


Proceedings of the
11th Workshop on Uncertainty Processing

(WUPES’18)
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Třeboň
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Foreword

The Workshop on Uncertainty Processing, better known under its abbreviation WUPES, celebrates
its 30-year anniversary this year. In 1988, when the first Workshop took place, Czechoslovakia was
still a communist country and a part of the Soviet bloc. Since then, many things have changed. For
example, Czechoslovakia no longer exists as a country (because in 1993 it was peacefully split into
two independent countries – Czechia and Slovakia). From this perspective, it is hard to believe that we
have several participants who have attended most workshops in the the thirty-year history of WUPES.

As of now, the Program Committee has accepted, based on the extended abstracts, 21 papers to
be presented at the Workshop, and 19 out of them are to be published in the present Conference
Proceedings. These papers cover diverse topics, such as information processing, decision making, and
data analysis; but what is common to most of them is that they are related to uncertainty calculus -
Bayesian Networks, Dempster-Shafer Theory, Belief Functions, Probabilistic Logic, Game Theory,
etc.

This Workshop takes place in Třeboň, a town in Southern Bohemia. Certainly, Třeboň is an inter-
esting place with a rich history. I do not intend to make a review of Třeboň’s history at this point; but
I would like to mention its three moments directly related to our Workshop.

The Workshop logo contains a petal of a red wild rose. This is associated with the Coat of Arms
of Rosenbergs, a significant and influential Czech noble family, which played an important role in
the medieval history. The last reigning lord in this family was Petr Vok, whose residence was, guess
where, in Třeboň, where he died in 1611.

The Workshop Dinner is going to take place in the restaurant named Kelly’s Tavern. This restaurant
is named after Edward Kelley, an English Renaissance occultist and self-declared spiritist medium.
He worked with John Dee (an advisor to English Queen Elizabeth I) in his magical investigations.
Besides the professed ability to summon spirits or angels, Kelley also claimed to possess the secret
of transmuting base metals into gold, the true goal of alchemy, as well as the supposed Philosopher’s
Stone itself. But why is a tavern in a South Bohemian town named after Kelley? After an unsuccessful
audience with Emperor Rudolf II in Prague Castle, Kelley and Dee found the patronage of the wealthy
Bohemian Lord William of Rosenberg. Kelley and Dee settled in the town of Třeboň and continued
their research there. According to Dee’s diary, it was during that time that Kelley is said to have
performed his first alchemical transmutation, namely, on December 19, 1586.

The Workshop lectures will be given in Schwarzenbergs’ Hall of Třeboň Castle. The name of this
hHall refers to another important noble family: Schwarzenberg is a Czech and German aristocratic
family, and it was one of the most prominent European noble houses. The Schwarzenbergs achieved
the rank of Princes of the Holy Roman Empire. From 1660, the House of Schwarzenberg was the
owner of the Town and the Castle. During our Workshop walking trip, we will visit the Schwarzenberg
Crypt in Domanín. The current head of the family is Karel, the 12th Prince of Schwarzenberg, a Czech
politician who once served as the Minister of Foreign Affairs of the Czech Republic.

But back to the present. As is customary, this workshop is co-organized by two institutions – the
Institute of Information Theory and Automation of the Czech Academy of Sciences, and the Faculty
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of Management, University of Economics, Prague. We are grateful for their financial support. I would
also like to thank all members of the Program Committee and of the Organizing Committee for their
work, as well as to express my special gratitude to Radim Jiroušek, who was and still is the main
person behind WUPES and has kept it running for thirty years! Another person who has helped a lot
with organizing this Workshop is Václav Kratochvíl – many thanks!

I wish all participants pleasant participation in the Workshop with many interesting and stimulating
discussions.

In Světice, May, 13, 2018

Jirka Vomlel

Information sources:
[1] Proceedings of the 10th Workshop on Uncertainty Processing (WUPES’15) Monínec, Czech Re-

public, Foreword,
http://wupes.fm.vse.cz/2015/data/Proceedings.pdf

[2] Rosenberg family, Wikipedia,
https://en.wikipedia.org/wiki/Rosenberg_family

[3] House of Schwarzenberg, Wikipedia,
https://en.wikipedia.org/wiki/House_of_Schwarzenberg

[4] Edward Kelley, Wikipedia,
https://en.wikipedia.org/wiki/Edward_Kelley

[5] John Dee, Wikipedia,
https://en.wikipedia.org/wiki/John_Dee
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Fero Matúš

On Wednesday, May 16, 2018, Fero Matúš passed away.
For all of us, it came as a shock. Yes, we had known that
he was seriously ill; but still, Fero was a strong personality,
full of new plans, and we thus were not prepared for this
sudden end.

This bad piece of news has taken us unawares just when
these Proceedings are ready for printing. We have not had
time to elaborate on an official obituary surveying all of
his scientific achievements. It would have been a long list,
regardless of him being so young. He was so young that
when the history of WUPES meetings was begun, Fero
was still a university student. Nevertheless, he attended the
second WUPES Conference in Alšovice in 1991, and he
became a regular attendant at that time. We will strongly
miss him this year. We will miss him all the more because
it happens the first time in the 30-year history of WUPES
Conferences that the chair of the Programme Committee
does not take part at the meeting.

With his death, we are losing one of a few truly renaissance persons: he was a mathematician,
musician, and gifted for languages. These Proceedings are thus, naturally, devoted to the memory of
Fero Matúš. Needless to say, he will be present in our thoughts for the whole meeting in Třeboň. This
meeting will be an opportunity for recalling his fine personal character. Also will it be an opportunity
for recalling in what way he helped all of us, whether solutions to scientific problems, or by accepting
unpleasant official positions (Head of Department or Member of the Scientific Board). But it will also
be an opportunity to recall all nice real and often joyful stories we experienced together, and especially
his typical saying with which he generously solved all the unpleasant and unimportant problems: To
sú také somariny [What a hooey!].

On behalf of the Organizing Committee
Radim Jiroušek
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Abstract

Data integrity is a key component of effective Bayesian network structure learning
algorithms, namely PC algorithm, design and use. Given the role that integrity of data
plays in these outcomes, this research demonstrates the importance of data integrity as
a key component in machine learning tools in order to emphasize the need for care-
fully considering data integrity during tool development and utilization. To meet this
purpose, we study how an adversary could generate a desired network with the PC
algorithm. Given a Bayesian network B1 and a database DB1 generated by B1 and
a second Bayesian network, B2, which is equal to B1, except for a minor change like
a missing link, a reversed link, or an additional link, we explore and analyze what is
the minimal number of changes such as additions, deletions, substitutions to DB1 that
lead to a database DB2 that, when given as input to PC algorithm, results in B2.
Keywords: Adversarial Machine Learning, Bayesian Networks, Data Poisoning At-
tacks, The PC Algorithm.

1 Introduction and Motivation
There has been a massive increase in the use of machine learning for diverse computer
applications. Machine learning algorithms including Bayesian network algorithms are
not secure against adversarial attacks. A machine learning algorithm is a secure learning
algorithm if it functions well in adversarial environments [2]. It has been shown that an
adversary can corrupt machine learning models by manipulating the input dataset [3, 24].
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Therefore, it is essential to not only consider the presence of adversarial opponents but
also design effective and resilient learning algorithms.

Adversarial machine learning is the research field that studies the design of efficient
machine learning algorithms in adversarial environments [7]. In the presence of adversar-
ial opponents (the offense), the problem of securing machine learning systems becomes
harder since adversaries will attempt to corrupt machine learning models by crafting their
inputs (known as adversarial samples) in an intelligent way. Adversarial samples are in-
put datasets to machine learning algorithms that are crafted by adversaries to deliberately
corrupt machine learning models [20]. Among different adversarial attacks, data poison-
ing attacks, which aim to corrupt the machine learning model by contaminating the data
in the training phase, are considered one of the most important emerging security threats
against machine learning systems [15].

Previous research has been conducted on data poisoning attacks against machine learn-
ing algorithms such as Support Vector Machines (SVMs) [3,5,9,14,17,25,26], Neural Net-
works (NNs) [27], and other machine learning algorithms [15]. Surprisingly, to date, no
study has been performed on evaluating the vulnerabilities of Bayesian network learning
algorithms against adversarial attacks.

In investigating data poisoning attacks on Bayesian network algorithms, we study at-
tacks that aim to invalidate the Bayesian model either by modifying the input sample to
delete the weakest edge or by adding cases to the original input sample to add the most
believable yet incorrect edge.

In this paper, our main focus is to evaluate the robustness of Bayesian network learning
algorithms on multiple adversarial samples against the proposed attacks. Our experiments
show that the PC algorithm is vulnerable to data poisoning attacks. The learned Bayesian
network model is vulnerable if an adversary can only inject a small number of adversarial
samples into the original dataset.

We present our findings pertaining to the robustness of the PC algorithm against data
poisoning attacks. The main contributions are the following: 1) We define a novel measure
of the strengths of links between variables in Bayesian networks and present our detailed
analysis. 2) We demonstrate how to use the defined link strengths measure to add edges
to and delete edges from a Bayesian network model. 3) We present two types of data
poisoning attacks against the PC structure learning algorithm and implement the attacks.
4) We have implemented our approach and presented the results.

The rest of this paper is structured as follows. In section 2, we present the background
information. Our link strengths measure in discrete Bayesian networks is presented in
section 3. In section 4, we present two types of data poisoning attacks against the PC algo-
rithm. In section 5, we present our empirical results. In section 6, we provide conclusions
and directions for future work.

How to Generate the Network you Want with the PC Learning Algorithm
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2 Background Information

2.1 Structure Learning in Bayesian Networks
There are three main approaches to learning the structure of Bayesian networks: constraint-
based, score-based, or hybrid algorithms. We will focus on constraint-based algorithms,
namely the PC algorithm, since it is an integral part of this paper. The PC algorithm
(named after the authors, the first letter of their first names, Peter Spirtes and Clark Gly-
mour) is a constraint-based algorithm for learning the structure of a Bayesian network from
data. The PC algorithm follows the theoretical framework of the IC algorithm to determine
the structure of causal models [22]. According to [23], the process performed by the PC al-
gorithm to learn the structure of Bayesian networks can be summarized as follows: (i) For
every pair of variables, perform statistical tests for conditional independence. (ii) Deter-
mine the skeleton (undirected graph) of the learned structure by adding a link between
every pair of statistically dependent variables. (iii) Identify colliders (v-structures) of the
learned structure (A→ B← C). (iv) Identify derived directions. (v) Randomly, complete
orienting the remaining undirected edges without creating a new collider or a cycle. For the
implementation of this paper, we used the Hugin PC algorithm (by HuginTM Decision
Engine [12, 19]), ”which is a variant of the original PC algorithm due to [23]” [8].

2.2 Prior to Posterior Updating
Bayes’ theorem is a simple mathematical formula that inverts conditional probabilities
(i.e., given the conditional probability of event B given event A, how to calculate the
conditional probability of event A given event B). The statement of Bayes’ theorem is:
For two events A and B, P (A | B) = P (B|A)P (A)

P (B) , where (i) P (A | B) is the conditional
probability of event A given event B (called the posterior probability), (ii) P (B | A) is
the conditional probability of event B given event A (called the likelihood), (iii) P (A)
is the marginal probability of event A (called the prior probability), and (iv) P (B) is the
marginal probability of event B (P (B) > 0) [16].

Unlike classical statistics, Bayesian statistics treats parameters as random variables
whereas data is treated as fixed. For Example, let θ be a parameter, and D be a dataset,
then Bayes’ theorem can be expressed mathematically as follows:

P (θ | D) =
P (D | θ)P (θ)

P (D)
(1)

In equation 1, P (θ | D) is the posterior distribution, which is the ultimate goal for
Bayesian statistics since it measures the uncertainty about the parameters θ after seeing
the dataset D. P (D | θ) is the likelihood, which describes how likely the dataset D is if
the truth is parameter θ. P (θ) is the prior distribution, which is a marginal probability
of our belief before seeing data. P (D) is the marginal probability of D, which is a nor-
malization constant to ensures that the sum of the posterior distribution sums to 1 over all
values of parameter θ [11]. Thus, since P (D) is constant, we can write Bayes’ theorem in

Emad Alsuwat, Marco Valtorta, Csilla Farkas
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one of the most useful form in Bayesian update and inference as follows:

P (θ | D) ∝ P (D | θ)× P (θ)

Posterior ∝ Likelihood× Prior (2)

In Bayesian analysis, the results of the experiment could be used to update the belief
about the parameter θ. In simple cases, we can compute the posterior distribution for the
parameter θ by multiplying the prior distribution and the likelihood function as shown in
equation 2. However, it is convenient mathematically for the prior and the likelihood to
be conjugate. A prior distribution is a conjugate prior for the likelihood function if the
posterior distribution belongs to the same distribution as the prior [21]. For example, the
beta distribution is a conjugate prior for the binomial distribution (as a likelihood function)
because the posterior distribution obtained by multiplying the prior and the likelihood
belongs to the same distribution as the prior (thus, both the prior and the posterior have
beta distributions).

Let’s consider the effect of different priors on the posterior distribution. A completely
uninformative prior is the beta distribution with parameters α = 1 and β = 1. The
posterior distribution, in this case, is equivalent to the likelihood function since we have
a completely uninformative prior. More informative priors will have a greater influence
on the posterior distribution for a given sample size. On the other hand, larger sample
sizes will give the likelihood function more influence on the posterior distribution for a
given prior distribution. In practice, this means that we can obtain a precise estimate of
the posterior distribution using smaller sample sizes when we use more informative priors.
Similarly, we may need larger sample sizes when we use a weak or uninformative prior.

P (θ | D) ∝ Beta(α, β)×Binomial(n, θ)
P (θ | D) ∝ Beta(y + α, n− y + β)

(3)

Equation 3 is the formula that we are going to use in this paper for prior to posterior
update. Starting with a prior distribution Beta(α, β), we add the count of successes,y,
and the count of failures, n− y, from the dataset D (where n is total number of entries in
D) to α and β, respectively [21]. Thus,Beta(y+α, n−y+β) is the posterior distribution.

2.3 Link Strengths in Bayesian Networks
The concept of link strength in Bayesian networks was introduced first by Boerlage in
1992 [4]. In his thesis, Boerlage introduced the concepts of both connection strength
and link strength in a binary Bayesian network model. Connection strength for any two
variables A and B in a Bayesian network model B1 is defined as measuring the strength
between these two variables by testing all possible paths between them in B1, whereas
link strength is defined as measuring the strength these two random variables taking into
account only the direct edge A − B [4]. Methods for link strengths measurements are
not studied sufficiently. Imme Ebert-Uphoff in her 2009 paper [6] presented a tutorial on
how to measure connection strengths and link strengths in discrete Bayesian networks.
Ebert-Uphoff concluded that there is limited literature on link strengths, and there is more

How to Generate the Network you Want with the PC Learning Algorithm
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need to apply and use link strengths measures in structure learning and other purposes [6].
However, to the authors’ best knowledge, there are no more recent publications that ad-
dress link strengths measurements in discrete Bayesian networks. In this paper, we define
a novel and not computationally expensive link strengths measure in discrete Bayesian
networks.

In this paper, we propose a link strengths measure (denoted by L S) for discrete
Bayesian networks. We then use L S to determine the weakest edge and the most be-
lievable edge in a given causal model. We further study the robustness of the PC algorithm
against data poisoning attacks that aim to remove the weakest edge and insert the most
believable yet incorrect edge.

3 Measuring Link Strengths from Data in Discrete Bayesian
Networks

In this paper, we introduce a novel link strengths measure between two random variables
in a discrete Bayesian network model. It is essential to not only study the existence of a
link in a causal model but also define a reliable link strengths measure that is useful in
Bayesian reasoning [4, 6]. The new defined link strengths measure assigns a number to
every link in a Bayesian network model. This number represents the lowest confidence
of all possible combinations of assignments of posterior distributions. The defined link
strengths measure will be used to rank edges from the most to the least believable edge,
rank edges from the weakest to the strongest edge, and justify a plausible process in any
causal model. Our novel approach is as follows:

Definition 1. Link Strengths Measure L S is defined as

L S(V ariable1 → V ariable2) = min
y∈Y

(pdf(
y + α

α+ n+ β
)) (4)

where Y = {n11, n12, · · · , n1j , n21, n22, · · · , n2j , · · · , ni1, ni2, · · · , nij}, pdf is the prob-
ability density function, and y+α

α+n+β is the mean of the posterior distribution.

Explanation: Given a discrete dataset DB1 and a Bayesian network structure B1

learned by the PC algorithm using DB1, for every link V ariable1 → V ariable2 in B1,
build a contingency table [13] for the two discrete variables V ariable1 and V ariable2
with i and j states, respectively (as shown in table 1). To measure the strength of links of
a causal model, we perform the following two steps:

(1) We compute the posterior distributions for each link V ariable1 → V ariable2 as
follows: P (V ariable2 | V ariable1) = Beta(y + α, n − y + β) where variable2 |
variable1 is all possible combinations of discrete states of V ariable2 and V ariable1,
and then

(2) We use our link strengths measure as presented in equation 4. Note that y+α
α+n+β in

equation 4 is obtained by simply substituting α with y + α and β with n − y + β in
α

α+β .

Emad Alsuwat, Marco Valtorta, Csilla Farkas
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Interpretation: For any two random variables in a causal model (variable1 with i
states and variable2 with j states), there are i × j combinations of assignments of pos-
terior distributions. For every posterior distribution, we have a prior distribution that is
a conjugate prior for the likelihood function. For instance, a posterior distribution in the
form Beta(y + α, n − y + β) has a Beta-distributed prior, Beta(α, β), which is a con-
jugate prior for the likelihood function, Binomial(n, θ). Considering all i × j posterior
distributions for the two random variable1 and variable2, we can measure the uncertainty
of that link by measuring how peaked the posterior distributions (Beta distributions in our
experiments) are; thus, we can identify the link strength based on the uncertainty level.
The more peaked the posterior distribution is, the more certainty we have about the poste-
rior distribution probability. In other words, the peak of a beta distribution,Beta(α′, β′),
is reached at its mean, α′

α′+β′ . Thus, the peak of the posterior distribution is reached at
y−α

n−y+β . In the defined link strengths measure, we define the link strength for any link
between two random variables in a causal model as the value of the smallest peak. This
point is the point at which the model has seen the fewest number of cases; thus, it is the
most critical point through which this link can be manipulated.

Variable2
Variable1 State1 · · · Statej Observed Row Total

State1 [n11], (e11), < ts11 > · · · [n1j ], (e1j), < ts1j >
∑j
t=1 n1t

...
... · · ·

...
...

Statei [ni1], (ei1), < tsi1 > · · · [nij ], (eij), < tsij >
∑j
t=1 nit

Observed Column Total
∑i
t=1 nt1 · · · ∑i

t=1 ntj n (Observed Grand Total)

Table 1: A contingency table for two discrete variables V ariable1 and V ariable2 with i
and j states, respectively. The contingency table is structured as follows: [nij] is the cell’s
observed counts obtained from dataset DB1, (eij) is the cell’s expected counts, calculated
as follows: (Observed Row Total × Observed Column Total) ÷ (Observed Grand Total
(denoted as n)), and < tsij > is the cell’s chi-square test statistic, calculated as follows:
(nij − eij)2 ÷ eij .

Practical usages: We use this measure to identify weak edges (i.e., low values of
L S). These edges are the easiest to remove from a given causal model. We also use the
L S value to identify location for new edges to be added. We claim that the highest L S
value, the most believable the new edge is. A practical usage of the proposed link strengths
measure is that it can be used to evaluate the robustness of the PC algorithm against data
poisoning attacks.

4 Data Poisoning Attacks against the PC Algorithm

In the process of using data to learn the structure of a Bayesian network model, the PC
algorithm assesses conditional independence statements linking variables. The χ2 statisti-
cal test is conducted on the given dataset to outline the statistical independence statement

How to Generate the Network you Want with the PC Learning Algorithm
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set for the learned causal model [18]. As a result of delineating how the PC algorithm
works, adversarial attackers may exploit this knowing by contaminating the input dataset
via weak edges removal or insertion of believable, yet incorrect links.

In this paper, we use our link strengths measure to investigate the robustness of the PC
algorithm against two types of data poisoning attacks as follows: 1) Data poisoning attacks
based on removing the weakest edge and 2) Data poisoning attacks based on inserting the
most believable yet incorrect edge.

Due to space limitation, we only present selected algorithms in this work. A complete
set of algorithms and further details can be accessed in our technical report [1].

4.1 Data Poisoning Attacks based on Removing the Weakest Edge
As discussed, it is feasible to use link strengths measure to identify and rank causal model
edges from weakest to strongest, which means that adversarial opponents may seize the
opportunity to poison the learning dataset, the objective being to effectively remove weak
edges.

We have developed Algorithm 4 to check the resilience of the PC algorithm against
attacks that target weak edges. Our algorithm calculates the strength of each link in a
Bayesian model and then rank the edges from the weakest to the strongest edge. It then
checks the robustness of the PC algorithm against the feasibility of deleting the weakest
edge. Our empirical results are presented in section 5.

Algorithm 4: Removing a Weak Edge Procedure
Input : Dataset DB1 . Original dataset with n cases
Output: Contaminated dataset DB2 or a failure message

1 Procedure Removing a Weak Edge(DB1)
2 Use the PC algorithm for learning the structure of Bayesian network model

B1 from dataset DB1 (using the default significance level at 0.05 [12])
3 Use L S to rank the edges of B1 from the weakest to the strongest
4 Let A− C be the weakest edge to be deleted from B1

5 Test the feasibility of deleting the edge A− C from B1 using Algorithm 3
6 if Algorithm 3 returns DB2 then
7 Return DB2

8 else
9 Return msg “Algorithm 3 failed to delete the link A− C within a feasible

number of cases”
10 end
11 end

4.2 Data Poisoning Attacks based on Adding the Most Believable yet
Incorrect Edge

We demonstrate that the use of link strengths measure can be successfully applied to a
causal model to accurately identify and rank the edges from most to least in terms of

Emad Alsuwat, Marco Valtorta, Csilla Farkas
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believability. Therefore, adversaries can skillfully use data poisoning attacks to generate
input dataset to the Bayesian network model so that integrating the incorrect, yet plausible
edges is viable.

Algorithm 6: Adding the Most Believable yet Incorrect Edge Procedure
Input : Dataset DB1 . Original dataset with n cases
Output: Contaminated dataset DB2 or a failure message

1 Procedure Adding the Most Believable yet Incorrect
Edge(DB1)

2 Use the PC algorithm for learning the structure of Bayesian network model
B1 from dataset DB1 (using the default significance level at 0.05 [12])

3 Choose a set of edge Q that could be added to B1

4 Use L S to rank the set of edges Q from the most to the least believable edge
5 Let A− C be the most believable edge to be added to B1

6 if A− C lies in a a serial or diverging triple A−B − C then
7 Use Algorithm 1 to check the feasibility of adding the link A− C
8 if Algorithm 1 returns DB2 then
9 Return DB2

10 else
11 Return msg “Algorithm 1 failed to introduce the link A− C”
12 end
13 else if A− C lies in a converging triple A→ B ← C then
14 Use Algorithm 2 to check the feasibility of adding the link A− C
15 if Algorithm 2 returns DB2 then
16 Return DB2

17 else
18 Return msg “Algorithm 2 failed to introduce the link A− C”
19 end
20 else
21 Use Algorithm 5 to check the feasibility of adding the link A− C
22 if Algorithm 5 returns DB2 then
23 Return DB2

24 else
25 Return msg “Algorithm 5 failed to introduce the link A− C”
26 end
27 end
28 end

We have developed Algorithm 6 to check the robustness of the PC algorithm against
this attack. The algorithm starts by learning the structure of the Bayesian network model
and then uses the defined link strengths measure to rank a given set of edges that could
be added to the learned model from the most to the least believable edge. Our algorithm
then checks the robustness of the PC algorithm against the feasibility of adding the most
believable edge. Our empirical results are presented in section 5.

How to Generate the Network you Want with the PC Learning Algorithm
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5 Empirical Results
In this section, we present the results of using our link strengths measure on the Chest
Clinic Network [10] and then demonstrate some of its practical usages. We implemented
the Chest Clinic Network (shown in Figure 1) using HuginTM Research 8.1. Then we
simulated dataset of 10, 000 cases for our experiments by using HuginTM case genera-
tor [12, 19]. We call this dataset as DB1. Using the PC algorithm on dataset DB1 with
0.05 significance setting [12], the resulting structure is given in Figure 2. While the two
networks belong to different Markov equivalence classes, we will use the network of Fig-
ure 2 as the starting point of our experiments.

A S

T L B

E

X D

14.75256 50.30727 56.88552

129.2983103.7509

70.69412
25.73502

49.30178

Figure 1: Chest Clinic Network and the
result of link strengths (L S)

A S

T L B

E

X D

Figure 2: B1, the result of feedingDB1 to the
PC algorithm with significance level at 0.05

We computed the link strengths using our approach (shown in Figure 1). We eval-
uated the effectiveness of data poisoning attacks against the PC algorithm (presented in
section 4) to poison the Chest Clinic Network dataset DB1 as follows: First, we validate
the effectiveness of data poisoning attacks based on removing the weakest edge described
in Algorithm 4 to contaminate DB1. Second, we check the resilience of the PC algo-
rithm against the feasibility of data poisoning attacks based on adding most believable yet
incorrect edge described in Algorithm 6 to poison DB1.

