear structural equation models
is generally a difficult problem. The critical equations are usually non-linear and
have numerous solutions, even for purely observational data. The block-coordinate
descent (BCD) algorithm proposed by Drton et al. (2019)[1] is an efficient way to
solve the optimization problem by decomposing it into a series of sub-problems with
closed-form solutions, and which works with observational data. In this work, we de-
scribe the general problem of a BCD-type scheme for computing maximum likelihood
estimates in linear structural equation models without hidden variables, integrating
multiple observational and interventional environments. With interventional data,
the degrees of both the original likelihood equations and the block-coordinate update
equations could increase greatly. We study special setups in which the block opti-
mization subproblems have a degree of at most 2 and provide closed-form solutions
in these cases. Additionally, we discuss the potential applications of the model and
algorithm to health and well-being data.

1 Introduction

Structural equation models (SEMs) encode the cause-effect relationships between ran-
dom variables and error terms , and are widely used across various fields. Naturally,
a structural equation model is associated with a directed (or mixed) graph, where the
edges represent relations between variables. Research on structural equation models dates
back to Wright’s path diagrams (Wright, 1921, 1934), and Haavelmo’s simultaneous equa-
tions (Haavelmo, 1943), with more recent integration into a general framework for causal
modeling (Spirtes et al., 2000; Pearl, 2009).

In this work, we address the problem of computing maximum likelihood estimates
(MLEs) in linear SEMs with Gaussian errors, using both observational and interven-
tional data. For recursive SEMs with independent errors (represented by a directed
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acyclic graph, DAG), the computation of MLEs with interventional data follows a sim-
ilar approach as with observational data, involving regressing each node on its parental
nodes using data from environments where the variable Yi is not intervened (Hauser and
Bühlmann, 2012; Hauser and Bühlmann, 2015). However, more general models may in-
clude bidirected edges and cycles, corresponding to hidden variables and self-regulatory
feedback loops, respectively. For these models, quasi-Newton optimization and block-
wise partial optimization methods have been proposed for purely observational scenarios.
The R packages “sem” (Fox, 2006) and “lavaan” (Rosseel, 2012) use quasi-Newton meth-
ods. The residual iterative conditional fitting (RICF) algorithm gives a closed-form block
update for acyclic directed mixed graph models (Drton et al., 2009). Recently, the block-
coordinate descent (BCD) algorithm is proposed in Drton et al. (2019), extending the
RICF algorithm to graphs with cycles.

Interventions across different environments induce variations in both the graph and
equation structures, significantly increasing the complexity of the log-likelihood function
and its optimization. Even in the purely observational case, the likelihood equations are
typically high-degree algebraic functions of the data (Drton et al., 2019). The BCD algo-
rithm attempts to perform low degree partial optimizations at each step for observational
data. Extending the algorithm to accommodate both observational and interventional
data is of great interest. However, for this extension, we focus on directed cyclic graphs
without bidirected edges.

We consider linear SEMs associated with a directed graph and address the general
question of BCD-type optimization. Several concrete examples of intervention targets,
linear SEMs, and directed graphs are provided, along with the joint log-likelihood, critical
point equations, and maximum likelihood degrees. For certain kinds of graphs and special
intervention targets on arbitrary directed graphs, we show that the block update problem
is a quadratic equation with degree 2. This indicates that the BCD-type method can still
be applied to interventional data under certain conditions.

2 Linear structural equation models

2.1 Background

A structural equation model (SEM) is a equation system involving variables Yi : i ∈ V
and stochastic errors {ϵi : i ∈ V }, where V is the set of variables and |V | = p. It describes
the quantitative mechanism by which a variable Yi depends on other variables and their
associated error. In this work, we adopt the notations introduced in Drton et al. (2019)
and focus on linear SEMs with independent errors:

Yi =
∑

j∈V \{i}

βijYj + ϵi, i ∈ V. (1)

The coefficients can be summarized in an edge weight matrix B = (β)ij and we can
express Y and ϵ in vector form

Y = BY + ϵ, ϵ ∼ N(0,Ω),

Jun Wu
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where Ω is a (positive definite) diagonal matrix, and ω = diag(Ω) denotes it diagonal
part.