We present our results of deleting the weakest edge from B1 in Figure 3. We observe
that Algorithm 4 succeeded to determine the weakest edge, A − T , and delete it by mod-
ifying only 3 cases in our dataset DB1. Our results of adding the most believable edge
to B1 are presented in Figure 4. We observe that Algorithm 6 succeeded to fool the PC
algorithm and introduce the most believable edge, B − L, from the set of edges Q (in our
experiment, we let Q = {A − S, T − S,D − S,L − B,L − T}) by inserting only 13
corrupt cases to our dataset DB1.

We observed that when removing an edge from a causal model, the choice of corrupt
data items has an impact on the efficiency of the attack. That is, transferring data items
from the cell with the highest test statistics value to the cell with the lowest test statistics
value in a contingency table of two random variables will accelerate the process of remov-
ing the link between them. We also observe that when introducing a new malicious link
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between two random variables, a cell with a higher test statistics value < tsij > in the
contingency table of these two random variables requires fewer corrupt cases than a cell
with a lower test statistics value. Overall, we showed that the PC algorithm is vulnerable
to data poisoning attacks based removing the weakest edge and adding the most believable
yet incorrect edge.

A S

T L B

E

X D

Figure 3: The result of removing the
weakest link in B1, A→ T

A S

T L B

E

X D

Figure 4: The result of adding the most
believable link to B1, B → L.

6 Conclusion and Future Work

In this paper, we demonstrated the vulnerability of the PC structure learning algorithm.
We have developed a theoretical framework to classify data poisoning attacks against the
PC algorithm. We also performed experimental studies using the widely used Chest Clinic
dataset. Our findings indicate that the PC algorithm is highly sensitive to data poisoning
attacks. We also demonstrated that attackers could corrupt the learning outcome in a way
that the PC algorithm will learn the desired structure.

Our novel link strength measure plays a crucial role in identifying vulnerable network
structure and the ease of corrupting the Bayesian model. We believe that using this mea-
sure will guide defensive measurements. Our ongoing work includes the development of
methods that will reduce the risk of unauthorized compromise against the PC algorithm
via data poisoning.
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Jarošovská 1117/II, 37701 Jindřich̊uv Hradec
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Abstract

In previous works we attempted to compose multivariate densities of con-
tinuous random variables. The paper [5] showed an implementation of It-
erative Proportional Fitting Procedure numerically approximating the mul-
tivariate density from low-dimensional ones. In [2] we defined an operation
of composition for general continuous densities with advantageous properties
in case of certain copula classes. The paper [4] further analyzed properties
of composition in continuous densities and sketched a basic application for
densities from exponential families. This application was illustrated on an
non-trivial example in [3].

The exponential families are closed with respect to the operation of com-
position, i.e. the result of composition remains in the exponential family.
Though up to this moment only rather toy applications were performed, still
it took a non-trivial effort to perform algebraic manipulations with multivari-
ate densities expressed in a ”natural form” of exponential families. Therefore,
it appears to be advantageous to employ some computer algebra system capa-
ble of symbolic manipulations with matrices necessary for the representation
of multivariate distributions.

Keywords: Operator of composition, continuous variable, exponential family,
computer algebra system.

1 Introduction

Modern equipment, electronic sensors and automated approaches of measurement
provide an enormous amounts of data which is almost in every case multivariate and
usually shows high dimensionality. This is the setting in which the curse of dimen-
sionality (see, e.g., [1, 6]) appears to be serious issue. One particular facet of this is
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a impossibility, or at least enormous inaccuracy of estimation of high-dimensional
multivariate distributions from the data. A possible way of dealing with these
problems is the employment of some factorization of high-dimensional distribu-
tions and performance of local computations with low-dimensional marginals only.
Well-known are approaches of Bayesian Networks now successfully implemented in
several commercial computational environments (Hugin, Bayesia, etc.). An alge-
braic alternative is represented by compositional models (see Jiroušek[11]).

As we already hinted, it appears to be impossible to estimate multivariate
densities of higher dimensions directly from data. But still it is possible to perform
some analysis of dependence structure among analyzed variables and to estimate
the low-dimensional discrete distributions or continuous densities as basic building
blocks. These building blocks overlap in a way, i.e. the considered marginals have
some common variables and thus the building blocks can be seen as hypergraph
edges, where hypergraph vertices are the particular variables.

Since we present a practical application of scheme sketched in previous pub-
lications ([4] and [3]), the methodology is connecting several different fields from
theory of compositional models developed under the framework of classical prob-
ability theory (see Jiroušek[11, 4]), theoretical description of exponential families
and its useful properties [13], employment of algorithms from theory of maximum
likelihood estimation of multivariate normal distribution [7] with an implementa-
tion in R package mvnmle [9] and a Python based computer algebra system SymPy
with implementation [10] under statistical computational environment of R [15].

The presented paper shows all necessary theoretical prerequisites concerning
composition in exponential families together with the way how to implement com-
positional models in a rather user friendly way leaving the boring computations on
a computer algebra system.

2 Compositional Models & Exponential Families

Within the presented paper we consider a finite index set N = {1, . . . , n} together
with a set of random variables {Xi}i∈N with values, or vectors of values, denoted
by the corresponding lowercase letters. The domain of variables will be denoted
by the corresponding bold uppercase letter Xi. In general, variables with a finite
or countable set of possible states are called discrete; other variables are called
continuous. In this paper, we will focus on the later case.

The probability density functions of continuous random variables will be de-
noted by lowercase letters of the Latin alphabet (f, g, h, . . . ), e.g., the abbreviated
notation f(xK) denotes a multidimensional density of variables having indices from
set K ⊆ N . For a probability density function f(xK) and any set of variable indices
L ⊂ K, a marginal probability density f(xL) of f(xK) can be computed for each
xL as follows

f(xL) =

∫

XK\L

f(xK)dxK\L

An Efficient Way to Compose Distributions from Exponential Families
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where obviously the integration runs over the domains of all variables in K \L. We
will also employ an equivalent way to denote the marginal f(xL), namely f↓{L}

which was introduced by Glenn Shafer (see, e.g., [17]).
Having probability density f(xK) and two disjoint subsets L,M ⊆ K we define

the conditional probability density of XL given a value xM = xM for every xL∪M
as

f(xL |xM = xM)f(xM = xM) = f(xL, xM = xM).

Let us note that for f(xM = xM) = 0 the definition is ambiguous, but we do not
need to exclude such cases.

2.1 Composition of Continuous Densities

Let us have two probability density functions f(xK) and g(xK) with the same set
of variables XK . Then f is said to be absolutely continuous with respect to g, or
dominated by g (denoted by f � g) if for each xK ∈ XK it holds

(g(xK) = 0⇒ f(xK) = 0) .

Consider two sets of continuous variables XL and XM , a probability density
f(xL), and a probability density g(xM ) such that f(xL∩M )� g(xL∩M ). The right
composition is given by

f(xL) . g(xM ) =
f(xL)g(xM )

g(xL∩M )
= f(xL) · g(xM |xL).

For details and important properties of composition in continuous case, please,
refer to [4].

2.2 Exponential Families

The possibility to define the operation of composition for densities of distributions
from exponential families was studied in [4]. The exponential family is an inter-
esting set of probability distributions that can be expressed in a certain form, e.g.,
see [12].

Now, let us recall the most important notions and properties introduced in the
context of compositional model in [4]. Density f(xL) belongs to the exponential
family if it can be expressed in the form

f(xL; θL) = h(xL)eηL(θL)·T (xL)−A(ηL)

where θL is a (real) vector of parameters and h(xL), T (xL), ηL(θL) and A(ηL) are
vector functions.

The function ηL(θL) is a natural parameter (or exponential parameter), T (xL) is
a sufficient statistic, A(ηL) is a log-partition function and h(xL) is a non-negative
base measure. Obviously, the product of ηL(θL) and T (xL) vector functions is

Vladislav Bína
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a scalar product. Examples of the most important members of the exponential
family, such as Gaussian, binomial, multinomial, Gamma and Beta distributions
can be found, e.g., in [13].

It can be shown that exponential family is closed with regard to several impor-
tant operations, particularly product, marginalization and conditioning, see, e.g.,
Lemmata 6 and 8 in [12].

If both operands belong to the exponential family, the result of operation of
composition is defined and can be expressed in the above form and thus also belongs
to the exponential family. I.e. for two densities f(xL) and g(xM ) belonging to an
exponential family, i.e. such that f(xL) = hL(xL)eηL·TL(xL)−AL(ηL) and g(xM ) =
hM (xM )eηM ·TM (xM )−AM (ηM ) the composition also belongs to the exponential family.

Let us look at this property in more detail:For disjoint L and M we get the
product of both densities, which obviously also belongs to the exponential family.

If the other possibility realizes, i.e. if L ∩M 6= ∅ then we can express

g(xM ) = hM (xM )eηL∩M ·TL∩M (xL∩M )+ηM\L·TM\L(xM\L)−AM (ηL∩M ,ηM\L).

According to [12] the conditional distribution

g(xM\L |xL∩M = xL∩M) = hL∩Me
ηM\L·TM\L(xM\L)−AL∩M(ηM\L)

where hL∩M and AL∩M are dependent on the values of conditioning variables. It
is now apparent that the product of f(xL) and g(xM\L |xL∩M ) again belongs to
the exponential family since it can be written in the corresponding form, i.e.

(f . g)(xL∪M ) = hLhL∩Me
ηL·TL(xL)+ηM\L·TM\L(xM\L)−AL(ηL)−AL∩M(ηM\L).

2.3 Multivariate Normal Distribution

The non-degenerate multivariate normal distribution has a symmetric and positive
definite covariance matrix Σ. In such case, the multivariate normal distribution
f(xL) with vector of means µL and covariance matrix ΣL has a density given by
formula

f(xL;µL,ΣL) =
1√

(2π)`|ΣL|
exp

(
−1

2
(xL − µL)TΣ−1L (xL − µL)

)

where ` is a dimension (length) of xL vector, symbol T stands for a vector transpose,
|ΣL| is determinant of covariance matrix and Σ−1L is an inverse of covariance matrix.

Thus, multivariate density f(xL;µL,ΣL) has variables and functions according
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to definition of exponential family given in the following way

xL = (x1, . . . , x`)
T,

ηL =

(
Σ−1L µL
− 1

2Σ−1L

)
,

TL(xL) =

(
xL
xLx

T
L

)
,

AL(ηL) =
1

2
µT
LΣ−1L µL +

1

2
log |ΣL|,

hL(xL) = (2π)
− `

2 .

2.4 Conditional multivariate density

Let us have a multivariate density g(xM ;µM ,ΣM ) and let us divide index set M
into two disjoint parts such that A = L ∩ M and B = M \ L. Thus, the m-
dimensional vector xM can be partitioned into two parts of dimensions mA and
mB (mA +mB = m) in such a way that

xM =

(
xA
xB

)

and similarly

µM =

(
µA
µB

)
.

The covariance matrix is partitioned into the corresponding blocks in the following
way

ΣM =

(
ΣAA ΣAB

ΣBA ΣBB

)

having sizes (
m2
A mAmB

mAmB m2
B

)
.

Thus, having the multivariate density g(xM ) ∼ N (µM ,ΣM ) the conditional
multivariate density g(xM\L |xL∩M = a) = g(xB |xA = a) is again a multivariate

density distribution (see, e.g., [8]) and g(xB |xA = a) ∼ N (µB ,ΣB) where

µB = µB + ΣBAΣ−1AA(a− µA)

and
ΣB = ΣBB −ΣBAΣ−1AAΣAB .

We can somewhat surprisingly see, that the known value a influences the mean of
conditional density but not its covariance matrix. Let us note that the formula for
ΣB is known as the Schur complement of ΣAA in ΣM and Σ−1AA is a generalized
inverse (see again [8]).
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2.5 Product of Multivariate Densities

Similarly, the product of two multivariate normal densities is again multivariate
normal distribution (must be then renormalized). For two multivariate densities
f(xL) ∼ N (µL,ΣL) and g(xM ) ∼ N (µM ,ΣM ) we get

f(xL)g(xM ) ∼ N (µ,Σ)

where
µ = Σ

(
Σ−1L µL + Σ−1M µM

)

and
Σ =

(
Σ−1L + Σ−1M

)−1
.

The normalizing constant is (see [16]) equal to

(2π)−
`+m

2 |ΣL + ΣM |
1
2 exp

(
−1

2
(µL − µM )

T
(ΣL + ΣM )

−1
(µL − µM )

)
.

3 Partially Symbolic Manipulation with Compo-
sitional Models

As the kind reader already guessed from the formulas in previous section, the gen-
eral case of composition in exponential families involves several matrix operations
with partially numeric and partially symbolic manipulation. Obviously, it is advan-
tageous to perform all computations in an (semi)automated way. We performed all
implementations of compositional models in R software [15] which is very advanta-
geous for its vector and matrix operations together with abundance of statistic and
probabilistic methods available. Therefore, we decided to employ a Python based
computer algebra system SymPy with its R interface rSymPy [10].

First of all, let us describe a simple data set which will be used in the following
application of above described theory. It concerns the levels of 5 characteristics
measured in the folicular fluid of 22 pregnant cows. The five variables (pH, pCO2,
pO2, HCO3, BE(B)) appear to have Gaussian distribution (first three variables
on the 5 percent significance level using Shapiro-Wilk test of normality, two other
variables on 1 per thousand significance level which is cause in both cases by a
pair outliers). Thus, it appears to be a bad idea to approximate a five-dimensional
multivariate Gaussian density with 30 continuous parameters from 110 measure-
ments of 5 variables and it seems to be a good idea to estimate from data several
low-dimensional (two- or three-dimensional) distributions and to compose them.
(Three-dimensional distribution has 12 parameters.)

In this paper, we will not focus on the choice of the most suitable marginals as
building stones. We will choose them in a rather rough and intuitive way based on
the Pearson correlation matrix of the five variables (see Table 1). The proper way
is to use some principles of probabilistic structure learning approaches (see, e.g.,
Zhou [18]).
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Table 1: (Pearson) correlation matrix of five analyzed variables.
pH pCO2 pO2 HCO3 BE(B)

pH 1.000 -0.549 0.529 0.647 0.704
pCO2 -0.549 1.000 -0.509 0.280 0.206
pO2 0.529 -0.509 1.000 0.141 0.184
HCO3 0.647 0.280 0.141 1.000 0.997
BE(B) 0.704 0.206 0.184 0.997 1.000
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Figure 1: Two-dimensional Gaussian densities of variables of the first composed
marginal v1 and v2 (left part of figure) and the second composed marginal v1 and
v3 (right part of figure).

In the following text the five parameters will be denoted by v1, . . . , v5 vari-
able symbols. Rather loosely based on the strengthes of the Pearson correlations
of moderate and strong linear dependencies we decided to choose three marginals
f1(v1, v2), f2(v1, v3) and f3(v1, v4, v5). For these marginals we estimate their mul-
tivariate Gaussian densities from data using maximum likelihood estimates speci-
fied in terms of the inverse of the Cholesky factor of the variance-covariance ma-
trix (see [14]) and implemented in R mvnmle package [9]. Two estimated two-
dimensional densities are depicted in Figure 1.

As the first step, we read our sample data set into data data frame and load
the above mentioned libraries of mvnmle and rSymPy. Then we set the simplified
variable names, define the list of marginals to be composed (using a list edges)
and estimate parameters of multivariate distributions using mlest function (see
bellow).
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v <− 1 : ncol (data )
names <− paste ( ”v” ,v , sep=”” )
# names : ”pH” ”pCO2” ”pO2” ”HCO3” ”BE.B”
edges <− l i s t (c ( 1 , 2 ) , c ( 1 , 3 ) , c ( 1 , 4 , 5 ) )

# MLE for mu l t i v a r i a t e normal d i s t r i b u t i o n s
mu <− NULL; s i g <− NULL
for ( e in 1 : length ( edges ) ) {

e s t <− mlest (data [ , edges [ [ e ] ] ] )
emu <− e s t$muhat
names(emu) <− names [ edges [ [ e ] ] ]
mu <− c (mu, l i s t (emu) )
e s i g <− e s t$sigmahat
rownames( e s i g ) <− names [ edges [ [ e ] ] ]
colnames ( e s i g ) <− names [ edges [ [ e ] ] ]
s i g <− c ( s ig , l i s t ( e s i g ) )

}

The estimated parameters are stored in the following numbered vectors and ma-
trices mu* and sig*.

> cat ( sympy( ”mu1” ) ) > cat ( sympy( ” s i g 1 ” ) , ”\n” )
[ 7 . 42868181808 ] [ 0 .0012049443106 , −0.0069107030493]
[ 5 . 47636363472 ] [−0.0069107030493 , 0 .1314049638269 ]
> cat ( sympy( ”mu2” ) ) > cat ( sympy( ” s i g 2 ” ) , ”\n” )
[ 7 . 42868181927 ] [ 0 .001204944283 , 0 .0393622676519 ]
[ 13 . 6313637645 ] [ 0 .039362267652 , 4 .5957484887845 ]
> cat ( sympy( ”mu3” ) ) > cat ( sympy( ” s i g 3 ” ) , ”\n” )
[ 7 . 42873958083 ] [ 0 .001204867353 , 0 .045509151565 , 0 .053034419262 ]
[ 26 . 7414588678 ] [ 0 .045509151565 , 4 .216007981078 , 4 .489984753482 ]
[ 2 . 75089979417 ] [ 0 .053034419262 , 4 .489984753481 , 4 .812928862933 ]

For all three distributions (hypergraph edges) we compute ηi stored in e*, Ti
stored in T*, Ai stored in A* and hi stored in h*. Corresponding densities fi are
computed and stored in f*.

for ( e in 1 : length ( edges ) ) {
sympy(paste ( ” ea=( s i g ” , e , ” )∗∗(−1)∗mu” , e , ”” , sep=”” ) )
sympy(paste ( ”eb=−(( s i g ” , e , ” )∗∗(−1))/2” , sep=”” ) )
sympy(paste ( ”e” , e , ”=(ea .T) . c o l j o i n ( eb ) ” , sep=”” ) )

sympy(paste ( ”T” , e , ”=(x” , e , ” .T) . c o l j o i n (x” , e , ”∗x” , e , ” .T) ” , sep=”” ) )
sympy(paste ( ”A” , e , ”=(mu” , e , ” .T∗ ( ( s i g ” , e , ” )∗∗(−1)∗mu” , e , ” )/ 2 ) . det ()+

log ( s i g ” , e , ” . det ( ) )/2” , sep=”” ) )
sympy(paste ( ” l=1∗x” , e , ” . shape [ 0 ] ” , sep=”” ) )
sympy(paste ( ”h” , e , ”=1/ s q r t ( (2∗pi )∗∗ l ) ” , sep=”” ) )

sympy(paste ( ” f ” , e , ”=h” , e , ”∗exp ( e” , e , ” . dot (T” , e , ”)−A” , e , ” ) ” , sep=”” ) )
}

Thus, we defined all three continuous densities f1, . . . , f3 and all vector functions
of an exponential family. We can continue in computation of conditional density
f2(v3 | v1) using the formulae in subsection 2.4, i.e. the corresponding subvectors
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µA and µB , submatrices ΣAA, ΣAB , ΣBA and ΣBB and functions defining the
conditional density.

> sympy(paste ( ” s i g c=sigbb−s i gba∗ s i g aa∗∗(−1)∗ s i gab ” ) )
[ 1 ] ” [ 3 . 30988976740274 ] ”
> sympy(paste ( ”conda=Matrix ( [ ” ,paste ( ” [ ” ,paste ( ”v” ,A, sep=”” ) , ” ] ” ,
+ c o l l a p s e=” , ” ) , ” ] ) ” , sep=”” ) )
[ 1 ] ” [ v1 ] ”
> sympy(paste ( ”muc=mub+s igba∗ s i g aa∗∗(−1)∗ ( conda−mua) ” ) )
[ 1 ] ” [−229.043560103312 + 32.6672927676576∗v1 ] ”
> sympy( ”econd=((( s i g c )∗∗(−1)∗muc ) .T) . c o l j o i n (−( s i g c∗∗(−1))/2) ” )

” [−69.1997547347452 + 9.86960142581775∗v1 ] ”
” [ −0.151062432629697] ”

> cat ( sympy( ”Tcond=(xcond .T) . c o l j o i n ( xcond∗xcond .T) ” ) , ”\n” )
” [ v3 ] ”
” [ v3∗∗ 2 ] ”

> sympy( ”Acond=(muc .T∗ ( ( s i g c )∗∗(−1)∗muc)/ 2 ) . det ()+ log ( s i g c . det ( ) )/2” )
[ 1 ] ” 7924.8790914+ log (3 .30988977)/2−2260.5686474∗v1+161.2065797∗v1∗∗2”
> sympy( ”hcond=1/ s q r t ( (2∗pi )∗∗ ( xcond . shape [ 0 ] ) ) ” )
[ 1 ] ”2∗∗(1/2)/(2∗pi∗∗(1/2) ) ”

The conditional density f2(v3 | v1) is then composed from the corresponding
vector functions defining it as a member of exponential family. We arrive at a
three-dimensional distribution f1(v1, v2) . f2(v1, v3) defined by following density
(where numeric values were rounded to two decimal places).

13 .07∗2∗∗(1/2)∗exp(−43420.44+523.94∗v2+11430.68∗v1−69.20∗v3+9.87∗v1∗v3
−62.50∗v1∗v2−0.15∗v3∗∗2−5.45∗v2∗∗2−755.38∗v1∗∗2)/pi∗∗(3/2)

In a similar manner we can compose the result above with a conditional dis-
tribution f3(v4, v5 | v1) computed again using the formulae in subsection 2.4 from
f3(v1, v4, v5). Now, the result of the second composition is a five-dimensional dis-
tribution (f1(v1, v2) . f2(v1, v3)) . f3(v1, v4, v5) defined again by density (rounded
to two decimal places).

94 .25∗2∗∗(1/2)∗exp(−1382025.57+523.94∗v2+36863.95∗v4+252860.96∗v1
−69.20∗v3−37118.13∗v5+9.87∗v1∗v3+3326.13∗v1∗v5+517.50∗v4∗v5−62.50∗v1∗v2
−3297.34∗v1∗v4−257.89∗v4∗∗2−11686.21∗v1∗∗2−259.82∗v5∗∗2−0.15∗v3∗∗2
−5.45∗v2∗∗2)/pi∗∗(5/2)

From the resulting multivariate density we can symbolically express marginals
which were not estimated from the data. This can be particularly useful in cases
when we obtain estimates of the marginal building blocks in the process of compo-
sition from different data sources.

The computation of marginals can be hardly computationally (or algorithmi-
cally) feasible. The package rSymPy did not succeeded in symbolic integration of
marginal (f1(v1, v2) . f2(v1, v3))(v2, v3) but we succeeded in computation of the
corresponding two-dimensional density using online tool of Wolfram Alpha (see
Figure 2). The approximately computed result appears to be again in the form of
Gaussian density, i.e. it belongs to the exponential family as expected according to
the above presented assertions. But it appears that computation of marginals is in
general rather uneasy task which probably can be made feasible if the integration
procedure take advantage of exponential family properties.
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Figure 2: Two-dimensional Gaussian density computed as a marginal from the
composition.

4 Conclusions and Possible Continuation

In this paper we presented an application of computer algebra system rSymPy
able to perform operations with parameters of exponential families in order to
(partially) symbolically perform the operation of composition using exponential
families, namely low-dimensional Gaussian densities estimated from data.

Let us mention that the computer algebra system is capable of computation
in arbitrary precision. Moreover, if the parameters of composed distributions are
rational all operations are performed precisely and results is an exact expression
(in a same way as in a toy example in [3]).

The possible future course of development contains the user friendly interface,
setting of proper procedures for (sub)optimal choice of composed marginals and
their estimation and elaboration of procedures leading to the efficient integration
of marginals of compositional models.
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Abstract
We illustrate the use of a recently proposed efficient procedure, based on

L1 distance minimization, for correcting inconsistent (i.e. incoherent) proba-
bility assessments for the so named statistical matching problem. Albeit the
statistical matching problem is based on conditional probabilities estimates,
inconsistencies can appear only among assessments given on the same con-
ditioning values, hence a correction instance can be splitted in a finite set
of unconditional correction instances where the L1-based correction can effi-
ciently operate. The statistical matching problem has been recently enriched
with the possibility of a misclassification setting, breaking the aforementioned
segmentation possibility. Anyhow the L1-based procedure can be applied by
a straightforward translation in a MIP problem, albeit the set of consistent
solutions turns out to be not convex and hence potential disconnected solu-
tions can appear.

1 Introduction

In recent contributions [1, 2] it has been proposed an efficient procedure for correct-
ing inconsistent (i.e. incoherent) probability assessments based on L1 distance min-
imization and encoded in mixed integer programming (MIP) problems. The proce-
dure is particular apt to deal with assessments stemming from different sources of
information, and the so named statistical matching problem is one of those cases
(see e.g. [11]). Albeit the statistical matching problem is based on conditional
probabilities estimates, always in [11] it has been proven that inconsistencies can
appear only among assessments given on the same conditioning values, hence a cor-
rection instance can be splitted in a finite set of unconditional correction instances
where the L1-based correction can efficiently operate.
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The problem has been recently enriched with the possibility of a misclassifica-
tion setting [8], breaking the aforementioned segmentation possibility. If marginal
assessments on the conditioning variable are taken for good, the only possible cor-
rection are the closest Fréchet-Hoeffding bounds for the misclassification probabil-
ities. On the contrary, if also the marginal probabilities are allowed to be modified
or the assessment is partial, the L1-based procedure can be applied by a straight-
forward translation in a MIP problem, albeit the set of consistent solutions turns
out to be not convex and hence potential disconnected solutions can appear. It
is eventually notable that in the case the L1-based correction would induce some
marginal probability to be null, that could happen whenever the initial assessment
would be based on rare or scarce observations, it will not be needed to proceed to
further corrections on deeper zero layers (see [5]).

In the next sections we will briefly illustrate the general statistical matching
(Sec.2), the merging and correction procedures for general unconditional probabil-
ity assessments (Sec.3) and consequently their specific application to the statistical
matching problem (Sec.4). Finally, in Sec.5 we will give a rough preliminary idea of
the correction of incoherent evaluations when also a missclassification mechanism
is assessed.

2 The statistical matching problem

As already stated, we propose to adopt a correction procedure applied to a merg-
ing operation for a specific practical problem named “statistical matching”. Let
us briefly recall what it means and which are its main peculiarities. A detailed
description of such a problem can be found, e.g., in [9, 10].

Denote by (X1,Y1), . . . , (XnA
,YnA

) and by
(XnA+1,ZnA+1), . . . , (XnA+nB

,ZnA+nB
) two random samples, related to two sources

A and B, of dimensions nA and nB . Samples observe three categorical variables
X ,Y,Z with modalities mxi, i ∈ I, myj , j ∈ J and mzk, k ∈ K, respectively.
Hence in the sequel we will adopt the following notation for the possible observa-
tions:

Xi ≡ (X = mxi) , i ∈ I, Yj ≡ (Y = myj) , j ∈ J, Zk ≡ (Z = mzk) , k ∈ K, (1)

that will constitute our propositional variables (i.e. events).
Let Ss (with s = 1, 2) be the two, possibly different, sampling schemes. From

them, relevant parameters, represented by (conditional) probabilities, can be esti-
mated : from A the probability to observe Yj conditional on Xi (for any i ∈ I)

yj|i = PY|(Xi)(Yj), (2)

and analogously from B the probability to observe Zk conditional on Xi (for any
i ∈ I)

zk|i = PZ|Xi
(Zk). (3)

Behavior of L1-based probabilistic correction applied to statistical matching with misclassification information
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Moreover, from A we can estimate the probability to observe Xi by following
the first sampling scheme

xS1
i = PX (Xi|S1), (4)

while from file B by following the second one

xS2
i = PX (Xi|S2), (5)

and, by supposing that an observation can be obtained through one single sampling
scheme Ss, with s ∈ {1, 2} and probability P (Ss), we get

xi = PX (xi) = xS1
i P (S1) + xS2

i P (S2). (6)

Under the assumption of a common sampling scheme, estimations are obtained
through partial maximum likelihood method, and the result brings to the frequen-
cies

yj|i =
nijA
ni·A

, zk|i =
nikB
ni·B

, xi =
ni·A + ni·B
nA + nB

, (7)

with ni·A and ni·B cardinalities of elements with Xi in samples A and B, respectively,

while nijA is the cardinality of elements in A with (Xi, Yj) and nikB is the cardinality
of elements in B with (Xi, Zk).

Whenever ni·A (the same for ni·B) is equal to zero (i.e. no observation in A
has Xi) the value yj|i (zk|i) is undefined and this specific parameter has not any
estimation.

If the probabilities P (Ss), s = 1, 2, can be elicited, we get a precise conditional
probability assessment (V, E ,p,C) with

V = {Xi, Yj , Zk} , E = {Xi, Yj |Xi, Zk|Xi} , p = {xi,yj|i, zk|i}, i ∈ I, j ∈ J, k ∈ K,
(8)

while C is a set of logical constraints, in this field named as “structural zeroes”,
among elements of V .

Usually, the first step is to check the coherence of (V, E ,p,C), that should resort
to check the satisfiability of a sequence of linear systems (see, e.g., [5]) but that in
the particular context of the statistical matching can be reduced to the solvability
of a unique linear system (see [11]). Generally, whenever (V, E ,p,C) is coherent
there is more than one solution and the set of all of them forms a so called “credal
set”.

In the trivial case of logical independence, coherence is automatically ensured
(see [11]). In the more worthwhile case of structural zeroes among random vari-
ables Y and Z (for real applications where these are present refer, e.g., to [9]),
coherence of the entire assessment (V, E ,p,C) in (8) is not directly ensured by the
separate coherence of the distinct assessments with numerical parts (2), (3), (6).
The problem is hence to find a coherent assessment that solves inconsistencies.

Anyhow, whenever present, inconsistencies focus on conditional events with the
same conditioning Xi (proofs and examples again in [11]).
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This result will permit to split the problem of the merging of the two estimates
into separate subproblems: one for the unconditional values xi, i ∈ I, and one
for each conditioning Xi about the conditional quantities {yj|i, zk|i}, j ∈ J and
k ∈ K. In each of these subproblems the merging and correction procedure can
be applied, even being the statistical matching a conditional problem, by fixing in
each subproblem the conditioning event, that could be the sure event > or Xi, and
dealing with actually unconditional problems. To see how this could be possible,
let us formalize in the next Sections the merging and correction procedure, starting
with the formal definition of the unconditional probability assessments.

3 Correction of probability assessments

A probability assessment on a finite domain is a quadruple π = (V,U, p,C), where
V = {X1, . . . , Xk} is a finite set of propositional variables, representing any poten-
tial event of interest, U is a subset of V that contains the effective events taken
into consideration, p : U → [0, 1] is a function which assigns a probability value to
each variable in U , and C is a finite set of logical constraints which lie among all
the variables in V .

With such framework, the user provides a probability value for the elements of
set U , but logical constraints can also be written in terms of all the existing events
V . This feature allows to extend an initial assessment to a larger domain without
redefining the whole model.

The constraints in C are written with the usual logical notation, where ¬, ∧ and
∨ denote the negation, disjunction and conjunction connectives, respectively;⇒ the
material implication; = the logical equivalence; > and ⊥ the universal tautology
and contradiction (sure and impossible events), respectively. These constraints
can be used to represent any kind of compound event, for instance that an event is
the conjunction of other two events, or denote the implications or incompatibilities
among the elements of V . Without loss of generality, we suppose that C is expressed
in conjunctive normal form (CNF) that will help in the implementation part of
the correction procedure. Hence C = {c1, . . . , cm} where each element ci of C is a

disjunctive clause, i.e. ci =

(
∨

h∈Hi

Xh

)
∨
(
∨
l∈Li

¬Xl

)
for some Hi, Li ⊆ {1, . . . , n}.

Since we will require that all the logical constraint present in C must be satisfied,
C can be seen as the conjunction of c1, . . . , cm.

Since a probabilistic assessment π is partial, it may or not be coherent, i.e.
consistent with a probability distribution.

The problem of checking the coherence of a probability assessment, called CPA,
has been already studied (see [3, 4] among the many), albeit in a slightly different
form, showing that it is a NP-complete problem, even when the constraints in C
are binary (i.e., each of them involves only two variables).

There exist several approach to solve CPA. Among those, the Mixed Integer
Programming (MIP) based approach has proved to be very effective as reported in
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Table 1: Variables of P1

name size type
aij , for i = 1, . . . , n

n(n+ 1) binary
and j = 1, . . . , n+ 1
bij , for i = 1, . . . , n

n(n+ 1) real
and j = 1, . . . , n+ 1

qj , for j = 1, . . . , n+ 1 n+ 1 real
ri for i = 1, . . . , n n real
si for i = 1, . . . , n n real

[6, 7], where their implementation was able to handle coherence testing instances
up to 1000 variables and 1000 disjunctive clauses in average time ranging from
some seconds to some minutes.

When a probability assessment π = (V,U, p,C) is not coherent, then it is possible
to “correct” it in order to obtain a coherent probability assessment π′ which is as
close as possible to π, according to a distance or a pseudo-distance function between
probability assessments.

Definition 1 Given a distance d, a d-correction of a probability assessment π =
(V,U, p,C) is a vector p′ such that the probability assessment
π′ = (V,U, p′,C) is coherent and d(p, p′) is minimized. We denote Cd(π) the sets
of all the d-correction of π.

It is important to notice that for certain choices of d, Cd(π) has just one element,
for instance when d is the Euclidean distance. On the other hand, for some other
choices of d, Cd(π) has more than one element for some probability assessments
π. In this case, the operation of correcting a probability assessment leads to an
imprecise probability model, called “credal set”. Clearly if π is coherent, then
Cd(π) = {p}, for any distance d of Rn.

In this paper we focus on the L1 distance defined as
d1(p, p′) =

∑n
i=1 |p(Xi)− p′(Xi)| and we denote Cd1(π) as C(π).

This distance has two important properties. First of all, the correction can
be easily interpreted as a cost of changing the probability values, in terms of the
sum of the displacements |p(Xi) − p′(Xi)|. Minimization of such displacements
obeys to the basic principle of minimal change in a numerical uncertainty setting.
Secondly, the resulting minimization problem with L1 distance can be solved by
using linear programming with both integer and real variables and this represents
a clear computational advantage compared to other distances which require non
linear (quadratic, logarithmic, etc.) optimizations tools.

In [1] the details of the MIP-based program P1 implementation have been give.
Here we just recall the basic quantities involved in it.
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It is well known that if a probability assessmentis coherent, there exists a sparse
probability distribution µ so that p′ can be written as a convex combination of at
most n+ 1 atoms. Let us call α(1), . . . , α(n+1) these atoms.

The variables of P1 are summarized in Table 3, while its linear constraints are
∑

h∈Hi

ah,j +
∑

l∈Li

(1− al,j) ≥ 1 i = 1, . . . ,m j = 1, . . . , n+ 1 (9)

n+1∑

j=1

bij = p(Xi) + (ri − si) i = 1, . . . , n (10)

0 ≤ bij ≤ aij , aij − 1 + qj ≤ bij ≤ qj i = 1, . . . , n j = 1, . . . , n+ 1 (11)
n+1∑

i=1

qj = 1 (12)

ri ≤ 1, si ≤ 1 i = 1, . . . , n (13)

The implicit constraint is that all of the variables must be non-negative, as usual
in linear programming.

The variables aij are binary , i.e. constrained in {0, 1}. Each value aij should
correspond to the atom component α(j)(Xi), for i = 1, . . . , n and j = 1, . . . , n +
1. Indeed, the constraint (9) forces each assignment (a1j , . . . , anj) to satisfy all
the clauses ci ∈ C. The values q1, . . . , qn+1 represent the coefficient of the con-
vex combination which generates p′, which also correspond to the probabilities
µ(α(1)), . . . , µ(α(n+1)). The constraint (11) allows to express the equation

bij = aij · qj for i = 1, . . . , n and j = 1, . . . , n+ 1,

without using the multiplication, otherwise P1 would not be a linear problem.
Indeed, if aij = 0, then bij = 0 too. On the other hand, if aij = 1, then
aij − 1 + qj ≤ bij ≤ qj reduces to qj ≤ bij ≤ qj . In this way, for each i = 1, . . . , n

the sum
∑n+1
j=1 bij corresponds to

∑n+1
j=1 aij · qj . Since aij = 1 if and only if α(j)

satisfies Xi, the sum is also equal to p′(Xi).
The variables ri, si are slack variables, which represent, respectively, the positive

and the negative difference between p(Xi) and p′(Xi), as implied by the constraint
(10). Hence (ri−si) is the correction on the probability of Xi, for each i = 1, . . . , n.

Finally, the objective function to be minimized is

n∑

i=1

(ri + si) (14)

that, being the sum of these corrections, corresponds to the L1-distance between p
and p′, i.e.,

∑n
i=1 |p(Xi)− p′(Xi)|. Note that for each i = 1, . . . , n, it is impossible

that ri > 0 and si > 0, otherwise the objective function would not be minimized.
It is easy to see that any solution of the linear program P1 corresponds to a

L1-correction p′ of p. And vice versa, any L1-correction p′ of p corresponds to a
solution of P1.

Behavior of L1-based probabilistic correction applied to statistical matching with misclassification information
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The optimal value δ for the objective function corresponds to the minimum
possible correction on p and any coherent probability assessment π′ = (V,U, p′,C)
such that d1(p, p′) = δ is a possible solution i.e., p′ is an element of C(π). Note
that p′ can be simply obtained as p′i = pi + ri − si for i = 1, . . . , n.

In many situations C(π) has more than one element and the MIP problem is
able to find just one solution, which could not be a good representative of all the
elements of C(π), as happens when it is an extreme value. Hence program P1 must
be associated with an other MIP program P2 to generate all the elements of C(π).
In P2 all the constraints and the variables of P1 are reported and it contains a
new real variable z, which is subject to the constraints ri + si ≤ z, for i = 1, . . . , n
(hence z ≥ max

i=1,...,n
(ri + si)), and the new additional constraint

∑n
i=1(ri + si) = δ.

In this way, the P2 objective function to be minimized is simply z.

The corrected assessment π̄ = (V,U, p̄,C) tries to spread the difference δ as
much as possible among all the dimensions, i.e. the variables of U . Hence p̄ is, in
some sense, the most “entropic” point of C(π).

Using p̄, it is possible to find the face F1 of the polytope Q where C(π) lies. The
face F1 is itself a convex set with at most n + 1 atoms as extremal points, which
can be found as a part of the solutions of P2 (i.e., the optimal values of aij).

By looking at the signs of p̄(Xi)− p(Xi), for i = 1, . . . , n, it is also possible to
determine the face F2 of Bπ(δ) which contains C(π). Indeed, F2 is a convex set
with at most n extremal points of the form p+ sign(p̄(Xj)− p(Xj)) · δ · ej .

The whole set of corrections C(π) will result as F1 ∩ F2.

These steps have been implemented in a procedure named Correct that, given
in input any partial assessment π, returns the extremal points of the credal set
C(π) (for details refer again to [1]).

In Sec.2 we have seen that an incoherent assessment could come by the merging
of two separate assessments π1 and π2. Let us show how to produce a new coherent
probability assessment π3 which is a ”compromise” between π1 and π2, keeping as
much as possible the information from both.

Depending if the two assessments are compatible (i.e. they give the same values
to common variables) or not (i.e. there is an explicit contradiction given by different
probabilities to some common variable) there are two different way of defining the
joining of them. We report here just the basic notions, referring again to [1] for all
the details.

In case of compatibility, it is possible to join directly the two original assess-
ments, so that the merging will result as π1 ⊕ π2 = Correct(π1 + π2). Note that,
since such merging procedure is the result of our Correct procedure, its output
could be a credal set, as already outlined in the previous Section.

When the probability assessments to be merged are non compatible it is not
possible to join directly them into a unique assessment. Hence, in addition to pos-
sible initial incoherences present in the separate assessment, we have to tackle with
a sure incoherence in the joint one. Anyhow two different correction procedures are
possible: a “weighted combination” of the two assessments, or a “assignment to
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duplicates”. The first approach requires to create a non contradictory probability
assessment derived from π1 and π2, by choosing a weighted average probability
value for each variable in common.

The merging operation between π1 and π2 is then defined as the new assessment
obtained as correction of the weighted average π1 ⊕ω π2 = Correct(π1 +ω π2).

The second approach is to create a probability assessment which maintains both
numerical values and to solve the apparent contradiction by adding a new logical
variable X ′i, for each variable Xi in common. Obviously the logical constraints
¬Xi ∨X ′i and Xi ∨¬X ′i must be added to C∪D to represent the duplicated events
Xi = X ′i.

Indeed, apart from separate initial incoherences of the two initial assessments
π1 and π2, the new assessment so obtained π1 + π2 is obviously incoherent since
the duplicated events with different associated values and the merging operation
of π1 and π2 results as π1 ⊕I π2 = Correct(π1 + π2). Note that, whenever the two
assessments π1 and π2 are compatible, this merging operator π1 ⊕I π2 coincides
with the previous π1⊕π2 since no duplication of variables is needed in such a case.

The main difference between the two merging of incompatible assessments just
described is that⊕I is an unsupervised approach since it tries to automatically solve
the contradictions, while the operator ⊕ω is a supervised approach since it needs
an explicit and “exogenous” conciliation among explicit numerical contradictions
through the choice of the weight ω. These differences can lead to very different final
results. Anyway, the idea behind these two methods is the same, i.e., the merging
of two information sources can be performed in two steps. First, put together all
the information I, and then find the smallest number of corrections on I such that
the new information I ′ is consistent. The choice of which merging operator to
adopt should be based on the availability or not of the weight ω representing the
relevance, or better of the reliability, of the sources of information. If a reliability
grade ω is available, or reasonably assessed, the ⊕ω should be preferred, if not the
⊕I operator avoids the use of unrealistic assumptions.

4 Application of the merging and correction pro-
cedures to the statistical matching problem

We can now describe how the merging an correction procedures defined in the
previous Section can be applied to the statistical matching problem described in
Sec. 2. The preliminary operation is to merge the estimates coming from the two
different sampling schemes S1 and S2. In particular, since incoherences could be
focused only on events conditioned to the same event, we can split the domain E
into sub-domains

EΩ = {Xi}i∈I ; (15)

Ei = {Yj |Xi, Zk|Xi}j∈J,k∈K for i ∈ I (16)

Behavior of L1-based probabilistic correction applied to statistical matching with misclassification information
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Since, as described in Section 2, variables Y and Z are not jointly observed, on the
domains Ei the two sources of information do not overlap and hence the problem
will be to, eventually, correct the estimates {yj|i, zk|i} obtained through (2) and

(3). A proper merging operation is needed for the estimates {xS1
i }i∈I and {xS2

i }i∈I ,
both on elements of EΩ.

As described in Sec. 3, two different approaches can be used: the “supervised”
procedure if we can assess the ”weight” ω of the relevance or reliability of sources;
or the “unsupervised” one that relies on the duplication of all events Xi and con-
sequent addition of structural constraints that express such duplication.

Schematically, the first approach needs hence to compute at first a componen-
twise“weighted average”

xS1 +ω xS2 = ω{xS1
i }i∈I + (1− ω){xS2

i }i∈I (17)

for a chosen weight ω ∈ [0, 1], and consequently apply the correct procedure to
(V, EΩ,xS1 +ω xS2 ,C) obtaining for the numerical part

lub = xS1 ⊕ω xS2 = Correct(xS1 +ω xS2) (18)

If there is some missing value for {xS1
i }i∈I or for {xS2

i }i∈I it must be put equal to 0
in (17). Remember that the correct procedure could lead to either a single solution
or to a convex set of solutions, hence lub in (18) could be either an actually precise
coherent assessment {xi}i∈I or a proper lower-upper assessment {lubi}i∈I .

Note moreover that, if estimates are taken through frequencies in both samples,
xS1 +ω xS2 in (17) turns out to be directly coherent for any choice of ω ∈ [0, 1] so
that lub = {xi}i∈I = xS1 +ω xS2 . In particular, choosing ω = nA

nA+nB
we obtain

exactly the xi estimates already described in (7). So the common sampling scheme
can be re-interpreted in our method as separate sampling schemes with weights
proportional to the different sample dimensions.

The second approach is to let the correct procedure work without any exogenous
weight of the sources and contemplating simultaneously the two different estimates
{xS1

i }i∈I and {xS2
i }i∈I . The obvious inconsistencies are solved by duplicating the

events in EΩ as E ′Ω = {Ai ≡ Xi, Bi ≡ Xi}i∈I and by adding structural zeros induced
by the duplicates Ai = Bi, for i ∈ I. Hence the correction procedure can be applied
to the concatenated assessment xS1

⊎
xS2 that assigns xS1

i to Ai and xS2
i to Bi,

for any i ∈ I, by obtaining a, generally imprecise, assessment lub = xS1 ⊕I xS2 =
Correct(xS1

⊎
xS2).

As already mentioned, to the other conditioned “strata”
(Ei, {yj|i, zk|i}j∈J,k∈K) the correction procedure can be straightly applied obtain-
ing, generally imprecise, estimates {lubj|i, lubk|i}j∈J,k∈K , for i ∈ I.

At the end, by collecting all the corrections we get a, generally imprecise, co-
herent assessment (V, E , {lubi, lubj|i, lubk|i}i∈I,j∈J,k∈K ,C) as the merging of the
separate estimates based on the two sample schemes S1 and S2.
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5 Correction of a statistical matching with miss-
classification

In [8] it is described a variation of the usual statistical matching problem by in-
troducing a missclassification mechanism that could be summarized by saying that
the common variable X is biasedly observed in source A (e.g. if its values are
assessed by not experts in the field) giving rise to a new variable X ∗ with the same
modalities mxi, i ∈ I, while X remains properly observed in the second source B.

In addition, a missclassification mechanism, specified by conditional probabil-
ities PX|X∗

i∗
(Xi), can be fully or partially assessed. Hence the whole assessment

that results from the joining of all the available information will be of the form
π = (V ∗, E∗,p∗,C∗) with

V ∗ = {Xi, X
∗
i∗ Yj , Zk} , E∗ = {Xi, X

∗
i∗ , Yj |X∗i∗ , Zk|Xi, Xi|X∗i∗} ,

p∗ = {xi,x∗i∗ ,yj|i∗ , zk|i,xi|i∗} , (i, i∗) ∈ I ⊆ I × I, j ∈ J, k ∈ K, (19)

while C∗ incorporates the structural zeroes among elements of V ∗.
This brakes the division in the subdomains (15,16) and the possibility to cor-

rect incoherence of the whole assessments with a finite set of corrections on the
subdomains. Anyhow, always in [8], it has been proven that the coherence of the
whole assessments is basically due to the coherence of the subassessment involving
only X ∗ and X , hence with numerical part p∗|I = {xi,xi∗ ,xi|i∗}(i,i∗)∈I , and that,

in the case of absence of structural zeroes between X ∗ and X (i.e. I = I × I), the
conditional probabilities xi|i∗ , i, i∗ ∈ I, are constrained by coherence to lay inside
the so called Fréchet-Hoeffding bounds:

max(0,xi + x∗i∗ − 1)

x∗i∗
≤ xi|i∗ ≤

min(xi,x
∗
i∗)

x∗i∗
. (20)

Such bounds imply that the set of coherent values for {xi,xi∗ ,xi|i∗}(i,i∗)∈I is not
convex in general, hence the credal set of a correction of an incoherent assessments
could result not connected and hardly computable. Hence we cannot expect a
procedure that produces the whole credal set of correction C(π). Anyhow, we can
find just one element of such credal set by a particular setting of linear constraints
in a new MIP-based optimization.

More precisely, we change a little bit the notation with respect the MIP pro-
gram P1 described in Sec.3. In fact now the atoms are characterized by the simple
possibility of having the conjunction Xi ∧X∗i∗ , so that the set of constraints asso-
ciated to the subassessment can be simply represented by set of couples of indexes
C∗|I = {(i, i∗) ∈ I × I : Xi ∧ X∗i∗ = ⊥} (in the sequel we will denote with c∗ the

cardinality of C∗|I). Consequently the binary variables can be denoted with aii∗ ,
while the real variables with bii∗ and qii∗ . About the slack variables, we need them
for the potential modification of both the marginal and conditional probabilities,
hence we denote them with ri, si, ri∗ , si∗ , ri|i∗ , si|i∗ , respectively. With such a choice
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the constraints of a new MIP program P3 become:

∑

(i,i∗)∈C∗|I

(1− aii∗) ≥ c∗ (21)

0 ≤ bii∗ ≤ aii∗ aii∗ − 1 + qii∗ ≤ bii∗ ≤ qii∗ (22)∑

i∗
bii∗ = xi + (ri − si) (23)

∑

i

bii∗ = x∗i∗ + (ri∗ − si∗) (24)

bii∗ = xi|i∗xi∗ + xi|i∗(ri∗ − si∗) + xi∗(ri|i∗ − si|i∗) (25)
∑

i,i∗∈I
bii∗ = 1 (26)

ri ≤ 1, si ≤ 1, ri∗ ≤ 1 , si∗ ≤ 1, ri|i∗ ≤ 1, si|i∗ ≤ 1, (27)

where the constraint (21) induces the binary variables aii∗ to be 0 for the couples
of indexes in C∗|I ; constraints like (22) are set for all i, i∗ ∈ I and induce equalities

bii∗ = aii∗qii∗ that otherwise will not be linear; constraints like (23) and (24) are
set for all the assessed marginal probabilities xi and x∗i∗ and permit their correction
through the slack variables; constraints like (25) are set for all assessed conditional
probabilities xi|i∗ and constraint the joint distribution with corrected conditional
and marginal values. Note that these last type of constraints are equivalent to set

bii∗ = (xi|i∗ + ri|i∗ − si|i∗)(xi∗ + ri∗ − si∗) (28)

but without developing the cross products among the slack variables since they will
constitute corrections of the joint distribution that, not being assessed, does not
need any correction. This permits us to remain in a linear program.

The objective function to minimize is again the sum of the slack variables

∑

i,i∗
ri + si + ri∗ + si∗ + ri|i∗ + si|i∗ (29)

that obviously represents the L1 distance between the assess probability values and
the coherent ones.

Note that whenever the corrected assessment would present some marginal
probability to be zero, all the new probabilities conditioned on such X∗i∗ will result
automatically coherent since, for the structure of the assessment, the various zero
layers (for such a notion refer to [5]) will involve only one such conditioning event
per time, so that the PX|X∗

i∗
(Xi) do not have any particular constraint to satisfy.