An SEM can be represented by a directed graph G = (V,E), where the node set
V corresponds to the random variables and the edge set E consists of ordered node
pairs. A pair (i, j) ∈ E defines a directed edge i → j ∈ G, implying that Yi has a
causal effect on Yj . In this context, we refer to i as a parent of j and j as a child of i:
i ∈ pa(j), j ∈ ch(i). The weights of the parental edges of i are denoted by Bi,pa(i). SEMs
are not always recursive, meaning the associated graph may contain feedback loops. The
strongly connected component (SCC) in a directed graph is a maximal subgraph in which
there is a directed path between any pair of nodes. The strongly connected component
that includes i in a directed graph G is denoted by C(i, G). When the graph is clear from
context, we simply use C(i).

2.2 Interventional distributions

We are interested in data collected under different interventions. The type of interventions
we consider are “hard” interventions that fix the values of the intervened variables in a
randomized fashion so that they follow a controlled probability distribution (Pearl, 2009;
Spirtes et al., 2000).

Throughout this paper, we use I ⊆ V to denote the intervention target in one inter-
ventional environment, i.e., the set I indexes the intervened variables. Given an inter-
vention target I, the manipulated graph GI is obtained by removing all edges pointing
to nodes in I from G, representing the structure of the SEM after the intervention.
The collection I ⊂ 2V denotes the family of intervention targets Ik’s across all environ-
ments for which data is available. To distinguish from the entry indices in data matrices,
we use (k)-superscripts to specify quantities from different interventional environments:

Y (k) ∈ Rp×n(k)

is the data matrix for intervention target Ik, where each column is one
sample and n(k) is the sample size; the parameters (Ω(k), B(k)) differs because of interve-
tions.

Example 1. In Figure 1, the linear SEM in the observational environment is
Y1 = ϵ1,

Y2 = β21Y1 + β24Y4 + ϵ2,

Y3 = β32Y2 + ϵ3,

Y4 = β41Y1 + β43Y3 + ϵ4,

, (ϵ1, ϵ2, ϵ3, ϵ4)
T ∼ N(0, diag(ω1, ω2, ω3, ω4)).

With intervention target I = {2}, the manipulated linear SEM becomes
Y1 = ϵ1,

Y2 = ϵ′2,

Y3 = β32Y2 + ϵ3,

Y4 = β41Y1 + β43Y3 + ϵ4,

, (ϵ1, ϵ
′
2, ϵ3, ϵ4)

T ∼ N(0, diag(ω1, ω
′
2, ω3, ω4)).
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Figure 1: Original graph, and manipulated graph with intervention target I = {2}.

2.3 Likelihood inference

The log-likelihood of a single interventional dataset k is a function of (Ω(k), B(k)):

ℓG,Y (Ω(k), B(k)) = − log det(Ω(k))− log det(I −B(k))2 − tr
{
(I −B(k))T (Ω(k))−1(I −B(k))S(k)

}
,

where S(k) = Y (k)(Y (k))T /n(k) is the sample covariance matrix of the k’th environment.
And the total log-likelihood is

ℓG,Y (1),...,Y (K)(Ω, B) =

K∑
k

n(k) · ℓG,Y (k)(Ω(k), B(k)). (2)

To find the critical point(s), we take derivatives to derive the likelihood equations, as
demonstrated in Proposition 1 of Drton et al. (2019). Typically, the likelihood equations
are of high degree. In example 1, the equations for I = {∅} has degree 6 and the
equations for I = {∅, {2}} has degree 9.1 Following the procedures outlined in Drton and
Richardson (2004); Drton et al. (2019), we apply the block-coordinate descent method to
break the original problem into partial subproblems of lower degrees.

3 Block-coordinate descent

3.1 Block update problem

For each node i, the total log-likelihood (2) can be written as a function of (ωii, Bi,pa(i))

ℓG,Y 1,...,Y K (ωii, Bi,pa(i)) =
∑

k:i/∈Ik

(
−n(k) logω

(k)
ii − 1

ω
(k)
ii

∥Y (k)
i −Bi,pa(i)Y

(k)
pa(i)∥

2

+ n(k) log[(c
(k)
i,0 +Bi,pa(i)c

(k)
i,pa(i))

2]

)
. (3)

This expression follows the likelihood formula in Drton et al. (2019) and is based on the

result that det(I −B(k)) = c
(k)
i,0 +Bi,pa(i)c

(k)
i,pa(i).