At the moment we have developed only the theoretical part of this section,
leaving its practical application to future developments.
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Abstract

Since the classical definitions of correlation give rise to counterintuitive find-
ings for extreme probability events, we build upon the concept of coherent
conditional probability to introduce enhanced notions of correlation. Our new
notions allow handling extreme events in a principled way by accommodat-
ing the different levels of strength of the zero probabilities involved. Where
the detection of correlations by means of these levels is computationally chal-
lenging, we provide a full characterisation of the correlations between extreme
probability events without reference to the complex structure of probability.

1 Introduction

The importance of handling extreme probability events in a principled way has been
stressed in a range of papers (see for example, [3, 5, 7]); by an extreme probability
event we mean a highly unexpected event, that is, an event of zero probability,
or a nearly sure event, of probability 1. Zero probabilities necessarily arise in un-
countable algebras and, hence, in real-world applications involving infinite settings,
where the lack of expressive power of the real numbers often forces possible events
to be assigned zero probability. Yet, also in finite settings do extreme probabilities
arise. When extracting (conditional) probabilities from real-world data, for exam-
ple, unexpected events and events occurring with negligible frequency will receive
zero probabilities. To forestall the inclusion of zero probabilities in probabilistic
models, various more or less “ad hoc” solutions are in use, such as the well-known
Laplace correction and the use of pseudocounts in a Bayesian setting. Forcing all
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distinguished events to have positive probability however, drastically restricts the
class of admissible distributions and, hence, the possibilities of extending partial
assessments to complete probabilities.

In applications of probability theory, stochastic independence and the concepts
of positive and negative correlation play an important role. While in the context of
extreme probabilities stochastic independence has been well studied (see for exam-
ple [3, 5, 7]), and has led to an enhanced definition of independence, the concept of
correlation has received little to no attention. In this paper, we demonstrate that
in the presence of extreme probability events, the classical definition of correlation
can give counterintuitive results, such as an event E being uncorrelated with an
event H logically implying it. Based on these observations, we introduce enhanced
notions of correlation which accommodate the different levels of strength of the
zero probabilities involved. We develop the notions of positive and negative corre-
lation in a coherent setting, referring to full conditional probabilities represented
by their complete agreeing classes which in turn define the zero layers of the events
of interest. Although the framework of coherent setting constitutes the principle on
which our enhanced notion of correlation is founded, referring to zero layers does
not provide for practicable application in real-world settings, as a consequence of
the computational challenges involved. We therefore provide also a full character-
isation of the correlations involving extreme probability events without reference
to the complex structure of probability.

The paper is organised as follows. Section 2 presents some preliminaries on
coherent conditional probability and thereby introduces our notational conventions.
In Section 3, we present our concepts of positive and negative correlation in a
coherent setting and introduce some of their properties. Section 4 then provides
the characterisation of all correlations involving extreme probability events. Section
5 concludes the paper with our plans for further research.

2 Preliminaries

We consider an event to be any fact described by a Boolean sentence, indicating
by Ω the sure event and using ∅ for the impossible event; for any event E, we will
use E∗ to indicate either E itself or its contrary Ec. A conditional event E |H
is an ordered pair of events E,H with H 6= ∅; in the pair, the two events E and
H have the same type, both being Boolean sentences, yet have different roles in
the sense that H has the role of hypothesis. We recall that an additive class of
events is a set of events closed under disjunction ∨; a Boolean algebra of events is
an additive class which is further closed under taking the contrary (·)c, and hence
under conjunction ∧. For any Boolean algebra A, we use A0 to denote A\{∅}. For
an arbitrary family of events E , we use algebra(E) to denote the minimal Boolean
algebra of events containing E and additive(E) to denote the minimal additive class
of events containing E ; by atoms(E) we indicate the finest partition of Ω contained
in algebra(E). We will restrict our further discussion to finite Boolean algebras.

Detecting Correlation Between Extreme Probability Events
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In this paper, we build on the following axiomatic definition of conditional
probability which dates back to de Finetti [8], and has been explicitly formulated,
with minor differences, by Dubins [9] and Krauss [10].

Definition 1. Let A be a Boolean algebra of events and let H be an additive class
with H ⊆ A0. A conditional probability on A×H is a function P : A×H → [0, 1]
that satisfies the following conditions:

(i) P (E |H) = P (E ∧H |H), for every E ∈ A and H ∈ H;

(ii) P (· |H) is a finitely additive probability on A, for every H ∈ H;

(iii) P (E∧F |H) = P (E |H)·P (F |E∧H), for every H,E∧H ∈ H and E,F ∈ A.

Whenever Ω ∈ H, we write P (E) = P (E |Ω), for every E ∈ A. Following Dubins,
we say that a conditional probability P (· | ·) is full on A if it is defined on A×A0,
that is, if H = A0. Dubins has shown that every conditional probability on A×H
with H ⊂ A0 can be extended to a full conditional probability on A×A0 [9].

For any Boolean algebra of events A, every full conditional probability P (· | ·)
on A has a one-to-one correspondence with a linearly ordered class {P0, . . . , Pk}
of (unconditional) probabilities on A, called its complete agreeing class, whose
supports form a partition of Ω. For a given full conditional probability P (· | ·), its
class {P0, . . . , Pk} is obtained by setting

• P0(·) = P (· |H0
0 ), with H0

0 = Ω;

• for each successive α, Pα(·) = P (· |Hα
0 ), withHα

0 =
∨
H⊆Hα−1

0 ,Pα−1(H)=0H 6=∅;

with the iterative construction halting when Hk+1
0 = ∅. We note that for every

event H ∈ A0, there is an index α ∈ {0, . . . , k} with Pα(H) > 0. Moreover, for
every conditional event E | H ∈ A × A0 and αH being the minimum index in
{0, . . . , k} with PαH (H) > 0, we have that

P (E |H) =
PαH (E ∧H)

PαH (H)
.

Having so far addressed full conditional probabilities on an algebra A, we now
consider arbitrary, possibly partially specified, conditional probabilities.

Definition 2. Let G = {Ej |Hj}j∈J , with J a finite index set, be an arbitrary fam-
ily of conditional events. A coherent conditional probability on G is a function
P : G → [0, 1] for which there exists a conditional probability P ′: A × H → [0, 1],
with A = algebra({Ej , Hj}j∈J) and H = additive({Hj}j∈J), such that P ′|G = P .

We note that, since every conditional probability P ′ on A×H can be extended to a
full conditional probability on A, Definition 2 can also be formulated by requiring
the existence of a full conditional probability on A extending the original function
P . In the sequel, we will use the phrase assessment to denote a function P for
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which coherence has yet to be established. The following theorem now specifies sev-
eral characterisations of coherence for such an assessment, relevant to our current
context; for proofs of the equivalences stated in the theorem, we refer to [1, 2, 4].

Theorem 1. Let G = {Ej | Hj}j∈J , with J a finite index set, be an arbitrary
family of conditional events. Then, for any function P : G → [0, 1], the following
statements are equivalent:

(i) P is a coherent conditional probability;

(ii) There exists a complete agreeing class {P0, . . . , Pk}, k ≥ 0, of probabilities
Pα on algebra({Ej , Hj}j∈J) such that, for every j ∈ J , if αj is the minimum
index in {0, . . . , k} with Pαj (Hj) > 0, then

P (Ej |Hj) =
Pαj (Ej ∧Hj)

Pαj (Hj)
;

(iii) With the atom sets C0 = atoms({Ej , Hj}j∈J) and, for α = 1, . . . , k, Cα =
{Cr ∈ Cα−1 | Pα−1(Cr) = 0}, all systems of equations Sα in the sequence of
systems {S0, . . . ,Sk}, k ≥ 0, with non-negative unknowns xαr = Pα(Cr) for
all Cr ∈ Cα, are compatible:

Sα :





∑
Cr∈Cα,Cr⊆Ej∧Hj

xαr = P (Ej |Hj) ·
∑

Cr∈Cα,Cr⊆Hj
xαr , for all j∈JwithPα−1(Hj)=0

∑
Cr∈Cα

xαr = 1.

Of the sequence of systems S0, . . . ,Sk introduced in Theorem 1(iii), every sequence
of solutions {x0, . . . ,xk} defines a complete agreeing class {P0, . . . , Pk} on the
algebra algebra({Ej , Hj}j∈J) by setting P0(Cr) = x0r for all Cr ∈ C0, and for each
successive α = 1, . . . , k, setting

Pα(Cr) = 0 for every Cr ∈ C0 \ Cα, and Pα(Cr) = xαr for every Cr ∈ Cα,

and then extending each probability Pα by additivity. In turn, the complete agree-
ing class {P0, . . . , Pk} described in Theorem 1(ii) has a one-to-one correspondence
with a full conditional probability P ′(· | ·) on algebra({Ej , Hj}j∈J) extending P .

To conclude our preliminaries, we recall the concept of zero layer [6], which nat-
urally arises from the structure of conditional probability described in Theorem 1.

Definition 3. Let A be a Boolean algebra of events and let P (· | ·) be a full condi-
tional probability on A represented by the complete agreeing class {P0, . . . , Pk} of
probabilities on A. For every event H ∈ A0, the zero layer of H with respect to
{P0, . . . , Pk} is the non-negative number

o(H) = min{α ∈ {0, . . . , k} : Pα(H) > 0},
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with the zero layer of the impossible event equal to o(∅) = +∞. For every condi-
tional event E |H ∈ A ×A0, the zero layer of E |H with respect to {P0, . . . , Pk}
is the non-negative number

o(E |H) = o(E ∧H)− o(H).

We note that, for any event E with P (E) = P (E |Ω) > 0, we have that o(E) = 0.
We further note that P (E |H) > 0 iff o(E ∧H) = o(H) and hence o(E |H) = 0.

3 Positive and negative correlation

Before defining our enhanced concept of corrrelation, we review the classical defi-
nition of correlation between two events, stated in terms of coherence.

Definition 4. Let P be a coherent conditional probability defined on an arbitrary
family of events G with E,E |H ∈ G. Then,

• E is positively correlated with H iff P (E |H) > P (E);

• E is negatively correlated with H iff P (E |H) < P (E);

• E and H are not correlated iff P (E |H) = P (E).

Various properties of correlation having been formulated for the classical setting, we
review in the following proposition some properties through which we will demon-
strate the inadequacy of the classical definitions for describing correlation in the
presence of extreme probability events.

Proposition 1. Let G be an arbitrary family of conditional events including E∗, H∗,
E∗ |H∗. Let P be a coherent conditional probability on G such that P (E), P (H) ∈
]0, 1[. Then, the following properties hold:

(i) if E is positively (or, alternatively: negatively) correlated with H, then Ec is
positively (negatively) correlated with Hc;

(ii) – if either E∧H=∅ or Ec∧Hc=∅, then E is negatively correlated with H;

– if either Ec∧H=∅ or E∧Hc=∅, then E is positively correlated with H;

(iii) E is positively (negatively) correlated with H iff P (E |H) > (<)P (E |Hc).

Proof. The properties (i) and (iii) follow directly from Definition 1. The first part
of property (ii) follows from the observation that E ∧H = ∅ implies P (E |H) =
0 < P (E). As Ec∧Hc = ∅ implies P (Ec |Hc) = 0 < P (Ec), we have by property
(i) that P (E |H) < P (E). In both cases, therefore, E is negatively correlated with
H. The second part of property (ii) follows analogously.

We note that property (i) of Proposition 1 strictly depends on the premise that the
probabilities of E and H are different from 0 and 1. For property (iii), moreover,
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the implication P (E | H) > P (E) ⇒ P (E | H) > P (E | Hc) holds only when
P (E), P (H) ∈ ]0, 1[, while the reversed implication is universally valid.

To illustrate the inadequacy of the classical definition above for describing cor-
relation in the presence of extreme probability events, we consider an event H with
P (H) = 1. By Definition 4, this event is not correlated with any other event, as
for any event E 6= H we would find that P (E |H) = P (E). We would find the
exact same result, in fact, also for an event E which logically contradicts H, as we
would then have P (E |H) = P (∅ |H) = P (E) = 0. Yet, E could clearly not be
considered uncorrelated with H. Similarly counterintuitive conclusions are found
for an event E which is logically implied by H and for an event E with P (E) = 0.

Not all researchers accept Definition 4 as the basic definition of correlation, how-
ever, and may argue that the above observations are due to using an inappropriate
definition. They may use property (iii) of Proposition 1 for the basic definition of
correlation instead, that is, use Definition 5 below.

Definition 5. Let P be a coherent conditional probability defined on an arbitrary
family of events G with E |H,E |Hc ∈ G. Then,

• E is positively correlated with H iff P (E |H) > P (E |Hc);

• E is negatively correlated with H iff P (E |H) < P (E |Hc);

• E and H are not correlated iff P (E |H) = P (E |Hc).

We note that Definitions 4 and 5 are not equivalent: while Definition 4 implies
Definition 5, the reverse does not hold. In fact, by Definition 5, a conditioning
event H with P (H) = 1 is not necessarily uncorrelated with an event E. Since
P (Hc) = 0, there is an index αH > 0 such that PαH (H) > 0 and

P (E |Hc) =
PαH (E ∧Hc)

PαH (Hc)
,

which, without any further information, can assume any value in [0, 1] and hence
also values larger, or smaller, than P (E). Yet, also Definition 5 does not capture
the full impact of the hypothesis H on the degree of belief in E when P (E |H) =
P (E |Hc) = 0 or P (E |H) = P (E |Hc) = 1.

From the above considerations, we conclude that, with both definitions, we
need to distinguish between different zeroes, depending on their strengths, before
concluding that two extreme probability events are uncorrelated. We provide an
example to illustrate our conclusion.

Example 1. Let Ω be the unit square [0, 1]2. Let the event E be the Boolean
sentence E = P ∨ Q ∨ R where P,Q,R are the points P =

(
3
4 ,

3
4

)
, Q =

(
1
2 ,

1
2

)
,

R =
(
3
4 ,

1
4

)
in Ω; let the event H = {(x, y) | x = y, x, y ∈ [0, 1]2} be the diagonal of

the unit square. In this setting, we consider the following assessment for a family
of four conditional events:

P (E |H) = P (E |Hc) = P (H |Ec) = 0, P (H |E) =
2

3
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For proving coherence, we consider the set atoms({E,H}) = {C1, C2, C3, C4} with

C1 = E ∧H = P ∨Q, C2 = E ∧Hc = R, C3 = Ec ∧H, C4 = Ec ∧Hc,

and build the sequence of systems Sα with non-negative unknowns xαi = Pα(Ci), as
described in Theorem 3. The first system equals

S0 :





x01 = 0 · (x01 + x03)

x02 = 0 · (x02 + x04)

x03 = 0 · (x03 + x04)

x01 = 2
3 · (x01 + x02)

x01 + x02 + x03 + x04 = 1

which has x01 = x02 = x03 = 0, x04 = 1, for its solution. Then, focusing on the
zero-probability atoms and writing x1i for x0i , the second system is found to be

S1 :





x11 = 0 · (x11 + x13)

x11 = 2
3 · (x11 + x12)

x11 + x12 + x13 = 1

which has x11 = x12 = 0, x13 = 1, for its unique solution. The third system equals

S2 :

{
x21 = 2

3 · (x21 + x22)

x21 + x22 = 1

and has x21 = 2
3 , x22 = 1

3 for its sole solution. Since every constructed system of the
sequence has a unique solution, the assessment P has a unique complete agreeing
class {P0, P1, P2}. This class implies that

o(E |H) = o(E ∧H)− o(H) = 2− 1 < 2− 0 = o(E ∧Hc)− o(Hc) = o(E |Hc).

The zero layer of taking the event H for the hypothesis thus is smaller than that
of taking Hc for the hypothesis. As the conditional event E | Hc still has zero
probability in the structure when E | H does not, this finding may be naturally
construed as a positive correlation of E and H.

We further consider the incompatible events R and H. Analogously to the above
example, we find for the conditional events R |H and R |Hc that

o(R |H) = o(R ∧H)− o(H) = +∞− 1 > 2− 0 = o(R ∧Hc)− o(Hc) = o(R |Hc),

which demonstrates that the logical impossibility of R under the hypothesis H results
in a zero layer which is infinitely larger than that of R under the hypothesis Hc. The
zero probability resulting from a logical impossibility will thus always be deeper in
the complex structure of probability than the zero probability of any possible event.
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Based on the considerations in the above example, we now introduce our defi-
nition of correlation of extreme probability events in a coherent setting.

Definition 6. Let P be a coherent conditional probability defined on an arbitrary
family of conditional events G containing E∗ |H∗, H∗ |E∗. We say that:

• E is positively correlated in a coherent setting with H, denoted as
E ⊥+

cs H, if one of the following conditions holds:

– P (E |H) > P (E |Hc);

– P (E |H) = P (E |Hc) = 0, and every complete agreeing class {Pα} on
algebra({E,H}) that agrees with P on D, has

o(E |H) < o(E |Hc);

– P (E |H) = P (E |Hc) = 1, and every complete agreeing class {Pα} on
algebra({E,H}) that agrees with P on D, has

o(Ec |H) > o(Ec |Hc);

• E is negatively correlated in a coherent setting with H, denoted as
E ⊥−cs H, if one of the following conditions holds:

– P (E |H) < P (E |Hc);

– P (E |H) = P (E |Hc) = 0, and every complete agreeing class {Pα} on
algebra({E,H}) that agrees with P on D, has

o(E |H) > o(E |Hc),

– P (E |H) = P (E |Hc) = 1, and every complete agreeing class {Pα} on
algebra({E,H}) that agrees with P on D, has

o(Ec|H) < o(Ec|Hc);

• E is not correlated in a coherent setting with H, denoted as E 6⊥cs H,
if it is not positively nor negatively correlated in a coherent setting with H.

The above definition of positive and negative correlation in a coherent setting
avoids the counterintuitive findings from the classic definitions of correlation which
were illustrated above. In fact, in the presence of extreme probability events,
the definition allows the identification of a correlation between events which are
logically related, as shown in the following theorem.

Theorem 2. Let P be a coherent conditional probability defined on an arbitrary
family of conditional events G containing E∗ | H∗, H∗ | E∗. Then, the following
properties hold:
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(i) if either E ∧H = ∅ or Ec ∧Hc = ∅, then E ⊥−cs H;

(ii) if either Ec ∧H = ∅ or E ∧Hc = ∅ then E ⊥+
cs H.

Proof. We prove property (i); the proof of property (ii) is analogous. If E∧H = ∅,
we just have to consider the case where P (E |H) = 0 = P (E |Hc); in this case we
have that o(E |H) = +∞ > o(E |Hc) and the negative correlation follows. Similar-
ly, if Ec ∧Hc = ∅, we address just the case where P (E |H) = 1 = P (E |Hc); since
then o(Ec |H) < +∞ = o(Ec |Hc), the negative correlation equally follows.

We note that the correlations ⊥+
cs and ⊥−cs introduced above generally are not

symmetric, as demonstrated by the following example.

Example 2. We address two events E,H which are logically independent, and
consider the following coherent probability assessment for these events:

P (E |H) =
3

4
, P (E |Hc) =

1

4
, P (E) =

1

4
, P (H) = 0.

By definition, we have that E is positively correlated with H and, hence, E ⊥+
cs H.

We now address the way in which H is correlated with E. Building upon the
set of atoms atoms({E,H}) = {C1, C2, C3, C4} with

C1 = E ∧H, C2 = E ∧Hc, C3 = Ec ∧H, C4 = Ec ∧Hc,

we consider the sequence of systems Sα with non-negative unknowns xαr = Pα(Cr)
as before. The first system of equations equals

S0 :





x01 = 3
4 · (x01 + x03)

x02 = 1
4 · (x02 + x04)

x01 + x02 = 1
4 · (x01 + x02 + x03 + x04)

x01 + x03 = 0 · (x01 + x02 + x03 + x04)

x01 + x02 + x03 + x04 = 1

having x01 = x03 = 0, x02 = 1
4 , x04 = 3

4 for its solution. The second system then is

S1 :

{
x11 = 3

4 · (x11 + x13)

x11 + x13 = 1

whose unique solution is x11 = 3
4 , x13 = 1

4 . These solutions determine the unique
agreeing class {P0, P1} on the algebra algebra({E,H}), which, in turn, has a one-
to-one correspondence with a full conditional probability P ′ on algebra({E,H})
extending P . This probability P ′ has

P ′(H |E) =
P0(H ∧ E)

P0(E)
= 0 =

P0(H ∧ Ec)
P0(Ec)

= P ′(H |Ec),

Giulianella Coletti, Linda C. van der Gaag, Davide Petturiti

45



and, hence,

o(H |E) = o(H ∧ E)− o(E) = 1 = o(H ∧ Ec)− o(Ec) = o(H |Ec),

from which we find that H 6⊥+
cs E. We conclude that, while E is positively correlated

with H, the reverse does not hold.

For symmetric concepts of positive and negative correlation in a coherent setting,
the definitions of ⊥+

cs and ⊥−cs need be further enhanced, by setting

E⊥+
S−csH iff E ⊥+

cs H and H ⊥+
cs E,

E⊥−S−csH iff E ⊥−cs H and H ⊥−cs E.

Because of space limitations, we do not further elaborate on this enhancement.

4 Detecting correlations in a coherent setting

Detecting correlations in the presence of extreme probability events by means of
the definitions introduced in the previous section, involves the construction of a
sequence of systems of equations to determine the zero layers of the conditional
probabilities involved. The next theorem now characterizes the possible corre-
lations between two logically independent events E and H, in terms of just the
probabilities P (H), P (E∗ | H∗) and P (H∗ | E∗). The theorem thereby provides
for detecting all correlations between the two events without the need to explicitly
identify the zero layers for the conditional events involved.

Theorem 3. Let E,H be logically independent events and let P be a coherent con-
ditional probability on a family of conditional events G containing the subset D =
{E∗ |H∗, H∗ |E∗}, with P (E |H) = P (E |Hc). Then, the following properties hold:

(i) E ⊥+
cs H if and only if one of the following conditions holds:

(a) P (E | H) = 0 and all extensions of P to H,H | E meet either of the
following conditions:

1. P (H) = 0 and P (H |E) > 0;

2. 0 < P (H) < 1 and P (H |E) = 1;

(b) P (E |H) = 1 and all extensions of P to H and H|E meet either of the
following conditions:

1. P (H) = 0 and P (H |Ec) > 0;

2. 0 < P (H) < 1 and P (H |Ec) = 1;

(ii) E ⊥−cs H if and only if one of the following conditions holds:

(c) P (E | H) = 0 and all extensions of P to H,H | E meet either of the
following conditions:
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1. P (H) > 0 and P (H |E) = 0;

2. P (H) = 1 and 0 < P (H |E) < 1;

(d) P (E | H) = 1 and all extensions of P to H,H | E meet either of the
following conditions:

1. P (H) = 0 and P (H |Ec) > 0;

2. P (H) = 1 and 0 < P (H |Ec) < 1.

Proof. For proving the theorem, we take atoms({E,H}) = {C1, C2, C3, C4} with

C1 = E ∧H, C2 = E ∧Hc, C3 = Ec ∧H, C4 = Ec ∧Hc.

We further consider a complete class {Pα} on algebra({E,H}) agreeing with the
restriction of P to D, obtained by solving a sequence of systems Sα as in Theorem 1.

We first prove that condition (a)1. implies property (i); proofs of the conditions
(a)2. and (b) implying (i) are analogous. We assume that P (E |H) = P (E |Hc) =
0 and, moreover, that P (H) = 0 and P (H |E) > 0; we take P (H |E) = p ∈ ]0, 1].
Under these conditions, every complete agreeing class {Pα} that agrees with P on
D, has P0(C4) = 1, P1(C3) = 1, P2(C1) = p and P2(C2) = 1 − p, which implies
that o(E∧H) = 2 and o(E∧Hc) ≥ 2 while o(H) = 1 and o(Hc) = 0. We conclude
that o(E |H) < o(E |Hc) and, hence, that E ⊥+

cs H.

We now prove that condition (a) suffices for concluding E ⊥+
cs H; the proof in-

volving condition (b) is analogous. We assume P (E |H) = P (E |Hc) = 0, o(E |H)
< o(E |Hc), and take P (H | E) = q ∈ ]0, 1]. We now distinguish between three
cases:

• We suppose that P (H) = δ ∈]0, 1[. The only complete agreeing class sat-
isfying o(E | H) < o(E | Hc) is the class {P0, P1, P2} with P0(C3) = δ,
P0(C4) = 1−δ, P1(C1) = 1 and P2(C2) = 1, which implies that P (H | E) = 1.

• We suppose that P (H) = 0. Every complete agreeing class having P0(C4) = 1,
P1(C1) = 0, we consider the following possibilities for the remaining atoms:

– if P1(C2) = δ ∈ ]0, 1[ and P1(C3) = 1 − δ, we must have that P (H|E)
equals zero and o(E|H) = o(E|Hc), which contradicts our assumption;

– if P1(C3) = 1 and, hence, P2(C1) = P (H |E) = q and P2(C2) = 1 − q,
it follows that o(E |H) = o(E |Hc), which contradicts our assumption;

– if P1(C2) = 1, we must have that P (H |E) = 0 and, as P2(C3) = 1 and
P3(C1) = 1, also o(E |H) = o(E |Hc), contradicting our assumption.

• We cannot have P (H) = 1, as this would contradict o(E |H) < o(E |Hc).
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5 Concluding observations

Based on the observation that the classical definitions of correlation can give coun-
terintuitive results in the presence of extreme probability events, we provided an
enhanced definition of correlation in a coherent setting. To allow ready applicabil-
ity of our definition to real-world applications, we gave a full characterisation of
correlations involving extreme probability events without referring to the underly-
ing complex structure of the probability involved. We noted that our definition of
correlation in a coherent setting is not symmetric; as a next step in our research,
we will address this asymmetry by studying the conditions under which it occurs.
In the future, we will investigate how our enhanced definition of correlation can
be embedded in the framework of qualitative probabilistic influence, to render this
framework suitable to real-world applications involving extreme probability events.
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Abstract

We consider decisions on generalized Anscombe-Aumann acts, mapping states
of the world to belief functions over a set of consequences. Preference rela-
tions on these acts are given by a decision maker under different scenarios
(conditioning events). Then, we provide a system of axioms which are neces-
sary and sufficient for the representability of these “conditional preferences”
through a conditional functional CEUP,u, parametrized by a unique full con-
ditional probability P on the algebra of events and a cardinal utility function
u on consequences. The model is able to manage also “unexpected” (i.e.,
“null”) conditioning events. We finally provide an elicitation procedure that
reduces to a Quadratically Constrained Linear Problem (QCLP).

1 Introduction

In many decision problems under uncertainty in economics, we need to choose
between uncertain consequences in a set X that are contingent on the states of the
world in S. So, we distinguish between an “objective” uncertainty related to X
(i.e., exogenously quantified and given to the decision maker, in the spirit of von
Neumann-Mergenstern) and a “subjective” uncertainty related to S (i.e., encoded
in the decision maker’s preferences, in the spirit of Savage). This configures a two-
stage process where first the state of the world is chosen by Nature, and then the
consequence is chosen through “objective” uncertainty, in the spirit of [1].
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Very often, due to partial knowledge, uncertainty cannot be encoded in a single
probability measure, but we rather have a class of probability measures.

We refer to situations where ambiguity is related to the “objective” probabilistic
assessment as that due to a partially known randomizing device (like an urn or a
roulette wheel) that results in a class of probability measures whose lower envelope
is a belief function [10, 27], like in the well-known Ellsberg’s urn paradox [12].
Following [28], in these cases we will speak of “objective” ambiguity. Hence, the
above objects of decisions can be modelled as generalized Anscombe-Aumann acts
[1] mapping S to the set B(X) of belief functions over X, forming the set F =
B(X)S .

A crucial aspect of making decisions under uncertainty is the possibility of
reasoning under hypotheses. Unexpected situations such as earthquakes, terror
attacks or financial crises are normally identified with “null” events and are often
ignored in decision problems. Nevertheless, “unexpected” scenarios can deeply
impact on the analysis of a decision problem [19] and should not be discarded.

Here we consider a conditional decision model involving the above generalization
of Anscombe-Aumann acts, assuming that the decision maker is able to provide a
family of preference relations {-H}H∈℘(S)0 on F indexed by the set ℘(S)0 = ℘(S)\
{∅} of non-impossible events. Every preference relation -H can be interpreted as
comparing acts under the hypothesis H.

In the model we propose, “objective” ambiguity is expressed by referring to
the class of belief functions over X (as in the models [4, 17]). On the other hand,
“subjective” uncertainty is assumed to be probabilistic, so, we model it with a full
conditional probability in the sense of [8, 11, 23], that allows for conditioning to
“null” events, but possible.

Here, we search for a representation in terms of a conditional functional CEUP,u

parametrized by a full conditional probability P (·|·) on ℘(S)× ℘(S)0 and a utility
function u : X → R. The above conditional functional consists in a mixture with
respect to a full conditional probability of Choquet expected utilities [4] contingent
on the states of the world. In particular, due to the properties of the Choquet
integral [25], every state-contingent Choquet expected utility is actually a lower
expected utility with respect to the probabilities in core(f(s)). The present model
generalizes the conditional version of the Anscombe-Aumann model given in [21]
by introducing “objective” ambiguity.

We provide a set of axioms for the family {-H}H∈℘(S)0 that is proved to be nec-
essary and sufficient for the existence of a unique full conditional probability P (·|·)
and a cardinal utility function u such that the corresponding CEUP,u functional
represents the preferences, i.e., for every f, g ∈ F and every H ∈ ℘(S)0,

f -H g ⇐⇒ CEUP,u(f |H) ≤ CEUP,u(g|H).

It turns out that a rational agent in this model behaves as a CEUP,u maximizer, so,
as a maximizer of a conditional expected value of state-contingent lower expected
utilities. Hence, the present model encodes a form of “objective” ambiguity aver-
sion. The model can be easily extended in a way to cope with different attitudes

Decisions on generalized Anscombe-Aumann acts under possibly “unexpected” scenarios

50



towards “objective” ambiguity: this will be the subject of future research.
A similar decision setting, limited to the unconditional case, has been considered

by [28], where the author takes acts mapping states of the world to non-empty
compact convex polyhedral sets of probability measures over consequences. In the
same paper the author considers a representation functional different from ours,
but still relying on a mixture with respect to a “subjective” probability measure.

Important efforts have been addressed in the decision theory literature to model
“subjective” ambiguity, that is to ambiguity in “subjective” uncertainty evaluations
(see, e.g., the survey papers [13] and [15]). For instance, in the seminal papers [26]
and [16], the classical Anscombe-Aumann setting is considered but there ambiguity
is “subjective”, since the mixture of state-contingent expected utilities is done
through the Choquet integral with respect to a capacity over S in the first model,
while a class of “subjective” probabilities is considered in the second model. Still
working in the classical Anscombe-Aumann setting, we find the models [2, 3, 20].
Other lines of research take care of “subjective” ambiguity in a Savage’s setting,
through acts that map states of the world to non-empty sets of consequences [14,
22]. All the quoted decision models essentially focus on unconditional decisions.

The conditional functional CEUP,u is completely specified once the full condi-
tional probability P (·|·) and the utility function u have been elicited by the decision
maker. In general, an agent is only able to provide few comparisons for few condi-
tioning events. In this case, the first issue is to check the consistency of the given
comparisons with the model of reference. When consistency holds, it is easily seen
that an elicitation procedure relying on a finite number of arbitrary comparisons
cannot guarantee the uniqueness of P and the cardinality of u in general.

We provide an elicitation procedure that reduces to a Quadratically Constrained
Linear Problem (QCLP). Unfortunately, the quadratic constraints in the problem
are generally not positive definite, so, the problem is generally not convex: interior
points algorithms are not suitable. The problem can be solved with a branch and
bound algorithm coping with global optimization of non-linear problems, such as
the Couenne optimizer [7].

2 Model description

Consider the following decision-theoretic setting:

• X = {x1, . . . , xm}, a finite set of consequences;

• ℘(X)0 = ℘(X) \ {∅}, the set of multi-consequences, i.e., non-empty sets of
consequences;

• B(X) = {Bel : ℘(X)→ [0, 1]}, the set of all belief functions on ℘(X);

• S = {s1, . . . , sn}, a finite set of states of the world;

• ℘(S), the set of events;
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• ℘(S)0 = ℘(S) \ {∅}, the set of scenarios, i.e., non-impossible events;

• F = B(X)S = {f : S → B(X)}, the set of all acts;

• {-H}H∈℘(S)0 , a family of preference relation on F , indexed by the set of
non-impossible events H ∈ ℘(S)0.

For every H ∈ ℘(S)0, we denote with ≺H and ∼H the asymmetric and symmet-
ric parts of -H . Moreover, for every f, g ∈ F , f -H g means “f is not preferred to
g under the hypothesis H”, f ≺H g means “g is preferred to f under the hypothesis
H”, and f ∼H g means “f is indifferent to g under the hypothesis H”.

Notice that the set B(X) contains the set

B0(X) = {δB : B ∈ ℘(X)0},

of vacuous belief functions, where δB is the belief function whose Möbius inversion
is such that mδB (B) = 1 and 0 otherwise. Let us notice that B(X) is closed with
respect to the convex combination operation defined, for every Bel1, Bel2 ∈ B(X)
and every α ∈ [0, 1], pointiwise, for every A ∈ ℘(X), as

(αBel1 + (1− α)Bel2)(A) = αBel1(A) + (1− α)Bel2(A),

and it holds
mαBel1+(1−α)Bel2 = αmBel1 + (1− α)mBel2 .

The set of acts F contains, in particular, the set of constant acts Fc whose
elements are defined, for every Bel ∈ B(X), as

Bel(s) = Bel, ∀s ∈ S.

The set F is closed with respect to the following operation of convex combina-
tion: for every f, g ∈ F and every α ∈ [0, 1], αf + (1−α)g is defined pointwise, for
every s ∈ S, as

(αf + (1− α)g)(s) = αf(s) + (1− α)g(s).

For every H ∈ ℘(S)0, the relation -H determines a relation EH on B(X)
through constant acts defined, for every Bel1, Bel2 ∈ B(X), as

Bel1 EH Bel2 ⇐⇒ Bel1 -H Bel2.

In turn, the relation EH determines a relation ≤•H on ℘(X)0 defined, for every
A,B ∈ ℘(X)0, as

A ≤•H B ⇐⇒ δA EH δB .

Finally, the relation ≤•H induces a relation ≤∗H on X defined, for every x, y ∈ X,
as

x ≤∗H y ⇐⇒ {x} ≤•H {y}.
Let ≤∗ be a weak order on X with asymmetric and symmetric parts <∗ and

=∗, respectively, and assume xσ(1) ≤∗ . . . ≤∗ xσ(m), where σ is a permutation
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of {1, . . . ,m}. Then, denote X∗ = X/=∗ = {[xi1 ], . . . , [xit ]} for which <∗ is a
strict order, and we can assume [xi1 ] <∗ · · · <∗ [xit ]. The ≤∗-aggregated Möbius

inversion associated to Bel ∈ B(X) is the function M≤
∗

Bel : X∗ → [0, 1] defined, for
every [xij ] ∈ X∗, as

M≤
∗

Bel([xij ]) =
∑

xi∈[xij ]

∑

xi∈B⊆Eσi

mBel(B), (1)

where Eσi = {xσ(i), . . . , xσ(m)} for i = 1, . . . ,m. Note that M≤
∗

Bel([xij ]) ≥ 0 for

every [xij ] ∈ X∗ and
∑t
j=1M

≤∗

Bel([xij ]) = 1, thus M≤
∗

Bel determines a probability
distribution on X∗. It is easily seen that, if u : X → R then defining x ≤∗ y if and
only if u(x) ≤ u(y), for every Bel ∈ B(X), it holds

C

∫
udBel =

∑

[xij ]∈X∗

u(xij )M
≤∗

Bel([xij ]).

Let us stress that M≤
∗

Bel encodes a pessimistic aggregation of the uncertainty ex-
pressed by mBel [4]. Indeed, it holds

∑

[xij ]∈X∗

u(xij )M
≤∗

Bel([xij ]) =
∑

B∈℘(X)0

(
min
x∈B

u(x)

)
mBel(B).

We are searching for a representation of {-H}H∈℘(S)0 in the form of a condi-
tional mixture of Choquet integrals, i.e., for every f ∈ F and H ∈ ℘(S)0,

CEUP,u(f |H) =
∑

s∈S
P ({s}|H)

(
C

∫
udf(s)

)
, (2)

where P (·|·) is a full conditional probability on ℘(S) × ℘(S)0 and u : X → R is a
cardinal utility function.

Consider the following axioms.

(AA1C) Weak order: ∀H ∈ ℘(S)0, -H is a weak order on F ;

(AA2C) Continuity: ∀H ∈ ℘(S)0, ∀f, g, h ∈ F , if f ≺H g ≺H h, ∃α, β ∈ (0, 1)
such that

αf + (1− α)h ≺H g ≺H βf + (1− β)h;

(AA3C) Independence: ∀H ∈ ℘(S)0, ∀f, g, h ∈ F and ∀α ∈ (0, 1)

f -H g ⇐⇒ αf + (1− α)h -H αg + (1− α)h;

(AA4C) Monotonicity: ∀H ∈ ℘(S)0, ∀f, g ∈ F , if f(s) EH g(s), ∀s ∈ S then
f -H g;
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(AA5C) Non-triviality: ∀H ∈ ℘(S)0, ∃f, g ∈ F such that f ≺H g;

(AA6C) Relevance: ∀H ∈ ℘(S)0, ∀f, g ∈ F with f(s) = g(s), ∀s ∈ H then
f ∼H g;

(AA7C) Uncertainty independence: ∀f, g ∈ F and ∀H,K ∈ ℘(S)
0
, if f -H

g, f -K g, and H ∩K = ∅ then f -H∪K g;

(AA8C) State neutrality: ∀s, t ∈ S, if f(s) = f(t), g(s) = g(t), and f -{s} g
then f -{t} g.

(AA9C) Aggregate indifference: ∀H ∈ ℘(S)0, ∀A ∈ ℘(S) and ∀f, g ∈ F with

f(s) = g(s) ∀s ∈ A, if M
≤∗
H

f(s) = M
≤∗
H

g(s) ∀s ∈ Ac then f ∼H g;

Axioms (AA1C)–(AA5C) are the usual Anscombe-Aumann axioms in the
formulation of [26], stated for generalized Anscombe-Aumann acts and every pref-
erence relation in {-H}H∈℘(S)0 . Axioms (AA6C)–(AA8C) cope with condition-
ing. In particular, axiom (AA6C) expresses a focusing conditioning rule, i.e., it
states that in conditioning to H, only the part of acts inside of H counts. Axiom
(AA7C) copes with relating different conditioning events, while axiom (AA8C)
encodes a form of consistency between different states. Finally, axiom (AA9C)
is responsible for the CEUP,u representation: it says that if two possibly distinct
acts have the same ≤∗H -aggregated Möbius inversion (i.e., the same pessimistic ag-
gregation of “objective” uncertainty) then, they should be judged indifferent given
H.

The following theorem, whose proof is omitted due to a lack of space, shows
that axioms (AA1C)–(AA9C) are necessary and sufficient to get a CEUP,u rep-
resentation.

Theorem 1. The following statements are equivalent:

(i) the family of relations {-H}H∈℘(S)0 satisfies (AA1C)–(AA9C);

(ii) there exist a full conditional probability P : ℘(S) × ℘(S)0 → [0, 1] and a non-
constant utility function u : ℘(X)0 → R such that, for every f, g ∈ F and
every H ∈ ℘(S)0, f -H g ⇐⇒ CEUP,u(f |H) ≤ CEUP,u(g|H).

Moreover, P is unique and u is unique up to positive linear transformations.

Let us stress that a CEUP,v functional allows to take “null” (possible) con-
ditioning events as hypotheses and, even more, it allows to order events in ℘(S)0

according to their “unexpectation”. For that, we define, for every H,K ∈ ℘(S)0,

H v K ⇐⇒ 1∅ ≺H∪K 1H ,

with the meaning “H is no more unexpected than K”, where the act 1E , for
E ∈ ℘(S), is defined as in the proof of Theorem 1. The statement H v K expresses
the uncertainty evaluation P (H|H ∪K) > 0, i.e., it considers the probability of the
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events H under the hypothesis that either H or K is true. In particular, H @ K
means P (H|H ∪ K) > 0 and P (K|H ∪ K) = 0, whereas H =� K stands for
P (H|H ∪K) > 0 and P (K|H ∪K) > 0. The relation v reveals to be a weak order
on ℘(S)0 and has been originally introduced by [9, 18, 24].

Every full conditional probability P (·|·) on ℘(S) is in bijection with a linearly
ordered class of probability measure {P0, . . . , Pk} on ℘(S), said complete agreeing
class, whose supports form a partition of S [5, 6].

Events with probability 0 essentially determine the structure of a full conditional
probability P (·|·) on ℘(S) and actually the relation v is intimately related to
{P0, . . . , Pk}.

Given P (·|·), the corresponding complete agreeing class {P0, . . . , Pk} represent-
ing it can be built through the events

Hα
0 = {s ∈ Hα−1

0 : P ({s}|Hα−1
0 ) = 0} for α = 1, . . . , k,

with H0
0 = S, by setting Pα(·) = P (·|Hα

0 ) with Hα
0 6= ∅. On the other hand,

given {P0, . . . , Pk}, for every E|H ∈ ℘(S)×℘(S)0 there is a minimum index αH ∈
{0, . . . , k} such that PαH (H) > 0 and it holds

P (E|H) =
PαH (E ∩H)

PαH (H)
.

The class of events {H0
0 , . . . ,H

k
0 } determines a decreasing class {I0, . . . , Ik} of

ideals of ℘(S), singled out by the relation v, defined as

Iα = {A ∈ ℘(S)0 : Hα
0 v A} ∪ {∅} = {A ∈ ℘(S) : A ⊆ Hα

0 }.

The class of events {H0
0 , . . . ,H

k
0 } also gives rise to a partition E = {E0, . . . , Ek} of

S obtained by setting

Eα = Hα
0 \Hα−1

0 for α = 0, . . . , k − 1,

with Ek = Hk
0 , where Eα = supp(Pα) = {s ∈ S : Pα({s}) > 0} in the complete

agreeing class representing P (·|·).

3 Model elicitation

The conditional functional CEUP,u is completely specified once the full conditional
probability P (·|·) and the utility function u have been elicited by the decision
maker (DM). In general, the DM is only able to provide few comparisons for few
conditioning events. In this case, the first issue is to check the consistency of
the given comparisons with the model of reference. When consistency holds, it
is easily seen that an elicitation procedure relying on a finite number of arbitrary
comparisons cannot guarantee the uniqueness of P and u in general.

Fixed X and S, we propose an elicitation procedure based on three different
cognitive tasks.

Giulianella Coletti, Davide Petturiti, Barbara Vantaggi

55



We ask the DM to determine a subset L = {H1, . . . ,HN} ⊆ ℘(S) that corre-
spond to those events considered as “scenarios of interest” and then to order them
according to their unexpectation, by providing a weak order v on L.

We ask the DM to provide a weak order ≤∗ on X, i.e., on consequences obtained
with certainty.

For every H ∈ L, we ask the DM to provide a finite number of strict {fl ≺H
gl}l∈LH and weak comparisons {fw -H gw}w∈WH

, with LH 6= ∅ while WH is
allowed to be empty. This assures non-triviality.

The issue is to find a complete agreeing class {P0, . . . , Pk} on ℘(S) (and, so,
a full conditional probability P (·|·)) compatible with the relation v on L (that is
such that Hi v Hj ⇐⇒ P (Hi|Hi ∪ Hj) > 0) and a utility function u : X → R
increasing with respect to ≤∗, such that the corresponding CEUP,u conditional
functional preserves all the strict and weak preference comparisons.

At this aim, let L/=� = {[Hi1 ], . . . , [HiM ]} and assume [Hi1 ] @ . . . @ [HiM ].

Now, define BM+1
0 = ∅ and for α = 0, . . . ,M , Bα0 =

⋃M
β=α

⋃
H∈[Hiβ ]

H and Eα0 =

Bα0 \Bα+1
0 .

Every linearly ordered class of probability measures {P ∗0 , . . . , P ∗M} on ℘(S)
where supp(P ∗α) ⊆ Eα0 , for α = 0, . . . ,M , is said minimal agreeing class and
determines a conditional probability P ∗(·|·) on ℘(S) × add(L), where add(L) is
the set of events obtained closing L with respect to unions. The conditional prob-
ability P ∗(·|·) can be further extended (generally not in a unique way) to a full
conditional probability P (·|·) on ℘(S) compatible with v on L. One of the possible
extensions is determined by the complete agreeing class {P ∗0 , . . . , P ∗M , P ∗M+1} where
P ∗M+1 is an arbitrary probability measure on ℘(S) such that supp(P ∗M+1) = S \⋃M
α=0 supp(P ∗α). The adjunct of P ∗M+1 is necessary only if S \⋃Mα=0 supp(P ∗α) 6= ∅.

With such an input, the elicitation procedure consists in solving the following
optimization problem with unknowns the minimal agreeing class {P ∗0 , . . . , P ∗M},
the utility function u and the dummy variable δ:

maximize δ subject to:




∑

s∈Eα0

P ∗α({s})


 ∑

[xij ]∈X∗

u(xij )
(
M≤

∗

fl(s)
([xij ])−M≤

∗

gl(s)
([xij ])

)

+ δ ≤ 0,

∑

s∈Eα0

P ∗α({s})


 ∑

[xij ]∈X∗

u(xij )
(
M≤

∗

fw(s)([xij ])−M
≤∗

gw(s)([xij ])
)

 ≤ 0,

∑
s∈Eα0

P ∗α({s}) = 1,

P ∗α({s}) ≥ 0, ∀s ∈ Eα0 ,
u(xi1) = 0, u(xit) = 1, u(xij )− u(xij+1) + δ ≤ 0, for j = 1, . . . , t− 1,

−1 ≤ δ ≤ 1,
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for α = 1, . . . ,M and all H ∈ [Hiα ], for all l ∈ LH , for all w ∈ WH . The above
optimization problem is a Quadratically Constrained Linear Problem (QCLP) that
is a particular case of a Quadratically Constrained Quadratic Problem (QCQP).
Unfortunately, the quadratic constraints in the problem are generally not positive
definite, so, the problem is generally not convex: interior points algorithms are not
suitable. The problem can be solved with a branch and bound algorithm coping
with global optimization of non-linear problems, such as the Couenne optimizer
[7].

Solving the above optimization problem allows to check both the consistency of
the given preference statements and, if consistency holds, to find a full conditional
probability P (·|·) and a utility function u determining the conditional functional
CEUP,u. Indeed, the preference statements are consistent with the model if and
only if δ > 0 and in this case the solution of the system determines P (·|·) and u,
up to the possible arbitrary choice of the probability measure P ∗M+1.

4 A paradigmatic example

Take the set of states of the world S = {s1, s2, s3, s4} spanned by events

• K = “North Korea and USA enter into war next year”;

• G = “Italian GDP increases next year”;

with K = {s1, s2} and G = {s1, s3}.
Consider three unitary financial instruments that can result in a loss of e50,

in a null gain or in a gain of e100, implying X = {−50, 0, 100}. From statistics
of previous years we only have partial information on the performances of each
instrument, that are listed below:

Instrument 1: It is only known that it guarantees a gain of e100 in 30% of cases;

Instrument 2: It is only known that it results in a loss of e50 in 20% of cases;

Instrument 3: No information is available.

Hence, instrument i determines a class of probability measures Pi on ℘(X) whose
lower envelope is easily shown to be a belief function Beli = min Pi, with:

P1 = {P : ℘(X)→ [0, 1]|P is a probability measure, γ ∈ [0, 0.7],

P ({−50}) = γ, P ({0}) = 0.7− γ, P ({100}) = 0.3},
P2 = {P : ℘(X)→ [0, 1]|P is a probability measure, γ ∈ [0, 0.8]

P ({−50}) = 0.2, P ({0}) = γ, P ({100}) = 0.8− γ},
P3 = {P : ℘(X)→ [0, 1]|P is a probability measure}.

Consider the following investment strategies in which the adopted financial
instrument is contingent on the state of the world:

Giulianella Coletti, Davide Petturiti, Barbara Vantaggi

57



s1 s2 s3 s4
f Bel3 Bel1 Bel1 Bel2
g Bel3 Bel3 Bel2 Bel3

The question is: How should a DM decide between f and g conditionally to
events K and Kc?

Suppose that our DM is not able to express directly his preference between f
and g, conditionally to K and Kc. Nevertheless, our DM is a profit maximizer and
believes that a war between North Korea and USA next year is unexpected, while
it is more likely a decrease of Italian GDP next year.

The fact that event K is unexpected, i.e., it is judged as “null” by our DM,
does not rule out its possible realization. In particular, if event K were true then
our DM believes that it would be more likely an increase of Italian GDP, due to a
profit of Italian weapons factories.

Hence, our DM is able to provide the following information: L = {K,Kc} with
Kc @ K; −50 <∗ 0 <∗ 100; the worst and best multi-consequences A = {−50} and
A = {100}. For every E ∈ ℘(S), define the act

1E(s) =

{
δA, if s ∈ E,
δA, if s /∈ E.

In turn, the beliefs of our DM can be translated as follows:

1{s3} ≺Kc 1{s4} and 1{s2} ≺K 1{s1}.

In this case we have that E0
0 = Kc and E1

0 = K. To avoid cumbersome notation,
denote pαi = P ∗α({si}) and u1 = u(−50), u2 = u(0), u3 = u(100). We need to solve
the following optimization problem

maximize δ subject to:




−p03u1 + p03u3 + p04u1 − p04u3 + δ ≤ 0,

p11u1 − p11u3 − p12u1 + p12u3 + δ ≤ 0,

p03 + p04 = 1,
p03, p

0
4 ≥ 0,

p11 + p12 = 1,
p11, p

1
2 ≥ 0,

u1 = 0, u2 = 1, u1 − u2 + δ ≤ 0, u2 − u3 + δ ≤ 0,
−1 ≤ δ ≤ 1,

for which the Couenne optimizer finds the solution p03 = 0.18358, p04 = 0.81642,
p11 = 0.81642, p12 = 0.18358, u1 = 0, u2 = 0.5, u3 = 1, and δ = 0.5. Since δ > 0 the
preference statements are consistent with the model and a full conditional proba-
bility P (·|·) on ℘(S) is that represented by the complete agreeing class {P ∗0 , P ∗1 }
whose distributions are
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{s1} {s2} {s3} {s4}
P ∗0 0 0 0.18358 0.81642
P ∗1 0.81642 0.18358 0 0

With such P (·|·) and u we have

CEUP,u(g|K) = 0 < 0.055074 = CEUP,u(f |K),

CEUP,u(g|Kc) = 0.073432 < 0.381642 = CEUP,u(f |Kc),

so, g ≺K f and g ≺Kc f , i.e., under both hypothesis the DM should choose f .