2

1See the accompanying Mathematica script.
2See Lemma 2 in Drton et al. (2019).
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If Y
(k)
i −Bi,pa(i)Y

(k)
pa(i) ̸= 0 for each k such that i /∈ Ik, then

(ω
(k)
ii )∗ =

1∑
k:i/∈Ik

n(k)

∑
k:i/∈Ik

n(k)∥Y (k)
i −B

(k)
i,pa(i)Y

(k)
pa(i)∥

2

maximizes the total log-likelihood with respect to ω
(k)
ii . This leads to the following profile

log-likelihood function for the parameter vector Bi,pa(i):

ℓ(Bi,pa(i)) = −
∑

k:i/∈Ik

n(k) log

∑
k:i/∈Ik

∥Y (k)
i −Bi,pa(i)Y

(k)
pa(i)∥

2

(c
(k)
i,0 +Bi,pa(i)c

(k)
i,pa(i))

2
. (4)

3.2 Degree 2 update, condition and formula

In general, the block update problem is challenging to solve. Unless the graph structure
is restricted, a closed-form update is only achievable under specific conditions on the
interventions. For node i, such a closed-form update is possible if the following sufficient
condition is met:

∃ G′ ⊆ G, s.t. ∀ I ∈ I and i /∈ I, C(i, GI) = G′ or V [C(i, GI)] = {i}, (5)

where the operator V [·] returns the set of the nodes in a (sub)graph. In other words,
the condition requires that there could be at most 2 different structures of the strongly
connected component containing i, and one of which is the singleton set {i}. For directed
graphs where each strongly connected component contains at most one cycle (meaning
any two cycles in the graph are disjoint), condition (5) is automatically satisfied for all
nodes and any intervention family I.

All the valid samples (i /∈ Ik) are divided into these two groups, with total sample
sizes n1 and n2. To estimate (ωii, Bi,pa(i)), we stack these data matrices Y (k) column-wise
into a single matrix Y . If the C(i, GI)’s take values in {i} and some G′ across all I’s, the
profile log-likelihood function after optimizing over ωii, is given by

gi(Bi,pa(i)) = −n1 log

( ∥Yi −Bi,pa(i)Ypa(i)∥2

(ci,0 +Bi,pa(i)ci,pa(i))2

)
− n2 log

(
∥Yi −Bi,pa(i)Ypa(i)∥2

)
+ C.

Maximizing the profile log-likelihood function is equivalent to this minimization problem

min
α∈R| pa(i)|

n1 log
∥Y T

i − Y T
pa(i)α∥

2

(ci,0 + cTi,pa(i)α)
2
+ n2 log

(
∥Y T

i − Y T
pa(i)α∥

2
)
. (6)

Next, we demonstrate that by applying the reparameterization techniques outlined in
Drton et al. (2019), the minimization problem in (6) admits closed-form solutions with
algebraic degree 2.

Theorem 1. Given a node i, let n1, n2 > 0 be the total numbers of data corresponding
to strongly connected components G′ and {i}, respectively, and let r = n1/n2. Suppose
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that the stacked partial data matrix Ypa(i)∪{i} has full rank |pa(i)| + 1 ≤ n1 + n2. Let
α̂ = (Ypa(i)Y

T
pa(i))

−1Ypa(i)Y
T
i be the minimizer of ∥Y T

i − Y T
pa(i)α∥

2. We define n :=

n1 + n2,m := |pa(i)|, c0 := ci,0 and c1 := ci,pa(i) ̸= 0, y20 := ∥Y T
i − Y T

pa(i)α̂∥
2 and

l2 := cT1 (Ypa(i)Y
T
pa(i))

−1c1. Then the solution of the optimization problem in (6) satisfies

α∗ = α̂+ δ · (Ypa(i)Y
T
pa(i))

−1c1, (7)

where δ is a solution to the quadratic equation

l2δ2 + (cT1 α̂+ c0)(r + 1)δ − ry20 = 0. (8)

Proof. By adopting the orthogonal transformation method in Drton et al. (2019), we
further derive auxiliary properties relevant to our problem.