References

[1] F. Anscombe and R. Aumann. A definition of subjective probability. The
Annals of Mathematical Statistics, 34(1):199–205, 1963.

[2] P. Casaca, A. Chateauneuf, and J. Faro. Ignorance and competence in choices
under uncertainty. Journal of Mathematical Economics, 54:143–150, 2014.

[3] A. Chateauneuf and J. Faro. Ambiguity through confidence functions. Journal
of Mathematical Economics, 45(9):535–558, 2009.

[4] G. Coletti, D. Petturiti, and B. Vantaggi. Rationality principles for preferences
on belief functions. Kybernetika, 51(3):486–507, 2015.

[5] G. Coletti and R. Scozzafava. Characterization of coherent conditional prob-
abilities as a tool for their assessment and extension. Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems, 44:101–132, 1996.

[6] G. Coletti and R. Scozzafava. Probabilistic Logic in a Coherent Set-
ting, volume 15 of Trends in Logic. Kluwer Academic Publisher, Dor-
drecht/Boston/London, 2002.

[7] Couenne. https://projects.coin-or.org/Couenne/.

[8] B. de Finetti. Sull’impostazione assiomatica del calcolo delle probabilità. An-
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Abstract

General belief functions usually bear some internal conflict which comes
mainly from disjoint focal elements. Analogously, there is often some con-
flict between two (or more) belief functions. After the recent observation
of hidden conflicts (seminar CJS’17 [17]), appearing at belief functions with
disjoint focal elements, importance of interest in conflict of belief functions
has increased.

This theoretical contribution introduces a new approach to conflicts (of
belief functions). Conflicts are considered independently of any combination
rule and of any distance measure.

Consonant conflicts are based on consonant approximations of belief func-
tions in general; two special cases of the consonant approach based on conso-
nant inverse pignistic and consonant inverse plausibility transforms are dis-
cussed.

Basic properties of the newly defined conflicts are presented, analyzed and
briefly compared with our original approaches to conflict (combinational con-
flict, plausibility conflict and comparative conflict), with the recent conflict
based on non-conflicting parts, as well as with W. Liu’s degree of conflict.

1 Introduction

Belief functions (BFs; introduced in [25]) are one of the widely used formalisms for
uncertainty representation and processing - that enables representation of incom-
plete and uncertain knowledge, belief updating, and combination of evidence.

Complications with highly conflicting belief functions combination, see e.g., [9,
28], have motivated a theoretical investigation of conflicts between belief functions
[2, 4, 11, 18, 21, 22, 23, 24]. The problematic issue of an essence of conflict between
belief functions - originally defined by the non-normalised version of Dempster’s
rule ∩© (i.e., by its value for the empty set: m ∩©(∅)) - was first mentioned by
Almond [1], and discussed further by W. Liu [22]. Almond’s counter-example has
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been overcome by W. Liu’s progressive approach. Unfortunately, the substance of
the issue has not been solved there as positive conflict still may be detected for
non-conflicting BFs.

Further steps ahead were presented in our previous study [11] where new ideas
concerning interpretation, definition, and measurement of conflicts of BFs were
introduced. Three new approaches to interpretation and computation of conflicts
were suggested: combinational conflict, plausibility conflict (see also [13, 14]), and
comparative conflict; pignistic conflict analogous to plausibility one was defined
later in [14]. Unfortunately, none of those captures the nature of conflict sufficiently
enough ands these approaches need further elaboration. Nevertheless, the very
important distinction between conflict of two BFs and the internal conflict of an
individual BF was pointed out in [11] - altogether with the necessity to distinguish
between a conflict and a difference/distance of two BFs; this was also pointed out
in [3].

Probabilistic approximations of belief functions were used in several previous
approaches, e.g. pignistic transform in W. Liu’s two-dimensional degree of conflict
[22] and in pignistic conflict [14], normalized plausibility of singletons in plausibility
conflict [11, 13, 14], etc.

Unfortunately, application of a probability approximation adds a new additional
information, which increases internal conflict of inputs and also resulting in a global
conflict. The new reverse approach suggested in this paper adds no new information
but removes an information creating the internal conflicts, as inverse probabilistic
transformations are used to make consonant approximations. This is an analogy
to belief discounting, but without necessity of any parameter due to its specific
context. Thus BFs without internal conflicts are used for a computation of a
conflict; it is a generalization of the approach from [15] in fact.

2 Preliminaries

2.1 General Primer on Belief Functions

We assume classic definitions of basic notions from theory of belief functions [25] on
a finite frame of discernment Ωn = {ω1, ω2, ..., ωn}. A basic belief assignment (bba)
is a mapping m : P(Ω) −→ [0, 1] such that

∑
A⊆Ω m(A) = 1; the values of the bba

are called basic belief masses (bbm). m(∅) = 0 is usually assumed - then we speak
about normalized bba. A belief function (BF) is a mapping Bel : P(Ω) −→ [0, 1],
Bel(A) =

∑
∅6=X⊆A m(X). A plausibility function Pl : P(Ω) −→ [0, 1], Pl(A) =∑

∅6=A∩X m(X). There is a unique correspondence among m and corresponding
Bel and Pl thus we often speak about m as about belief function.

A focal element is a subset X of the frame of discernment, such that m(X) > 0.
Let F = {X | m(X) > 0} be the set of all focal elements; and core be its union
C =

⋃
X∈F X. If all the focal elements are singletons (i.e. one-element subsets of

Ω), then we speak about a Bayesian belief function (BBF). If all the focal elements
are either singletons or whole Ω (i.e. |X| = 1 or |X| = |Ω|), then we speak
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about a quasi-Bayesian belief function (qBBF). If all focal elements have non-empty
intersections, we call this a consistent belief function. And if all focal elements are
nested, we call this a consonant belief function. Vacuous BF (VBF) has the only
focal element Ω: mvac(Ω) = 1. A symmetric BF is a BF, which has the same bbms
for focal elements with the same cardinality, i.e., m(X) = m(Y ) for |X| = |Y |.

Let us recall normalized plausibility of singletons1 of Bel: the BBF (probability

distribution) Pl P (Bel) such, that (Pl P (Bel))(ωi) = Pl({ωi})∑
ω∈Ω Pl({ω}) [5, 10]; and

alternative Smets’ pignistic probability2 BetP (ωi) =
∑

ωi∈X
m(X)
|X| [27].

2.2 A Graphical Presentation of Sets of Belief Functions

We can represent any BF on an n-element frame of discernment Ωn by an enumer-
ation of its m values (bbms), i.e., by a (2n−2)-tuple (x1, x2, ..., x2n−2) as m(∅) = 0

and m(Ω) = x2n−1 = 1−∑2n−2
i=1 xi. Thus we can present set of all BFs on Ωn by

a (2n−2)-dimensional simplex in general. Specially we have 2D triangle and 6D
simplex for Ω2 and Ω3, see Figure 1 [19, 20] and Figure 2 [12].

Figure 1: Belief func-
tions on 2-element frame
Ω2; G: Bayesian BFs, S:
symmetric BFs, S1, S2:
simple support BFs (∼
consonant BFs on Ω2).

Figure 2: Simplex of
Belief functions on 3-
element frame Ω3. 6
dimensions corresponds
to 6 possible focal ele-
ments.

Figure 3: Internal con-
flict Pl-IntC on Ω2. It
has max value 1

2 for 0′,
decreases along arrows,
constant along lines with-
out arrows; zero at Si’s.

3 Conflicts of Belief Functions

Conflicts of belief functions are caused mainly by disjoint focal elements either
within individual BFs or in different BFs. Internal conflicts IntC(mi) of individual
BFs are distinguished from conflict between BFs Conf(m1,m2) [11]; the entire sum
of multiples of mutually conflicting masses is called total conflict TotC(m1,m2)3.

1Pl P (Bel) is a normalization of contour function (of plausibility of singletons [25]) in fact.
2We have to note an analogy between pignistic probability and Shapley value [26].
3Some authors (see e.g. [18]) use ’total conflict’ for maximal possible conflict, which arises

when all focal elements of one BF are disjoint with focal element of another BFs. Our total
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3.1 Internal Conflict of Belief Functions

Internal conflict of a BF is caused either by its disjoint focal elements (if there
are any), or if Pl({ω}) < 1 for every ω ∈ Ω (i.e. ∀ω ∈ Ω exists focal element
Xω such that omega /∈ Xω). Let us accept the following simple definition of
internal conflict4: Internal conflict of BF Bel is defined by formula IntC(Bel) =
1−maxω∈ΩPl({ω}), where Pl is the plausibility corresponding to Bel. A BF
Bel is (internally) non-conflicting when it has zero internal conflict IntC(Bel) =
0; it is (internally) conflicting otherwise. This definition corresponds to internal
plausibility conflict Pl-IntC(Bel) from [11], see Section 4.1.

Thus a BF is non-conflicting if and only if there is an ω ∈ Ω such that Pl({ω}) =
1 (or in other words if BF is consistent).

3.2 Conflicts between Belief Functions

There are several different assumptions about conflicts between belief functions in
our previous approaches [11, 13, 14, 15]. Some of them are mutually conflicting as
coming from various alternative approaches, thus we suppose only those common:

A1. Non-negativity and boundary conditions: 0 ≤ Conf(Bel1, Bel2) ≤ 1.
A2. Symmetry: Conf(Bel1, Bel2) = Conf(Bel2, Bel1).
A3. Conf(Bel,Bel) = 0. A BF is not conflicting with itself.
A4. Conf(Bel,Belvac) = 0. Vacuous BF is non-conflicting with any other BF.

The other assumptions in our previous approaches are stronger and they distin-
guish among various approaches. Thus we do not consider them among our general
assumptions here. We may compare our assumptions with Martin’s axioms MA1
– MA5 [23] and Destercke & Burger properties P3 – P6 [18]:

(MA1) : Conf(Bel′, Bel′′) ≥ 0,
(MA2) : Conf(Bel,Bel) = 0,
(MA3) : Conf(Bel′, Bel′′) = Conf(Bel′′, Bel′),
(MA4) : Conf(Bel′, Bel′′) ≤ 1,
(MA5) : Conf(Bel′,Bel′′)=0 iff m′⊆m” or m′′⊆m′ 5.

(P3) : Extreme values: Conf(Bel1, Bel2) = 0 iff
⋂

X∈F1∪F2
6= ∅ iff

iff
∑

X∩Y=∅m1(X)m2(Y )=0) iff Pm1 ∩ Pm2 6= ∅,
wherePm={Prob | Bel(X)≤Prob(A), ∀X⊆Ω};

Conf(Bel1, Bel2) = 1 iff C1 ∩ C2 = ∅.
(P4) : Symmetry.
(P5) : Imprecision monotonicity.
(P6) : ’Ignorance is Bliss’ ∼ Conf(Bel,Belvac) = 0.

conflict correspond to their global conflict.
4Let us note, that there are different approaches how to define internal conflict of BFs, e.g.,

using minnimal entropy functional, see [2], or using author’s conflicting parts of BFs [12].
5A very special case of belief specialization: m′⊆m” implies that m′ is a specialization of m′′,

but reverse implication does not hold true.
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(P7) : Insensitivity to refinement. (a conflict should not be changed if frame of
discernment is refined)

A1 corresponds to axioms MA1 and MA4 and it is consistent with properties
P3, P5, P6. A2 corresponds to MA3 and to property P4. A3 corresponds to axiom
MA2, this is not assumed by D & B, on the other hand it inconsistent with strong
property P3. A4 follows rather strong MA5; A4 corresponds to P6.

4 Former Approaches to Conflict between BFs

To compare the new consonant approach to conflict, let us briefly introduce the
former approaches.

4.1 Three Approaches from IPMU 2010

Unfortunately, there are not yet any precise formulas6, but only bounding inequal-
ities for combinational conflicts: 1

2TotC(m,m)) ≤ IntC(m) ≤ TotC(m,m),
TotC(m1,m2)−(IntC(m1)+IntC(m2)) ≤ C(m1,m2) ≤ TotC(m1,m2).

Internal plausibility conflict of BF Bel is defined as Pl-IntC(Bel) =
1−maxω∈ΩPl({ω}), where Pl is the plausibility equivalent to Bel.

Plausibility conflict between BFs Bel1, Bel2 is defined by the formula Pl-C(Bel1,
Bel2)=min(

∑
ω∈ΩPlC(Bel1,Bel2)

1
2 |Pl P (Bel1)−Pl P (Bel2)(ω)|,(m1∩©m2)(∅)),where

ΩPlC(Bel1, Bel2) is the set of elements ω ∈ Ω with conflicting Pl P masses [11, 14].
The idea of comparative conflictness/non-conflictness is a specification of bbms

to smaller focal elements such that fit to focal elements of the other BF as much
as possible. The comparative conflict between BFs Bel1 and Bel2 is defined as the
least difference of such more specified bbms derived from the input m1 and m2.

4.2 Liu’s Degree of Conflict and Pignistic Conflict

The above 3 approaches were compared with Liu’s degree of conflict cf in [11];
cf is defined as cf(mi,mj) = (m⊕(∅), difBetP

mj
mi ) in [22], where m⊕(∅) should

be rather m ∩©(∅) (more precisely (mi ∩©mj)(∅)) in fact, difBetP
mj
mi is defined as

difBetP
mj
mi = maxA⊆Ω(|BetPmi(A) − BetPmj (A)|). It holds: difBetP

mj
mi =

Diff(BetPmi , BetPmj ) = 1
2

∑
ω∈Ω |BetPmi({ω})−BetPmj ({ω})| [13].

Pignistic conflict is an alternative of the plausibility conflict [14], where pignistic
probability BetP is used instead of normalised plausibility of singletons.

4.3 Conflict Based on Non-Conflicting Parts

For the recent measure of conflict ncp-Conf [15] is based on Daniel’s ideas from [11]
and namely from [12]. When analysing properties of approaches from [11] using

6Let us recall that notion ’total conflict’ TotC is used for global conjunctive conflict GlcC [11].
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Hájek-Valdés algebraic approach [19, 20], hypothesis7 of decomposition of a BF
into its conflicting and non-conflicting parts was formulated in [12]; and existence
of unique non-conflicting part Bel0 of any BF Bel was proven there:

Theorem 1. Let h(Bel) = Bel ⊕ Un, where Un is the uniform distribution on
sigletons, i.e., Un({ωi}) = 1

n . For any BF Bel defined on Ωn there exists unique
consonant BF Bel0 such that, h(Bel0⊕BelS) = h(Bel) for any BF BelS such that
BelS⊕Un =Un.

Definition 1. Let Bel′, Bel′′ be two belief functions on n-element frame of dis-
cernment Ωn = {ω1, ω2, ..., ωn}. Let Bel′0 and Bel′′0 be their non-conflicting parts
and m′0, m′′0 the related bbas. We define conflict between BFs Bel′ and Bel′′ as
ncp-Conf(Bel′,Bel′′) =mBel′0 ∩©Bel′′0

(∅) = (m′0 ∩©m
′′
0)(∅). Where ∩© is non-normalised

Dempster’s (conjunctive) rule of BFs combination.

For algorithm of computation of ncp-Conf(Bel′,Bel′′) see [15].

5 Consonant Conflicts between BFs

Probabilistic approximations of belief functions were used in several previous ap-
proaches, e.g. pignistic probability in Liu’s degree of conflict cf and in pignistic
conflict BetP -C, and normalized plausibility of singletons in plausibility conflict
Pl P -C.

Making a probabilistic approximation has two disadvantages in general: the
approximation adds some additional information and internal conflict of a BF is
increased. As we do not know how internal conflicts of individual BFs partic-
ipates in global conflict of these BFs, a probabilistic approximation brings also
an unspecified contribution to the conflict “between” which is defined using the
transformation.

Our present idea is to use consonant approximations cAppox(Bel) instead of
the probabilistic ones. Theoretically, we can use any consonant approximation
such that the original BF is its specialization. We use more strict condition: inverse
probabilistic transformations, i.e., such that Transf(Bel) = Transf(cAppox(Bel)),
specially for pignistic transformation BetT (Bel) = BetP and plausibility (i.e. con-
tour) transform PlT (Bel) = PlP . Thus for BetT (Bel) = BetP we will use
consonant pignistic inverse iBetT (Bel) =iBet Bel =iBet, given by iBetm, i.e.,
consonant inverse of BetP : BetT (iBetT (Bel)) = BetT (Bel)= BetP and con-
sonant inverse contour iC, i.e., consonant inverse of Pl P : PlT (iCT (Bel)) =
PlT (iP lT (Bel)) = PlT (Bel)= PlP , see Figure 4.

These approximations have several advantages: they have no internal conflict -
the entire conflict is the conflict “in between”. No additional information nor in-
ternal conflict is added; internally conflicting information is removed. Analogously

7This hypothesis have been proven only on BFs on Ω2 in [12]. In general case, the conflicting
part seems to be in a close relationship to internal conflict of the BF.
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to the original probabilistic approximations these are also uniquely defined and
probabilistic approximation is preserved.

Having consonant approximations of two belief functions, we define a conflict
between them. As the internal conflict of consonant approximations is zero, the
entire conflict of these approximations is the conflict “in between”. Let us adopt
the simplest sum of multiples of disjoint focal elements:

Definition 2. Let Bel1, Bel2 be two belief functions on Ω, iCBeli = iCT (Beli)
and iBetBeli = iBetT (Beli) be their consonant inverse contour and consonant
inverse pignistic approximations given by consonant bbas iCmi, iBetmi.
Inverse contour conflict is defined by formula

iC-Conf(Bel1, Bel2) =
∑

X∩Y =∅
iCm1(X)iCm2(Y ),

where X,Y ⊆ Ω (i.e., where X ∈ F
iCm1

, Y ∈ F
iCm2

).
Inverse pignistic conflict is analogously defined by

iBet-Conf(Bel1, Bel2) =
∑

X∩Y =∅
iBetm1(X)iBetm2(Y ),

where X,Y ⊆ Ω (i.e., where X∈F
iBetm1, Y ∈FiBetm2).

Figure 4: Consonant Ap-
proximations on Ω2

Figure 5: Simplices of
mutually non-conflicting
Belief functions on Ω2.

Figure 6: Simplex of
quasi Bayesian BFs non-
conflicting with (1, 0, 0).

5.1 Basic Properties of iC-Conf and iBet-Conf

We may easily verify that Definition 2 satisfy assumptions A1 – A4.

Lemma 1. The following is equivalent: (i) iC-Conf(Bel1, Bel2) = 0
(ii)

⋂
X∈F

iCmi
X 6= ∅

(iii) X0 ∩ Y0 6= ∅ where X0 ∈ FiCm1 , Y0 ∈ FiCm2 and
X0 ⊂ X, Y0 ⊂ Y for any X ∈ F

iCm1 , Y ∈ FiCm2

(iv) {ωM |Pl P1(ωM ) ≥ Pl P1(ω), ω∈Ω} ∩ {ωM |Pl P1(ωM ) ≥ Pl P2(ω), ω∈Ω} 6= ∅
(v) {ωM |Pl1(ωM ) ≥ Pl1(ω), ω ∈ Ω} ∩ {ωM |Pl1(ωM ) ≥ Pl2(ω), ω ∈ Ω} 6= ∅.
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Lemma 2. The following is equivalent: (i) iBet-Conf(Bel1, Bel2) = 0
(ii)

⋂
X∈F

iBetmi
X 6= ∅

(iii) X0∩Y0 6= ∅ where X0∈FiBetm1 , Y0∈FiBetm2 and
X0⊂X, Y0⊂Y for any X∈F

iBetm1 , Y ∈FiBetm2

(iv) {ωM |BetP1(ωM )≥BetP1(ω), ω∈Ω} ∩ {ωM |BetP1(ωM )≥BetP2(ω), ω∈Ω} 6=∅.
Lemma 3. For any pair of BFs on Ω2 and, generally, for any pair of qBBFs Bel1
Bel2 on Ωn it holds that
(i) iC-Conf(Bel1, Bel2) = 0 iff iBet-Conf(Bel1, Bel2) = 0 iff

{ω | m1({ω}) = maxi{m1({ωi})}} ∩ {ω | m2({ω}) = maxi{m2({ωi})}} 6= ∅,
i.e., if (a1 − b1)(a2 − b2) ≥ 0 in the case of Beli = (ai, bi) on Ω2;

(ii) iC-Conf(Bel1, Bel2) ≥ iBet-Conf(Bel1, Bel2).

From the last condition of Lemma 3 (i) it follows that the following holds in
our graphical presentation: any two BFs on Ω2 from right hand half of the triangle
are mutually non-conflicting (there is no conflict between them, see the green part
of the triangle on Figure 5; analogously for any BFs from left hand white part.

Analogously, it holds for qBBFs on Ωn: any two qBBFs from an n-dimensional
subsimplex (1/n of the entire simplex of qBBFs, which is defined by (0, 0, 0, ..., 0),
and corresponding segment of BBFs where m({ω∗}) ≥ m({ω}) for a given ω∗ ∈ Ωn

i.e., 1/n of (n−1)-dimensional subsimplex of BBFs including m{ω∗} : m{ω∗}({ω∗}) =
1) are mutually non-conflicting. E.g. on Ω3 and m{ω1}({ω1}) = 1 and segment

of BBFs given by (1, 0, 0), ( 1
2 ,

1
2 , 0), ( 1

2 , 0,
1
2 ), and ( 1

3 ,
1
3 ,

1
3 ), see green subsimplex on

Figure 6. Any BF from green subsimplex is conflicting with any BFs from the white
part (the rest) of the simplex, i.e. there is some positive conflict between them.
For categorical qBBF (1, 0, 0), the maximal value 1 of conflict appears with any
BF from red line between (0, 0, 1) and (0, 1, 0). The green subsimplex of mutually
non-conflicting BFs is one of maximal consistent simplices discussed in [6].

Corollary 1. Any symmetric qBBF BelS on Ωn is non-conflicting with any other
qBBF Bel, i.e., iC-Conf(BelS , Bel) = 0 = iBet-Conf(BelS , Bel).

The situation is significantly more complicated on a 2(n−2)-dimensional sim-
plex of general BFs on Ωn. There is multidimensional structure of BFs instead
of 1-dimensional h-line (a straight line8 connecting a BF and related Pl P ); i.e.,
multidimensional structure of BFs with the same Pl P . Analogously there is
a multidimensional structure of BFs with the same BetP instead of simple 1-
dimensional perpendicular in the case of qBBFs. A simplex of BFs non-conflicting
with (1, 0, 0, 0, 0, 0) analogous to that of Figure 6 is 6-dimensional for general BFs
on Ω3. Thus we have no simple generalization of Lemma 3 to general BFs. On the
other hand we can generalize its Corollary to Lemma 4.

Example 1. Let m1 = (1, 0, 0, 0, 0, 0); for m2 = ( 1
3 , 0, 0, 0, 0,

2
3 ) we obtain BetP2 =

( 1
3 ,

1
3 ,

1
3 , 0, 0, 0) = U3, iBetm2 = (0, 0, 0, 0, 0, 0) = 0 thus it is iBet-non-conflicting

8Its name comes from homomorhism h of algebraic structure of BFs, which is defined by
h(Bel) = Bel ⊕ Un, see [8, 20].
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with m1; whereas Pl P2 = ( 1
5 ,

2
5 ,

2
5 , 0, 0, 0), iCm2 = (0, 0, 0, 0, 0, 2

3 ), there is iC-Conf
(m1,m2) = 2

3 > 0 = iBet-Conf(m1,m2). On the other hand, for m3 = (0,0, 12 ,
1
2 ,0,0)

we obtain Pl P3 = U3 thus iCm2 = 0, whereas BetP3 = ( 1
4 ,

1
4 ,

1
2 , 0, 0, 0), and

iBetm3 = (0, 0, 1
4 , 0, 0, 0), hence iC-Conf(m1,m3) = 0 < 1

4 = iBet-Conf(m1,m3).

Lemma 4. (i) Any general symmetric BF BelS on Ωn is non-conflicting with
any other BF Bel, i.e., iC-Conf(BelS , Bel) = 0 = iBet-Conf(BelS , Bel).
(ii) Any BF BelUPl such that its Pl PUPl = Un is iC-non-conflicting with any
BF Bel on Ωn, i.e., for any Bel and any BelUPl with uniform plausibility it holds
that iC-Conf(BelUPl, Bel) = 0.
(iii) Any BF BelUBet such that its BetPUBet = Un is iBet-non-conflicting with
any BF Bel on Ωn, i.e., for any Bel and any BelUBet with uniform BetP holds
iBet-Conf(BelUBet, Bel) = 0.

Lemma 5. For any BF Bel on Ωn, its core Cm, cores CPl P , CBetP of related
probabilities and cores C

iCm, C
iBetPm of their consonant approximations hold that

Cm = CPl P = C
iCm = CBetP = C

iBetm.