First, we find an orthogonal m × m matrix Q1 such that Q1c1 = (0, . . . , 0, ∥c1∥)T .
Then, we compute a QR decomposition Y T

pa(i)Q
T
1 = QT

2 R, with Q2 ∈ RN×m orthogonal

and R ∈ RN×m upper triangular. Since Ypa(i) and Y T
pa(i)Q

T
1 have full ranks, we can

assume that all diagonal entries of R are positive, making the matrix R unique for any
given Q1. After reparameterizing α′ = Q1α, the common L2-norm term is transformed
to

y20 = ∥Y T
i − Y T

pa(i)α∥
2 = ∥Q2Y

T
i −Rα′∥2

=

m∑
j=1

[(Q2Y
T
i )j − (Rα′)j ]

2 +

N∑
j=m+1

(Q2Y
T
i )2j ,

and the denominator is transformed to (c0 + ∥c1∥α′
m)2.

Since R =

(
R1

0

)
with R1 ∈ Rm×m, we reparameterize again with α′′ = R1α

′ and the

original minimization problem becomes

min
α′′∈Rm

n1 log

∑m
j=1[(Q2Y T

i )j − α′′
j ]

2 +
∑n

j=m+1(Q2Y T
i )2j

(c0 + ∥c1∥R−1
mmα′′

m)2
+ n2 log

 m∑
j=1

[(Q2Y
T
i )j − α′′

j ]
2 +

n∑
j=m+1

(Q2Y
T
i )2j

 .

(9)

Any solution must satisfies that α′′
j = (Q2Y

T
i )j for j ∈ [m− 1]. The optimal value of α′′

m

is given by

argmin
α′′
m∈R

n1 log
[(Q2Y T

i )m − α′′
m]2 +

∑n
j=m+1(Q2Y T

i )2j

(c0 + ∥c1∥R−1
mmα′′

m)2
+ n2 log

[(Q2Y
T
i )m − α′′

m]2 +

n∑
j=m+1

(Q2Y
T
i )2j

 ,

(10)

i.e., maximizing

gi(x) := n1 log

(
x+

c0Rmm

∥c1∥

)2

− (n1 + n2) log

x2 − 2(Q2Y
T
i )mx+

n∑
j=m

(Q2Y
T
i )2j

+ C.
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The univariate function gi has derivative

g′i(x) =
2n1

x+ c0Rmm/∥c1∥
− 2(n1 + n2)

x− (Q2Y
T
i )m

x2 − 2(Q2Y T
i )mx+

∑N
j=m(Q2Y T

i )2j
.

Let a = 1, b = −(Q2Y
T
i )m, c =

∑n
j=m(Q2Y

T
i )2j and λ = ∥c1∥/Rmm ̸= 0. The equation

g′i(x) = 0 has the form ax2 + 2bx+ c = 0. Using r = n1/n2, the two solutions are

α′′
m =

bλ(r − 1)− ac0(r + 1)±
√

(bλ(r − 1)− ac0(r + 1))2 + 4aλ(cλr − bc0(r + 1))

2aλ

= − b

a
+

(bλ− ac0)(r + 1)±
√
(bλ− ac0)2(r + 1)2 + 4(ac− b2)λ2r

2aλ
.

The optimal solution in original coordinates is α = QT
1 R

−1
1 α′′. Since R−1

1 (Q2Y
T
i ) is

the linear regression coefficient vector of Y T
pa(i)Q

T
1 on Y T

i , we have

QT
1 R

−1
1 (Q2Y

T
i )[m] = (Ypa(i)Y

T
pa(i))

−1Ypa(i)Y
T
i := α̂.

Let em,m = (0, . . . , 0, 1) be the m-th canonical basis vector of Rm and let em,N be the
m-th canonical basis vector of RN (i.e., the vector with a 1 in the m-th position and zeros
elsewhere). Noticing that R−1

mm(Q2Y
T
i )m is the m-th entry of R−1

1 (Q2Y
T
i )[m], and the

last column of R−T
1 is R−1

mmem,m, we can derive that

λ · b = −∥c1∥R−1
mm(Q2Y

T
i )m = −⟨Q1c1, R

−1
1 (Q2Y

T
i )[m]⟩ = −⟨c1, QT

1 R
−1(Q2Y

T
i )[m]⟩ = −cT1 α̂,

and

QT
1 R

−1
1 ∥c1∥R−1

mmem,m = QT
1 R

−1
1 R−T

1 Q1c1 = (QT
1 R

TRQ1)
−1c1

= (QT
1 R

TQ2Q
T
2 RQ1)

−1c1 = (Ypa(i)Y
T
pa(i))

−1c1.

The matrices Q1, Q2, and R may vary, but the value of Rmm (or equivalently, λ) is
uniquely determined by Ypa(i) and c1. To see this, note that

Y T
pa(i)(Ypa(i)Y

T
pa(i))

−1c1 = Y T
pa(i)Q

T
1 R

−1
1 ∥c1∥R−1

mmem,m = QT
2

(
R1

0

)
R−1

1 ∥c1∥R−1
mmem,m

= QT
2

(
Im
0

)
∥c1∥R−1

mmem,m = QT
2 ∥c1∥R−1

mmem,N .

Since Q2 is orthogonal, the Euclidean norms of both sides must be equal. That is,

l =
√
cT1 (Ypa(i)Y

T
pa(i))

−1c1 = ∥Y T
pa(i)(Ypa(i)Y

T
pa(i))

−1c1∥ = ∥c1∥R−1
mm = λ.

Then we can compute

c = b2 +

N∑
j=m+1

(Q2Y
T
i )2j = b2 + ∥Y T

i − Y T
pa(i)α̂∥

2 = b2 + y20 ,
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and

α′′
m = −b+

(−cT1 α̂− c0)(r + 1)±
√

(cT1 α̂+ c0)2(r + 1)2 + 4rl2y20
2l

:= (Q2Y
T
i )[m] +

(−cT1 α̂− c0)(r + 1)±
√
∆r,α̂(l)

2l

Therefore, the two possible optimal vectors are

α = QT
1 R

−1
1 (Q2Y

T
i )[m] +

−(cT1 α̂+ c0)(r + 1)±
√
∆r,α̂(l)

2l2
∥c1∥R−1

mm ·QT
1 R

−1
1 em,m

= α̂+
−(cT1 α̂+ c0)(r + 1)±

√
∆r,α̂(l)

2l2
(Ypa(i)Y

T
pa(i))

−1c1.

Each possible solution is the simple linear regression coefficient vector α̂ adding a multiple
of (Ypa(i)Y

T
pa(i))

−1c1. The coefficient of the second term is a solution to the quadratic
equation

l2t2 + (cT1 α̂+ c0)(r + 1)t− ry20 = 0,

where α̂ = Y T
pa(i)(Ypa(i)Y

T
pa(i))

−1Y T
i , y20 = ∥Y T

i −Y T
pa(i)α̂∥

2 and l2 = ∥Y T
pa(i)(Ypa(i)Y

T
pa(i))

−1c1∥2.

The update of ωii is given by

ω∗
ii =

1

n1 + n2
∥Yi −B∗

i,pa(i)Ypa(i)∥2 (11)

for the two possible B∗
i,pa(i)’s. Then the profile log-likelihood has value

n1 log((ci,0 +B∗
i,pa(i)ci,pa(i))

2)− (n1 + n2) log(ω
∗
ii) + C. (12)

The choice of B∗
i,pa(i) corresponds to the larger log-likelihood value of the two candidates.

Remark 1.1. The ratio r = n1/n2 influences the possible weights in the direction of
(Ypa(i)Y

T
pa(i))

−1c1. When n2 = 0, or equivalently r = ∞, the problem reduces to the purely

observational case. In this scenario, equation (8) simplifies to a linear form: (cT1 α̂+c0)t−
y20 = 0, which coincides with the result established in Drton et al. (2019).