Lemma 6. For any pair of BFs Bel1, Bel2 on Ωn and their cores Cm1
, Cm2

it
holds that (i) iC-Conf(Bel1, Bel2) = 1 iff Cm1

∩ Cm2
= ∅,

(ii) iBet-Conf(Bel1, Bel2) = 1 iff Cm1 ∩ Cm2 = ∅.

5.2 An Equivalence of Consonant iC-Conf to Conflict be-
tween BFs Based on their Non-Conflicting Parts ncp-Conf

Lemma 7. Consonant inverse contour conflict iC-Conf is equivalent to conflict
between belief functions based on their non-conflicting parts Conf , i.e., for any pair
of BFs Bel′, Bel′′ on Ωn it holds that iC-Conf(Bel′, Bel′′) = ncp-Conf(Bel′, Bel′′).

Figure 7: Inverse contour conflict be-
tween fixed BF (u, v) and general BF
(a, b) on Ω2; iC-Conf((u, v), (a, b)) de-
creases in direction of arrows and it is
constant along lines without arrows.

Figure 8: Inverse pignistic conflict be-
tween fixed BF (u, v) and general BF
(a, b) on Ω2; iBet-Conf((u, v), (a, b))
decreases in direction of arrows and it
is constant along lines without arrows.

Unfortunately, we have found general counterexamples against Theorem 2 from
[15], thus the following holds only for qBBFs, it does not hold in general.

Milan Daniel, Václav Kratochvíl

69



Theorem 2. (i) Let Bel1 and Bel2 be arbitrary quasi Bayesian BFs on general fi-
nite frame of discernment Ωn given by bbas m′ and m′′. For both conflicts iC-Conf
and iBet-Conf between Bel1 and Bel2 it holds that

Conf(Bel1, Bel2) ≤
∑

X∩Y =∅
m1(X)m2(Y ).

(ii) Equality Conf(Bel1,Bel2)=
∑

X∩Y=∅m1(X)m2(Y) holds iff both BFs Bel1 and
Bel2 are consonant.

This statement does not hold for general BFs. see Example 2 [17].

Example 2. (Counter-example against Theorem 2 from Belief ’14 [15] on Ω3) Let
us suppose Ω3, m1({ω1, ω2}) = 0.7, m1({ω1, ω3}) = 0.3, and m2({ω2, ω3}) = 1.0.
There is Pl1 = (1.0, 0.7, 0.3, ...), iC1 = (0.3, 0, 0, 0.4, 0, 0), Pl2 = (0, 1.0, 1.0, ...),
iC2 = (0, 0, 0, 0, 0, 1.0), thus iC-Conf(m1,m2) = 0.3 · 1.0 = 0.3; analogously
BetP1 = (0.5, 0.35, 0.15), iBet1 = (0.15, 0, 0, 0.4, 0, 0), BetP2 = (0, 0.5, 0.5), iBet2 =
(0, 0, 0, 0, 0, 1.0), thus iBet-Conf(m1,m2) = 0.15.
Nevertheless

∑
X∩Y =∅m1(X)m2(Y ) = 0 < 0.15 = iBet-Conf(m1,m2) < 0.30 =

iC-Conf(m1,m2).

5.3 Relationships to Axiomatic Approaches

We have already seen that Martins axioms MA1 – MA4 are satisfied, due to their
correspondence with our satisfied assumptions A1 – A3. MA5 is not satisfied as
it is too strong due to Martin’s strong definition of bba inclusion, nevertheless our
assumption A4 is a consequence of MA5. Martin explicitly does not assume triangle
inequality Conf(Bel′,Bel′′′) ≤ Conf(Bel′,Bel′′)+Conf(Bel′′,Bel′′′). Both conso-
nant conflicts are the cases, where triangle inequality does not hold true, see Ex. 3.

Example 3. Let Bel′=(0.4,0.1,0.1,0.2,0,0.1;0.1), Pl′=( 7
15 ,

5
15 ,

3
15 ), Bel′′=(0.3,0.2,0.1,

0.1,0,0.1;0.2), Pl′′=( 6
16 ,

6
16 ,

4
16 ), Bel′′′=(0.1,0.2,0.3,0.1,0,0.2;0.1), Pl′′′=( 3

15 ,
6
15 ,

6
15 ),

Bel′0 = ( 2
7 , 0, 0,

2
7 , 0, 0; 3

7 ), Bel′′0 = (0, 0, 0, 2
6 , 0, 0; 4

6 ), Bel′′′0 = (0, 0, 0, 0, 0, 3
6 , 0, 0; 3

6 ),
iC-Conf(Bel′, Bel′′′) = 1

7 � 0+0 = iC-Conf(Bel′, Bel′′)+iC-Conf(Bel′′, Bel′′′).

P3: We have equivalence only for maximal value; the strongest minimal value
condition (i) implies (consonant) non-conflictness in general, medium condition (ii)
does it only for quasi Bayesian BFs, and the weakest condition (iii) does not imply
non-conflictness at all; either one of reverse implications does not hold true (either
for qBBFs). We have validity of P4 and and P6, see our assumptions A2 and A4
above. P5 does not hold either for one of consonant conflicts as specialization of
bbms can change order of plausibility and BetP values, thus also focal elements of
consonant approximations. P7 is most interesting of the properties, it distinguishes
consonant conflicts: it holds for iC-Conf whereas does not hold for iBet-Conf ,
due to that plausibility and iC approximations are consistent with refinement of
the frame of discernment, but BetP and iBet do not.
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Theorem 3. Let Bel1, Bel2 be any BFs given by m1,m2 on general Ωn. For both
consonant conflicts iC-Conf and iBet-Conf between Bel1 and Bel2 it holds that
(i) if

⋂
X∈F1∪F2

= ∅ then Conf(Bel1, Bel2) = 0,
(ii) if both Bel1 and Bel2 are quasi Bayesian and

∑
X∩Y=∅m1(X)m2(Y )=0 then

Conf(Bel1, Bel2)=0,
(iii) Conf(Bel1, Bel2) = 1 iff C1 ∩ C2 = ∅.

5.4 A Comparison with Previous Approaches to Conflict

5.4.1 Combinational Conflict

We suppose TotC(m1,m2)−(IntC(m1)+IntC(m2)) ≤ C(m1,m2) ≤ TotC(m1,m2)
for combinational conflict. On the other hand, 0 ≤ Conf(Bel1, Bel2) �∑

X∩Y =∅m1(X)m2(Y ) = TotC(Bel1, Bel2) for both iC-Conf and iBet-Conf .
Thus both the consonant conflicts are not compatible with the formulation of com-
binational conflict [11].

5.4.2 Plausibility Conflict Pl-C

More interesting is a comparison with the most elaborated and precisely defined
plausibility conflict. We can observe that: (Conf stands for iC-Conf or iBet-Conf)

Lemma 8. For any couple of belief functions (a, b), (c, d) on 2-element frame of
discernment it holds that: (i) Conf((a, b), (c, d)) = 0 iff Pl-C((a, b), (c, d)) = 0,
(ii) Conf((a, b), (c, d)) ≤ Pl-C((a, b), (c, d)).
For any couple of belief functions Bel′, Bel′′ on general finite frame of discernment
Ωn it holds that: (iii) iC-Conf(Bel′,Bel′′)=0 iff Pl-Csm(Bel′,Bel′′)=0.
(iv) If Pl-C0(Bel′, Bel′′) = 0 then also iC-Conf(Bel′, Bel′′) = 0 (in general; but
not for final Pl-C(Bel′, Bel′′)).
(v), (vi) For qBBFs (iii) + (iv) hold also for iBet-Conf .

Thus, the nature of Conf((a, b), (c, d)) is very close to that of Pl-C((a, b), (c, d)).
Conf((a, b), (c, d)) is simpler as its conflictness/non-conflictness simply comes from∑

X∩Y=∅ iCm1(X)iCm2(Y) = |a−b|
1−min(a,b) ·

|d−c|
1−min(c,d) ,

∑
X∩Y=∅ iBetm1(X)iBetm2(Y) =

|a−b| · |d−c|. Hence there is no necessity to check conflictness of all focal elements.
For the same nature see also Figures 7 and 8 which fit also to Pl-C and Bet-C,
respectively.

5.4.3 Comparative Conflict cp-C

Comparative conflict has a completely different nature. There are mutually com-
paratively conflicting couples of BFs with same max Pl or max BetP elements of
Ωn. Thus they are non-conflicting according to Conf , (e.g., Bel′=(0.5, 0.3, 0, 0, 0, 0.1),
Bel′′ = (0.7, 0, 0, 0, 0.1, 0.1).) On the other hand, there are comparatively non-
conflicting BFs, which prefer different ωi’s - they are conflicting according to Conf
(e.g. Bel′ = (0.4, 0.2, 0.1, 0.1, 0, 0), Bel′′ = (0.3, 0.4, 0.1, 0.1, 0, 0)). cp-C has some
relationship to property P5, which should be investigated in future.
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5.4.4 Liu’s Measure of Conflict cf
Any couple of BFs that is mutually non-conflicting according to cf (Section 4.2)
is (under some conditions) also mutually non-conflicting according to consonant
conflicts (the reverse does not hold true); and Conf is less or equal to cf . For
behaviour of values of both the components of cf = (m ∩©(∅), difBetP ) of a fixed
(u, v) with a general (a, b) on Ω2 see Figures 9, 10; values of both the components
decrease in direction of arrows, they are constant along lines without arrow.

Figure 9: m ∩©(∅) component of cf be-
tween fixed (u, v) and general (a, b).

Figure 10: difBetP between fixed BF
(u, v) and general BF (a, b) on Ω2.

Lemma 9. (i) For any couple of belief functions Bel′, Bel′′ on n-element frame of
discernment it holds that, if cf(Bel′, Bel′′) = ((m′ ∩©m′′)(∅), difBetBel′′

Bel′ ) = (0, 0)
then also iBet-Conf(Bel′, Bel′′) = 0,
(ii) The above holds also for any pair of qBBFs Bel′, Bel′′ and iC-Conf(Bel′, Bel′′)
(iii) For Bel′ = (a, b), Bel′′ = (c, d) on Ω2 holds further: Conf((a, b), (c, d)) ≤
cf((a, b), (c, d)); or precisely Conf ≤ ((a, b) ∩©(c, d))(∅) & Conf ≤ difBet

(c,d)
(a,b).

6 Conclusion

In this study, we introduced a new approach of conflict between belief functions
on general finite frame of discernment. Properties of its instances iC-Conf and
iBet-Conf were analyzed and compared with former approaches. Conflict based
on non-conflicting parts of BFs [15] was observed to be equivalent to consonant
conflict iC-Conf . Further, satisfaction of Martin’s [23] and Destercke-Burger’s
[18] axioms was studied.

A common elaboration of the theoretic principles of the presented results with
those from [18] and [23] is a challenge for a future research. It should include an
analysis of positive conflict in situations such that

∑
X∩Y =∅m1(X)m2(X) = 0.

The presented theoretical results improve general understanding of conflict be-
tween belief functions and entire nature of belief functions. Correct understanding
of conflicts may, consequently, improve a combination of conflicting belief functions.
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Abstract

Several approaches to the refinement of the dominance relation between
alternatives are proposed in the setting of interval AHP in this paper. The
approaches are divided into two groups: one uses the tolerance of utility
difference and the other uses the reduction of interval priority weights. It
is shown that refined dominance relations are obtained relatively easily by
solving linear programming problems.

1 Introduction

By the conventional Analytic Hierarchy Process (AHP), alternatives are ranked
simply by priority weights estimated from pairwise comparison matrices (PCMs)
under multiple criteria [3]. In estimating priority weights, only the pairwise com-
parison matrices whose consistency degrees are in the acceptable level are treated.
Once a priority weight vectors are estimated, the inconsistencies in given pairwise
comparison matrices are discarded. From the viewpoint that the decision maker
may have vague evaluations, an approach to estimating priority weights by inter-
vals was proposed by Sugihara and Tanaka [5]. Because the intervals estimated
by their proposed method do not reflect well the vagueness of the decision maker’s
evaluations, improved estimation methods have been proposed (see [2]).

Estimating priority weights by intervals is advantageous in making a robust and
safe evaluation considering the ambiguity inherent in given PCMs. However, as
priority weights are specified only by intervals in these methods, we cannot always
rank alternatives clearly. Because the dominance relation between alternatives
becomes only a preorder, we cannot judge surely whether an alternative dominates
the other for some pairs of alternatives.

∗This work was partially supported by JSPS KAKENHI Grant Number 17K18952.
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In this paper, we propose several approaches to refining the dominance relation.
To rank alternatives clearly under interval priority weights, we introduce two con-
cepts: tolerance in utility difference and reduction of intervals. Tolerance in utility
difference assumes that small utility difference is approved. Reduction of inter-
vals assumes that trimming small portion of interval priority weights is accepted.
Several conceivable approaches to refining the dominance relation based on those
two concepts are proposed. We show that the refined dominance relation can be
obtained by solving linear programming problems.

This paper is organized as follows. In the next section, we review the interval
AHP and describe a few methods for estimating an interval priority weight vector
from a given pairwise comparison matrix. The dominance relation between alter-
natives is reviewed. In Section 3, approaches to refining the dominance relation
are proposed and exemplified. Some concluding remarks are given in Section 4.

2 Interval AHP

We briefly introduce the interval AHP [2, 5] and describe the problem setting of
this paper. For the sake of simplicity, we define N = {1, 2, . . . , n} and N\j =
N\{j} = {1, 2, . . . , j − 1, j + 1, . . . , n} for j ∈ N .

As in the conventional AHP [3, 4], we try to estimate the priority weights from
a given pairwise comparison matrix A, i.e.,

A =




1 · · · a1n

... aij
...

an1 · · · 1


 , (1)

where we assume the reciprocity, i.e., aij = 1/aji, i, j ∈ N . Because the (i, j)th

component aij of A shows the relative importance of the ith item over the jth item.
Theoretically, we have aij = wi/wj , i, j ∈ N for priority weights wi and wj of ith

and jth items. However, because of the vagueness of human judgement, we assume
only aij ≈ wi/wj , i, j ∈ N , where ≈ stands for “approximately equals to”. Then,
in the conventional AHP, wi, i ∈ N are estimated so as to minimize the errors in
A.

In the interval AHP [5], we assume that the decision maker may have a vague
priority weight vector whose range can be expressed by an interval priority weight
vector W = (W1,W2, . . . ,Wn)T rather than a crisp priority weight vector w, where
Wi = [wL

i , w
R
i ], i ∈ N and wL

i ≤ wR
i , i ∈ N . The inconsistency is assumed to

be caused by this vagueness in evaluation of priority weights. Accordingly, we
assume that aij is obtained as wi/wj with randomly chosen wi ∈Wi and wj ∈Wj .
Therefore, W should satisfy aij ∈ [wL

i /w
R
j , w

R
i /w

L
j ], i, j ∈ N, i < j. Let W(A)

be the set of all interval weight vectors W satisfying this condition. Moreover,
corresponding to the normality condition of w in the conventional AHP, we require
the interval weight vector W to satisfy the normality condition, i.e.,

∑
j∈N\i w

R
j +
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wL
i ≥ 1, i ∈ N and

∑
j∈N\i w

L
j + wR

i ≤ 1, i ∈ N . This condition ensures that for

any w◦i ∈ Wi, there exist wj ∈ Wj , j ∈ N\i such that
∑
j∈N\i wj + w◦i = 1. Let

WN be the set of all interval weight vectors W satisfying the normality condition.
In the conventional interval AHP [5], interval priority weights Wi, i ∈ N are

estimated by solving the following linear programming problem:

minimize
W

{d(W ) |W ∈ W(A) ∩WN, ε ≤ wL
i ≤ wR

i , i ∈ N}, (2)

where ε is a sufficiently small positive number and d :WN → [0,+∞) is defined by

d(W ) =
∑

i∈N
(wR

i − wL
i ). (3)

d(W ) shows the sum of widths of interval priority weights Wi, i ∈ N and it has

been considered that the smaller d(W ) the better estimation. Let d̂ be the optimal
value to Problem (2).

It is shown that the estimated interval priority weights by (2) do not express well
the vagueness of decision maker’s evaluation. Therefore, several estimation meth-
ods [2] improving the quality of estimated intervals have been proposed. Among
them, we consider the maximizing minimum range method which estimates the
interval priority weights by the following procedure.

〈1〉 Solve the following linear programming problem for each k ∈ N :

minimize
W

{dk̄(W ) |W ∈ W(A) ∩WN, ε ≤ wL
i ≤ wR

i , i ∈ N}, (4)

where dk :WN → [0,+∞) is defined by

dk(W ) =
∑

i∈N\k
(wR

i − wL
i ). (5)

Let d̂k̄ be the optimal value to Problem (4).

〈2〉 Solve the following two linear programming problems for each k ∈ N :

maximize
W

{wR
k | W ∈ W(A) ∩WN, dk̄(W ) = d̂k̄, ε ≤ wL

i ≤ wR
i , i ∈ N}, (6)

minimize
W

{wL
k | W ∈ W(A) ∩WN, dk̄(W ) = d̂k̄, ε ≤ wL

i ≤ wR
i , i ∈ N}. (7)

Let ŵL
i (k) and ŵR

i (k), i ∈ N be values of wL
i and wR

i , i ∈ N , respectively, at
the obtained optimal solution.

〈3〉 The interval weights W̌j = [w̌L
j , w̌

R
j ], j ∈ N are estimated by the following

equations:

w̌R
j = max

{
ŵR
j (k) | k ∈ N

}
, w̌L

j = min
{
ŵL
j (k) | k ∈ N

}
. (8)

Because we have ([ŵL
1 (k), ŵR

1 (k)], [ŵL
2 (k), ŵR

2 (k)], . . . , [ŵL
n(k), ŵR

n (k)]) ∈ WN,
k ∈ N , we obtain ([w̌L

1 , w̌
R
1 ], [w̌L

2 , w̌
R
2 ], . . . , [w̌L

n, w̌
R
n ]) ∈ WN.
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Once an interval weight vector W is obtained, we define a dominance relation
between alternatives under the assumption that utility values ui(op) of alternatives
op in view of each criterion are given. We use dominance relation defined by

op %O oq ⇔ ∀w ∈W , eTw = 1;
∑

i∈N
(ui(op)− ui(oq))wi ≥ 0, (9)

where e = (1, 1, . . . , 1) ∈ Rn. op %O oq implies that op certainly dominates oq.
This dominance relation is only a preorder (reflexive and transitive) because of
interval weights. From %O, we obtain a strong dominance relation �O by op �
oq ⇔ op %O oq and oq 6%O op. (9) is rewritten as

op %O oq ⇔ δL
W (op, oq) = min

{∑

i∈N
(ui(op)− ui(oq))wi

∣∣∣∣w ∈W , eTw = 1

}
≥ 0.

(10)

3 Refining the Dominance Relation

As described above, the dominance relation %O is usually only a preorder because
the dominance relation holds only when an alternative is better than the other for
all possible priority weight vectors. The dominance relation indicated by %O is
the result of careful consideration. Therefore, %O is useful in knowing the robust
dominance relation. However, because we may neither rank alternatives nor find
the best alternative by using %O, %O is weak in giving some guidance or instruction
for good evaluation and decision. In this section, we investigate the ways to provide
some guidance for ranking alternatives. To this end, we propose several methods for
ranking alternatives in the presence of interval priority weights. Two approaches
are conceivable: one is based on the tolerance of utility differences and the other
is based on the reduction of interval priority weights.

3.1 Tolerance approach

3.1.1 By the minimum utility difference

The first approach uses minimum utility differences between alternatives. The
objective function of the optimization problem appears in (10) shows the mini-
mum utility difference of alternative op from alternative oq. By exchanging op and
oq, we obtain the minimum utility difference of alternative oq from alternative op
which shows also minus 1 times of the maximum utility difference of alternative
op from alternative oq. Therefore, by solving the optimization problem which is a
linear programming problem appears in (10) twice, we obtain the range of utility
difference of alternative op from alternative oq as [δL

W (op, oq), δ
R
W (op, oq)], where

δR
W (op, oq) = −δL

W (oq, op).
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In (10), if the minimum utility difference is non-negative, i.e., δL
W (op, oq) ≥ 0,

we are sure that op is not worse than oq, i.e., op %O oq. From this definition, we
may relax the condition δL

W (op, oq) ≥ 0 to δL
W (op, oq) ≥ −α, α > 0 is a small

number. By this way, we define a relaxed dominance relation as follows:

%L
α= {(op, oq) | δL

W (op, oq) ≥ −α}. (11)

Namely, we have op %L
α oq if and only if δL

W (op, oq) ≥ −α, where op %L
α oq implies

that we are sure that op is not very much worse than oq.
As α increases, δL

W (op, oq) ≥ −α holds for more ordered pairs (op, oq). When
α exceeds a certain value, we may obtain δL

W (op, oq) ≥ −α and δL
W (oq, op) ≥ −α.

Namely, we have op %L
α oq and oq %L

α op, i.e., op and oq are indifferent by discarding
utility difference α. However, this is not always good if |δL

W (op, oq)− δL
W (oq, op)| is

sufficiently large comparing to max(−δL
W (op, oq),−δL

W (oq, op)). To avoid this, we
modify the definition of %L

α as

%L
α= {(op, oq) | δL

W (op, oq) ≥ −α and δL
W (op, oq) > δL

W (oq, op)}. (12)

Moreover, although this modification is applied with a sufficient large α, %L
α cannot

always satisfy the transitivity. In other words, the transitive closure Trcl(%L
α)

includes indifferences among many alternatives. When all values of δL
W (op, oq) are

different, we modify again %L
α by

%L
α={(op, oq) | δL

W (op, oq) ≥ −α and (∀ζ < α, ∀(or, os) ∈ Trcl(%L
ζ ∪{(op, oq)}),

δL
W (or, os) ≥ −α or (os, or) 6∈ Trcl(%L

ζ ))},
(13)

where Trcl(·) stands for the transitive closure. When k pairs (op, oq) take a same
value ᾱ, we introduce some ranking among the k pairs and modify δL

W (op, oq) with
δL
W (op, oq) + (l − 1)ε, where l shows that pair (op, oq) is ranked as the l-th among

the k pairs and ε is a very small number. As an example of such an extra ranking,
we may order the k pairs in increasing order of δL

W (oq, op). As the result, we obtain
a weak order Trcl(%L

α) with a sufficient large number α. We select basically the
minimum α such that Trcl(%L

α) with %L
α of (13) becomes a weak order.

Example 1. Consider a multiple criteria decision making problem with five cri-
teria C1,. . . ,C5 and five alternatives o1,. . . ,o5. We assume the evaluations in view
of each criterion is given as in Table 1. Let U be the matrix shown in Table 1. To
obtain priority weights of criteria, we asked the decision maker to give a pairwise
comparison matrix (PCM). The obtained PCM is shown in Table 2. The consis-
tency index (C.I.) of the PCM is obtained as 0.05209. Because C.I. is smaller than
0.1, we may regard the given PCM is meaningful (see [3]). Applying the maxi-
mum eigenvalue method and the geometric mean method used often in the con-
ventional AHP, we obtain the following priority weight vectors, respectively: wE =
(0.3558, 0.2394, 0.1578, 0.1349, 0.1121)T and wG = (0.3468, 0.2424, 0.1599, 0.1392,
0.1117)T. The total scores of alternatives are obtained as UwE = (0.2192, 0.2087,
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Table 1: Scores of alternatives

C1 C2 C3 C4 C5

o1 0.25 0.3 0.1 0.15 0.2
o2 0.2 0.25 0.3 0.1 0.15
o3 0.15 0.2 0.25 0.3 0.1
o4 0.1 0.15 0.2 0.25 0.3
o5 0.3 0.1 0.15 0.2 0.25

Table 2: Pairwise comparison matrix

C1 C2 C3 C4 C5

C1 1 1 2 2 6
C2 1 1 1 2 2
C3 1/2 1 1 1 1
C4 1/2 1/2 1 1 1
C5 1/6 1/2 1 1 1

Table 3: δL
W (op, oq)

o1 o2 o3 o4 o5

o1 – −0.018182 −0.031031 0.008553 −0.003947
o2 −0.01875 – −0.033333 −0.010197 −0.022697
o3 −0.0375 −0.01875 – 0.004546 −0.041447
o4 −0.077083 −0.058333 −0.039583 – −0.057143
o5 −0.028947 −0.045833 −0.027083 0.0125 –

0.1924, 0.1704, 0.2094)T and UwG = (0.2186, 0.2086, 0.1934, 0.1713, 0.2080)T. Then,
we obtain o1 �E o5 �E o2 �E o3 �E o4 and o1 �G o2 �G o3 �G o5 �E o4, re-
spectively. We note that the orders are different between the maximum eigenvalue
method and the geometric mean method although C.I. is small enough.

Now we apply the interval AHP. Estimating the interval priority weights by the
maximizing minimum range method, we obtain W = ([0.25, 0.4286], [0.1842, 0.3158],
[0.125, 0.2727], [0.125, 0.3333], [0.04167, 0.1818])T. δL

W (op, oq) are obtained as shown
in Table 3. Then we obtain only o1 �O o4, o3 �O o4 and o5 �O o4 when α = 0.
Setting α = 0.031031 or larger, we obtain a weak order defined by Trcl(%L

α). When
α = 0.031031, we have

%L
α= {(o1, o4), (o3, o4), (o5, o4), (o1, o5), (o2, o4), (o1, o2), (o3, o2), (o2, o5), (o1, o3)}.