At each update, the block-coordinate descent algorithm finds a local maximum of
log-likelihood function with respect to a subset of all variables. Overall, the value of
the log-likelihood function is non-decreasing throughout the iterations. To ensure that
the algorithm is well-defined, each block update must have an optimal solution in which
every ωii positive. This condition is equivalent to requiring ∥Yi−Bi,pa(i)Ypa(i)∥ > 0 during
the update for every i, which in turn implies that Yi is not in the row span Ypa(i), i.e.,
the matrix Ypa(i)∪{i} has linearly independent rows. This requirement is consistent with
condition (A1)i in Drton et al. (2019) for directed graphs. Using similar arguments, we
can conclude that for generic triples (Y, ω0, B0) ∈ Rp×N×ω(V )×B(G), any finite number
of iterations of Algorithm 1 have unique and feasible block updates when (ω0, B0) is used
as the starting value.
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Input: ω0, B0; Y (1), . . . , Y (K); I1, . . . , IK and n1, . . . , nK

repeat
foreach i ∈ V do

if the condition (5) does not hold then
stop: The block update cannot be solved in closed-form;

end
Find S2 = {k : Ik ∈ I−i, C(i, GIk

) = {i}};
Find S1 = {k : Ik ∈ I−i} \ S2;

Set Y = [Y (k1), . . . , Y (kl)] with k1, . . . , kl ∈ S1 ∪ S2;
Compute n1 =

∑
k∈S1

nk and n2 =
∑

k∈S2
nk;

if n1 = 0 then

Compute B̂i,pa(i) by solving least squares: argminβ ∥Y T
i − Y T

pa(i)β∥
2;

else
if n2 = 0 then

Compute B̂i,pa(i) as the block-coordinate update for observational
data;

else

Compute the two possible B̂i,pa(i) using (7) and (8);
Compute corresponding ω̂ii and log-likelihood values using (11)
and (12);
Choose the larger log-likelihood value and the corresponding
(ω̂ii, B̂i,pa(i));

end

end

Update ω and Bi using ω̂ii and B̂i,pa(i);

end

until convergence criterion is met ;
Algorithm 1: Block-coordinate descent, for directed graph and special intervention
targets

4 Numerical experiments

Suppose there are K dataset with different interventions I = {I1, . . . , IK}, the simple
aggregation method involves performing original BCD algorithm on each dataset, aggre-
gating the K MLEs and compute the weighted average as the final estimates. A natural
choice of weighting scheme is to use weights proportional to the sample sizes. We com-
pare the performance of the simple aggregation method and our BCD-type algorithms on
synthetic data.

In the simulations, we consider the special directed graphs that contain one unique
cycle. First, we add the l-cycle 1 → 2 → · · · → l → 1 to the empty graph. Due
to the component constraint, there remain p(p − 1)/2 − l(l − 1)/2 ordered pairs (i, j)
with i < j that can be assigned with nonzero edge weights. We simulate independent
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uniform random variables Uij ∼ U(0, 1). If Uij < d, the edge i → j is introduced. The
sparsity parameter d ∈ (0, 1) controls the average number of edges in the graph. The edge
generation is performed under a fixed topological ordering of the nodes. After adding the
edges, we randomly permute the node labels. This construction ensures that the graph
has a unique cycle of length l.

RMSE diff-llh Running time
p m k d Agg MLE Agg MLE Agg MLE
5 25 0 0.2 0.0277 0.0267 0.2426 0.2274 1.04 0.63
5 25 0 0.3 0.0280 0.0266 0.2861 0.2629 1.07 0.86
5 25 3 0.2 0.2281 0.1732 0.3731 0.3020 10.71 3.92
5 25 3 0.3 0.2141 0.1498 0.4104 0.3282 11.16 4.00
5 25 4 0.2 0.0319 0.0901 0.3673 0.3170 9.08 4.19
5 25 4 0.3 0.0323 0.0989 0.3913 0.3367 9.02 4.45
5 50 0 0.2 0.0134 0.0130 0.1046 0.1010 0.97 0.63
5 50 0 0.3 0.0135 0.0130 0.1204 0.1144 1.08 0.70
5 50 3 0.2 0.0353 1.1436* 0.1686 0.1350 11.89 4.04
5 50 3 0.3 0.0339 1.0413* 0.1810 0.1440 11.93 4.21
5 50 4 0.2 0.0154 0.0124 0.1600 0.1417 8.70 4.09
5 50 4 0.3 0.0156 0.0125 0.1676 0.1477 8.86 4.06
10 50 0 0.2 0.0106 0.0100 0.2358 0.2147 2.24 1.48
10 50 0 0.3 0.0113 0.0104 0.3093 0.2714 2.60 1.72
10 50 3 0.2 0.0330 0.0112 0.2894 0.2401 16.99 5.84
10 50 3 0.3 0.0300 0.0113 0.3745 0.2932 18.72 6.20
10 50 4 0.2 0.0109 0.0098 0.2952 0.2533 13.23 5.35
10 50 4 0.3 0.0116 0.0101 0.3699 0.3045 14.03 5.72
10 100 0 0.2 0.0053 0.0051 0.1098 0.1053 2.21 1.58
10 100 0 0.3 0.0054 0.0051 0.1400 0.1314 2.70 2.02
10 100 3 0.2 0.0074 0.0057 0.1296 0.1126 18.24 6.20
10 100 3 0.3 0.0072 0.0057 0.1599 0.1356 19.76 6.64
10 100 4 0.2 0.0053 0.0048 0.1293 0.1169 13.44 5.51
10 100 4 0.3 0.0055 0.0049 0.1564 0.1380 14.49 5.97

Table 1: Statistics for randomly generated directed graphs with at most one unique cycle.
Each row summarizes 1000 simulations. The columns ”Agg” and ”MLE” correspond to the
aggregation method and Algorithm 1. “RMSE” represents the average root mean square error
of the estimate for a single parameter among the total 1000 simulations. “diff-llh” is the average
difference between the log-likelihood of the true parameters and that of the estimated parameters
(the smaller the better). Running time is the average CPU time (in milliseconds). For the
aggregation method, the reported running time includes both the BCD algorithm applied to
each observational or interventional dataset and the subsequent aggregation steps.

We use 24 different configurations of (p,m, l, d), where m is the sample size of obser-
vational data. For each graph, we randomly select the number of interventional environ-
ments, ensuring that |I| ∈ {1, 2, 3}. Each random intervention target is of size 2 or 3. We
then compute the intervened model and simulate data of sample size max(mk, p+1), nk ∼
U [⌊(m+ 1)/2⌋,m], for each intervention target. Consequently, the data for one graph is
from both observation and interventions, with the total size ranging between 3m/2 and
4m. We consider p ∈ {5, 10}, m ∈ {5p, 10p}, and l ∈ {0, 3, 4}, with d ∈ {0.2, 0.3}.
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We avoid using 2-cycles because they are not identifiable from observational data (Drton
et al., 2019), and estimation results with interventional data are also unstable.

For each of the configurations (p,m, l, d), we simulate 1000 graphs using the procedure
described above. In each simulation, all free entries of B are drawn independently from a
uniform distribution on [−2,−0.5]∪[0.5, 2]. The diagonal entries of Ω are randomly drawn
from a uniform distribution on [0.3, 1]. For an intervention target set I, the corresponding
columns in B are masked by zero: BI,· = 0. The interventional errors ϵI are sampled
from |I| independent standard normal distributions.

Simulations were performed on a desktop equipped with an AMD Ryzen 9 7950X3D
processor (4.2 GHz), using R 4.4.2 on Windows 11. For each run, the maximum number
of iterations was set to 5000. In all simulations, our algorithm converged, and the BCD
algorithm also converged across all environments. Table 1 summarizes the simulation
results.

Our MLE algorithm consistently achieves higher log-likelihood values and outperforms
the aggregation method in terms of RMSE across most of the configurations. There are 2
exceptions where our method does not achieve lower RMSE. The RMSE may be influenced
by extreme values in cycle parameter estimation, whereas the likelihood-based metric
tends to be more stable. This behavior reflects the nature of cyclic models, where better
likelihood does not necessarily imply a smaller RMSE due to the additional likelihood
contribution from the cycle structure. In addition to achieving higher accuracy, our MLE
algorithm is also faster than the aggregation method, as expected.

For real data example, one potential application is to model the relations between daily
sleeping time, activity time and mental health measurements using data collected in the
Healthy Aging in Industrial Environment study - Program 4 (4HAIE) (Elavsky et al.,
2021). Beginning in 2019, this study intensively monitored air pollution and behavioral
parameters. The timing of the study coincided with the COVID-19 and the pandemic
restrictive measures implemented since March 2020 can be regarded as interventions af-
fecting activity patterns (e.g., steps per day). After transforming the data to standard
normal scale, variables corresponding to average sleeping time, average daily steps, and
psychological scores fit naturally within a linear SEM framework that includes a feedback
loop. Data collected before and after the implementation of the restrictive measures serve
as observational and interventional data, respectively.
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