(14)

By the transitive closure of this relation, we obtain o1 %̂L
α o3 %̂L

α o2 %̂L
α o5 %̂L

α o4,

where %̂L
α = Trcl(%L

α). �

We note that in the obtained refinement of dominance relation we understand
op %L

α oq is accepted more easily if δL
W (op, oq) is larger.

3.1.2 By the center value of the utility difference

In the previous subsection, we refined the dominance relation by the minimum
value of the utility difference. However, the minimum value can be considerably
small if the width of the interval of utility difference is large even if the location
of the interval is around zero. For example, in Example 1, the location of the
utility difference between o1 and o2 is around zero because the difference between
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δL
W (o1, o2) and δL

W (o2, o1) is very small. The location can be seen by the center
value of the interval. Then, in this subsection, we consider a refinement by using
the center values of utility difference intervals. Because the range of the utility dif-
ference of alternative op from alternative oq is obtained as [δL

W (op, oq), δ
R
W (op, oq)].

Then the center value of the utility difference of alternative op from alternative oq
can be obtained by

δC
W (op, oq) =

1

2
(δL

W (op, oq) + δR
W (op, oq)). (15)

As we have δR
W (op, oq) = −δL

W (oq, op), we obtain δC
W (op, oq) = −δC

W (oq, op). Be-
cause of this special relation, each ordered pair (op, oq) such that δC

W (op, oq) ≥ 0
is a candidate of the refined dominance relation op %C oq. We note that op %O oq
is always a candidate of op %C oq. However, unfortunately, the dominance relation
composed of the candidates does not always become a weak order. To overcome
this inadequacy, we apply the same idea as %L

α. Namely, for η ≥ 0, we define

%C
η ={(op, oq) | δC

W (op, oq) ≥ −η and (∀ζ < η, ∀(or, os) ∈ Trcl(%C
ζ ∪{(op, oq)}),

δC
W (or, os) ≥ −η or (os, or) 6∈ Trcl(%C

ζ ))}.
(16)

We select η by the minimum value such that Trcl(%C
η ) becomes a weak order.

Applying the approach of %C
η in Example 1, we obtain the same refined weak

order o1 %̂C
η o3 %̂C

η o2 %̂C
η o5 %̂C

η o4 with η = 0.0032345, where %̂C
η = Trcl(%C

η ). How-

ever, %C
η is different from %L

α in (14), i.e., we have

%C
η = {(o1, o4), (o5, o4), (o2, o4), (o3, o4), (o1, o5), (o2, o5), (o3, o2), (o1, o3)}. (17)

As is shown in (17), (o1, o2) does not appear in %C
η of (17) while it appears in %L

α

of (14). This exemplifies the case where δL
W (o1, o2) is rather large but δR

W (o1, o2)−
δL
W (o1, o2) is small.

When we use the center values, a simpler approach is conceivable. It utilizes
the average degree of dominance

avdd(op) =
1

n− 1

∑

q∈N\p
δC
W (op, oq). (18)

The larger the average degree of dominance is, the larger we consider its utility is.
Therefore, we may rank alternatives by avdd(op). This order is denoted by %̄C.
We note that

∑
p∈N avdd(op) = 0. Therefore, we may regard op as a preferable

alternative if avdd(op) > 0.
Applying this approach to Example 1, we obtain avdd(o1) = 0.058837, avdd(o2)

= 0.028061, avdd(o3) = 0.018940, avdd(o4) = −0.123772 and avdd(o5) = 0.017936.
Then the refined dominance relations is obtained as o1%̄Co2%̄Co3%̄Co5%̄Co4. We
note that avdd(o1) and avdd(o2) are sufficiently different although δC

W (o1, o2) is
very small.
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Table 4: prt(op, oq)

o1 o2 o3 o4 o5

o1 – 0.507690 0.547198 1 0.880009
o2 0.492310 – 0.360002 0.851204 0.668802
o3 0.452802 0.639998 – 1 0.395199
o4 0 0.148796 0 – 0
o5 0.119991 0.331198 0.604801 1 –

3.2 By the positive ratio of the interval utility difference

In the approach using the center value of interval utility difference, the width of
interval utility difference is not taken care at all. Third approach is to take care of
the location and the width of interval utility difference. We consider the positive
ratio of the interval utility difference. Namely, we calculate the ratio of positive
region to the whole range of possible utility differences, i.e.,

prt(op, oq) =
max(δR

W (op, oq), 0)−max(δL
W (op, oq), 0)

δR
W (op, oq)− δL

W (op, oq)
(19)

We note that we have prt(op, oq) = 1 if and only if δL
W (op, oq) > 0, and we have

prt(op, oq) > 0.5 if and only if δC
W (op, oq) > 0.

We apply the same idea as %L
α and %C

η . Then, for ρ ≥ 0.5, we define

%P
ρ={(op, oq) | prt(op, oq) ≥ ρ and (∀ζ < ρ, ∀(or, os) ∈ Trcl(%P

ζ ∪{(op, oq)}),
prt(or, os) ≥ ρ or (os, or) 6∈ Trcl(%P

ζ ))}.
(20)

As we decrease ρ, we obtain a weak order Trcl(%P
ρ ). We select ρ basically with the

minimum value such that Trcl(%P
ρ ) becomes a weak order.

Example 2. Consider the same pairwise comparison matrix and normalized
interval weight vector W as in Example 1. Based on δL

W (op, oq) values shown
in Table 3, we obtain prt(op, oq) as shown in Table 4. Applying the approach of

%P
ρ , from Table 4, we obtain a refined weak order, o1 %̂P

ρ o3 %̂P
ρ o2 %̂P

ρ o5 %̂P
ρ o4 with

ρ = 0.547198 or larger. When ρ = 0.547198,

%P
ρ= {(o1, o4), (o3, o4), (o5, o4), (o1, o5), (o2, o4), (o2, o5), (o3, o2), (o1, o3)}. (21)

Pair (o1, o2) appear neither in %P
ρ .

3.3 Reduction approach

Several approaches to refining dominance relation %O based on utility difference
have proposed in the previous subsection. As another approach, a method based on
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interval weight reduction is conceivable (see [1]). In this subsection, the approach
based on the reduction of interval weights is described.

Let V = (V1, V2, . . . , Vn)T be a reduced interval priority weight vector of a
given interval weight vector W such that wL

i ≤ vL
i ≤ vR

i ≤ wR
i , i ∈ N , where

Vi = [vL
i , v

R
i ], i ∈ N . For op to dominate oq, the reduced interval weight vector

V ⊆W should satisfy

min

{∑

i∈N
(ui(op)− ui(oq))vi

∣∣∣ vL
i ≤ vi ≤ vR

i , i ∈ N,
∑

i∈N
vi = 1

}
≥ 0. (22)

Let us define the following three index sets of N :

I+(op, oq) = {i ∈ N | ui(op)− ui(oq) > 0}, (23)

I−(op, oq) = {i ∈ N | ui(op)− ui(oq) < 0}, (24)

I0(op, oq) = {i ∈ N | ui(op)− ui(oq) = 0}. (25)

vL
i for i ∈ I+(op, oq) and vR

i for i ∈ I−(op, oq) tend to minimize the objective
function of the minimization problem in (22). Indeed, if we drop the constraint∑
i∈N vi = 1 from the minimization problem in (22), vL

i for i ∈ I+(op, oq) and
vR
i for i ∈ I−(op, oq) attain the minimum. From this fact, we take care of the

changes of the lower bounds of interval priority weights when ui(op) > ui(oq) and
the changes of the upper bounds of interval priority weights when ui(op) < ui(oq).

Then we define the ambiguity reduction rates of V ⊆W in the following two
ways:

individual ambiguity reduction rate:

ir(op, oq) = min

(
min

i∈I−(op,oq)

wR
i − vR

i

wR
i − wL

i

, min
i∈I+(op,oq)

vL
i − wL

i

wR
i − wL

i

)
,

total ambiguity reduction rate:

tr(op, oq) =

∑

i∈I−(op,oq)

(wR
i − vR

i ) +
∑

i∈I+(op,oq)

(vL
i − wL

i )

∑

i∈I−(op,oq)∪I+(op,oq)

(wR
i − wL

i )
.

(26)

In this paper, we will find, for each ordered pair (op, oq) of alternatives, the reduced
interval priority weight vector V (op, oq) which maximizes an ambiguity reduction
rate rd(op, oq) such that ∀V ′ ⊇ V (op, oq) satisfying V ′ ⊆ W , V ′ ∈ WN and
δL
V ′ ≥ 0. In other words, we maximize an ambiguity reduction rate rd(op, oq)

such that ∃v = (v1, . . . , vn)T ∈ V (op, oq) satisfying eTv = 1 and
∑
i∈N (ui(op) −

ui(oq))vi ≤ 0. For rd(op, oq), we consider ir(op, oq) and tr(op, oq).

The maximum ir(op, oq) and tr(op, oq) as well as their corresponding V (op, oq)
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can be obtained by solving the following linear programming problems, respectively:

maximize r,

sub. to
∑

i∈N
(ui(op)− ui(oq))vi ≤ 0,

∑

i∈N
vi = 1, vL

i ≤ vi ≤ vR
i , i ∈ N,

vL
i − (wR

i − wL
i )r ≥ wL

i , v
R
i ≤ wR

i , i ∈ I+(op, oq),
vR
i + (wR

i − wL
i )r ≤ wR

i , v
L
i ≥ wL

i , i ∈ I−(op, oq),
vL
i ≥ wL

i , v
R
i ≤ wR

i , i ∈ I0(op, oq),

vL
i +

∑

j∈N\j
vR
i ≥ 1, vR

i +
∑

j∈N\j
vL
i ≤ 1, i ∈ N,

vL
i ≥ ε, i ∈ N, r ≥ 0,

(27)

and

maximize
∑

i∈I+(op,oq)∪I−(op,oq)

ri

/ ∑

i∈I+(op,oq)∪I−(op,oq)

(wR
i − wL

i ),

sub. to
∑

i∈N
(ui(op)− ui(oq))vi ≤ 0,

∑

i∈N
vi = 1, vL

i ≤ vi ≤ vR
i , i ∈ N,

vL
i − ri ≥ wL

i , v
R
i ≤ wR

i , i ∈ I+(op, oq),
vR
i + ri ≤ wR

i , v
L
i ≥ wL

i , i ∈ I−(op, oq),
vL
i ≥ wL

i , v
R
i ≤ wR

i , i ∈ I0(op, oq),

vL
i +

∑

j∈N\j
vR
i ≥ 1, vR

i +
∑

j∈N\j
vL
i ≤ 1, i ∈ N,

vL
i ≥ ε, i ∈ N, ri ≥ 0, i ∈ I+(op, oq) ∪ I−(op, oq).

(28)

We obtain ir(op, oq) and tr(op, oq) by optimal values of Problems (27) and (28),
respectively. For each of those problems, the reduced interval priority weight vector
V (op, oq) = (V1(op, oq), . . . , Vn(op, oq))

T are obtained by Vi(op, oq) = [vL
i , v

R
i ], i ∈

N from an optimal solution.
For ir(op, oq) and ir(oq, op), we have ir(op, oq)+ir(oq, op) ≤ 1, and for tr(op, oq)

and tr(oq, op), we have tr(op, oq) + tr(oq, op) ≤ 1. These can be proven as follows:
we show tr(op, oq) + tr(oq, op) ≤ 1. Let r∗ = (r∗1 , . . . , r

∗
n)T, vL∗ = (vL∗

1 , . . . , vL∗
n )T

and vR∗ = (vR∗
1 , . . . , vR∗

n )T compose an optimal solution to Problem (28). We
have tr(op, oq) =

∑
i∈I+(op,oq)∪I−(op,oq) ri, v

L∗
i = wL∗

i + ri, i ∈ I+(op, oq), v
R∗
i =

wR
i + ri, i ∈ I−(op, oq) and ∀v = (v1, . . . , vn)T such that vL ≤ v ≤ vR, we have∑
i∈N (ui(op)− ui(oq))vi ≤ 0. From the last property, we obtain

tr(oq, op) ≤

∑

i∈I+(oq,op)∪I−(oq,op)

(wR
i − vR∗

i )

∑

i∈I+(oq,op)∪I−(oq,op)

(wR
i − wL

i )
. (29)
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Because I+(op, oq) = I−(oq, op) holds. Then we obtain wR
i −vR∗

i ≤ (wR
i −wL

i )−ri,
i ∈ I+(op, oq) and vL∗

i −wL
i ≤ (wR

i −wL
i )− ri, i ∈ I−(op, oq). Therefore, we obtain

∑

i∈I+(oq,op)∪I−(oq,op)

(wR
i − vR∗

i )

∑

i∈I+(oq,op)∪I−(oq,op)

(wR
i − wL

i )
≤

∑

i∈I+(oq,op)∪I−(oq,op)

(wR
i − wL

i )− ri
∑

i∈I+(oq,op)∪I−(oq,op)

(wR
i − wL

i )

= 1− tr(op, oq). (30)

From (29) and (30), we conclude tr(oq, op) + tr(op, oq) ≤ 1. The other can be
proven in the same way.

The smaller ir(op, oq) and tr(op, oq) are, the more acceptable op % oq is. Then
we refine %O by accepting op % oq with small ir(op, oq) and/or tr(op, oq) values.
Then we apply the same idea as %L

α to obtain a refined dominance relation using
ir(op, oq) or tr(op, oq). Namely, we obtain

%ir
τ ={(op, oq) | ir(op, oq) ≤ τ and (∀ζ < τ, ∀(or, os) ∈ Trcl(%ir

ζ ∪{(op, oq)}),
ir(or, os) ≤ τ or (os, or) 6∈ Trcl(%ir

ζ ))}, (31)

%tr
υ ={(op, oq) | tr(op, oq) ≤ υ and (∀ζ < υ, ∀(or, os) ∈ Trcl(%tr

ζ ∪{(op, oq)}),
tr(or, os) ≤ υ or (os, or) 6∈ Trcl(%tr

ζ ))}. (32)

Taking their transitive closures, we obtain weak orders among alternatives. τ and
υ are defined by the minimum values such that their trensitive clusures become
weak orders.

Example 3. Consider the same pairwise comparison matrix and normalized
interval weight vector W as in Example 1. We obtain ir(op, oq) and tr(op, oq) as
shown in Tables 5 and 6. Then, with τ = 0.339898 and υ = 0.463964, we obtain

%ir
τ = {(o1, o4), (o3, o4), (o5, o4), (o2, o4), (o1, o5),

(o1, o3), (o1, o2), (o2, o5), (o2, o3), (o5, o3)}, (33)

%tr
υ = {(o1, o4), (o3, o4), (o5, o4), (o2, o4), (o1, o2),

(o1, o3), (o2, o3), (o5, o2), (o5, o1)}. (34)

Eventually, we obtain refined weak orders for τ ≥ 0.339898 and υ ≥ 0.463964,
o1 %̂ir

τ o2 %̂ir
τ o5 %̂ir

τ o3 %̂ir
τ o4 and o5 %̂tr

υ o1 %̂tr
υ o2 %̂tr

υ o3 %̂tr
υ o4, where %̂ir

τ and %̂tr
υ are

transitive closures of %ir
τ and %tr

υ , respectively.

4 Concluding Remarks

As shown in Example 1, the dominance relation obtained by the conventional
AHP is not always unswerving even when the given pairwise comparison matrix is
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Table 5: ir(op, oq)

o1 o2 o3 o4 o5

o1 – 0.302326 0.275643 0 0.119997
o2 0.507693 – 0.332965 0.0890831 0.325053
o3 0.421277 0.360001 – 0 0.339984
o4 1 0.5 1 – 1
o5 0.382839 0.347844 0.339898 0 –

Table 6: tr(op, oq)

o1 o2 o3 o4 o5

o1 – 0.337131 0.409472 0 0.536036
o2 0.662869 – 0.412291 0.193388 0.538855
o3 0.590528 0.587709 – 0 0.466514
o4 1 0.806612 1 – 1
o5 0.463964 0.461145 0.533486 0 –

sufficiently consistent. We showed that various weak orders are obtained depending
on the idea of refinement of dominance relation. In ranking alternatives, those
possible weak orders should be considered and the dominance relations obtained
by the proposed approach should be interpreted in the real world setting. Moreover,
we may combine the proposed tolerance and reduction approaches. These would
be included in future topics.
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Abstract

Shenoy’s paper published in this Proceedings of WUPES 2018 introduces
an operator that gives instructions how to compute an expected value in the
Dempster-Shafer theory of evidence. Up to now, there was no direct way
to get the expected value of a utility function in D-S theory. If needed, one
had to find a probability mass function corresponding to the considered belief
function, and then - using this probability mass function - to compute the
classical probabilistic expectation.

In this paper, we take four different approaches to defining probabilistic
representatives of a belief function and compare which one yields to the best
approximations of Shenoy’s expected values of various utility functions. The
achieved results support our conjecture that there does not exist a probabilis-
tic representative of a belief function that would yield the same expectations
as the Shenoy’s new operator.

1 Introduction

Criteria for finding optimal decisions are usually based on a maximum expected
utility principle. As Glenn Shafer [8] wrote already in 1986: The controversy raised
by this book (here he meant the Savage’s book [7]) and Savage’s subsequent writ-
ings is now part of the past. Many statisticians now use Savage’s idea of personal
probability in their practical and theoretical work, ... To do otherwise is to violate
a canon of rationality. This reflects the fact that the maximum expected utility
principle is often used not only when the knowledge from the respective field of
application is embodied in a probabilistic model but also when the applied model is
built within the framework of belief function theory. Nevertheless, to compute the
necessary value of expected utility, the respective belief function is usually trans-
formed into an appropriate probability distribution. For this, several procedures
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were designed - we call them probability transforms in this paper. As advocated
by Cobb and Shenoy, the only one, which is compatible with the Dempster-Shafer
theory of belief functions is the plausibility transform [1]. The other transforms are
more likely compatible with the theory of belief functions interpreted as generalized
probability [4]. This interpretation reflects the fact that a belief function specifies
a convex set of probability distributions, which is called a credal set. In this paper
we consider widely used pignistic transform advocated by Philippe Smets [10], and
two others that are usually omitted in the context of belief function: maximum
entropy and Perez’ barycenter [6].

To our best knowledge, the first idea how to compute an expected value for
a belief function directly, i.e., avoiding its transformation into a probability dis-
tribution, is due to Prakash Shenoy [9]. From the theoretical point of view, it is
a concept deserving a deep further investigation. As we will see in the following
paragraph, it is defined with the help of commonality functions, which means that
it suffers from a great computational complexity. If new computational procedures
(avoiding the calculation of a commonality function and subsequent summation
over all nonempty subsets of a state space) are not found, the application of this
approach in practical problems will be limited. Though we conjecture that there
does not exist a probability transform that would yield the same expectations as
the Shenoy’s operator, there arises an interesting problem: find a probability trans-
form, which approximates the results of the new operator best. And it is the goal
of this paper to compare the above-mentioned four probability transforms from
this point of view.

To achieve this goal, the rest of the paper is organized as follows. Section 2
recalls basic concepts of belief function theory and introduces the necessary nota-
tion. In Section 3, four selected probability transforms are formally introduced. A
battery of basic assignments, as well as a set of utility functions used for compar-
ison are presented in Section 4. The main result of this paper (the comparison of
the computed expected values) is presented in Section 5. The paper is concluded
by Section 6, where the further research is proposed.

2 Notation

Suppose X is a random variable with a finite state space ΩX . Let 2ΩX denote
the set of all non-empty1 subsets of ΩX . A basic probability assignment (basic
assignment for short) m for X is a function m : 2ΩX → [0, 1] such that

∑
a∈2ΩX m(a) = 1.

The subsets a ∈ 2ΩX such that m(a) > 0 are called focal elements of m. An
important example is the vacuous basic assignment for X, denoted by ιX , such
that ιX(ΩX) = 1. It corresponds to a total ignorance. If all focal elements of m

1Notice that we exclude the empty set from 2ΩX in this paper.
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are singletons (one-element subsets) of ΩX , then we say m is Bayesian. In this
case, m is equivalent to a probability distribution.

The information in a basic assignment m can be equivalently represented by
corresponding belief and plausibility functions Belm and Plm, respectively that are
defined as

Belm(a) =
∑

b∈2ΩX : b⊆a
m(b), P lm(a) =

∑

b∈2Ω:b∩a6=∅
m(b),

for all a ∈ 2ΩX . In this paper we need also the fourth possibility of expressing a
belief function. A commonality function for m is defined for all a ∈ 2ΩX

Qm(a) =
∑

b∈2ΩX : b⊇a
m(b).

Notice that it is obvious that for all a ∈ 2Ω, Bel(a) ≤ Pl(a). For singletons
(one-element subsets of ΩX) commonality and plausibility functions coincide:

Qm({x}) = Plm({x})
for all x ∈ ΩX . Since we consider only normal basic assignments for which∑

a∈2ΩX m(a) = 1, it can be shown that

∑

a∈2ΩX

(−1)|a|+1Qm(a) = 1.

For a basic assignment m on ΩX and the corresponding commonality function
Qm, Shenoy proposes a new operator computing the expected value of a general
function2 g : 2ΩX −→ R [9]. Let us adopt his approach to the computation of an
expected value of utility function u : ΩX −→ R. First we need to extend the utility
function from ΩX to the whole 2ΩX (we denote the extension û) in the way that
for all a ∈ 2ΩX

min
x∈a
{u(x)} ≤ û(a) ≤ max

x∈a
{u(x)}.

Following Shenoy’s idea we take the weighted average

û(a) =

∑
x∈a

u(x)Qm({x})
∑
x∈a

Qm({x})

(in case that
∑

x∈aQm({x}) = 0 the value û(a) does not influence the resulting
expected value of u and therefore we can choose any value from the above specified
interval; for example û(a) = (minx∈a{u(x)} + maxx∈a{u(x)})/2). Then Shenoy
defines the expected value of u with respect to m as follows:

Em(u(X)) =
∑

a∈2ΩX

(−1)|a|+1û(a)Qm(a).

2R denotes the set of real numbers.
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The last notion introduced in this section was already mentioned in Introduc-
tion. Basic assignment m specifies the following convex set of probability distribu-
tions P on Ω (PΩ denote the set of all probability distributions on Ω):

P(m) =

{
P ∈ PΩ :

∑

x∈a
P (x) ≥ Belm(a) for ∀a ∈ 2Ω

}
.

P(m) is called a credal set of basic assignment m. If m is Bayesian, then P(m)
contains just one probability distribution.

3 Probability transforms

In this paper, we study properties of the following four mappings that assign a
probability distribution to each basic assignment. For other probability transforms
see e.g. [2]. Perhaps, the most famous is pignistic transform, defined for all x ∈ ΩX

by the formula

Bet Pm(x) =
∑

a∈2Ω:x∈a

m(a)

|a| .

Another transform is the so-called plausibility transform, which is the respective
plausibility function normalized on singletons. Formally it is defined for all x ∈ ΩX

Pl Pm(x) =
Pl({x})∑

y∈ΩX

Pl({y}) .

The other two probability transforms select a specific representative from the
corresponding credal set. One is the Maximum entropy element of P(m), i.e.,

Me Pm(x) = arg max
P∈P(m)

H(P ),

where H(P ) is the Shannon entropy of probability distribution P

H(P ) = −
∑

x∈ΩX

P (x) log2 P (x).

The other is the Perez’ barycenter [6] that has undeservedly fallen into oblivion:

Bac Pm(x) = arg min
P∈P(m)

max
Q∈P(m)

Div(Q;P ),

where Div(Q;P ) denote the well-known relative entropy (called also Kullback-
Leibler divergence in the literature)

Div(Q;P ) =





+∞, if ∃ x ∈ ΩX : P (x) > 0 = Q(x);

∑
x∈ΩX

P (x) log
(

P (x)
Q(x)

)
, otherwise3.

3We always take 0 log
(

0
0

)
= 0.
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4 Basic assignments and utility functions

All the examples presented in this paper correspond to a situation when a color ball
is drawn from an urn. We consider ΩX = {r, b, y, g, w}, and the random variable
X achieves its value in correspondence whether the color of a drawn ball is red,
blue, yellow, green, or white.

Though quite uninteresting from the point of view of this paper (we will see
it later), we cannot avoid the vacuous basic assignment ιX representing a total
ignorance. In this case, we do not have any other information about the balls in
the urn but

• there is at least one ball in the urn (∅ is excluded from 2ΩX );

• the urn contains balls of the specified colors only.

We will also consider a situation described by the famous Ellsberg’s example
[3]. He considers the situation when the urn contains ninety balls, thirty of them
are red, the remaining balls are either blue or yellow with unknown proportion. It
may even happen that all of the remaining sixty balls are of the same color – blue
or yellow. This situation is well described by a basic assignment me with two focal
elements: me({r}) = 1

3 and me({b, y}) = 2
3 .

Like the Ellsberg’s example, a one-red-ball example [5] describes a situation
in which the behavior of human decision-makers is considered paradoxical. In
this example we know the total number of balls in the urn (it equals n) and that
one and only one ball is red. The proportion of the remaining colors in the urn
is unknown. The situation is depicted by basic assignment mr,n with two focal
elements: mr,n({r}) = 1

n and mr,n({b, y, g, w}) = n−1
n . In the next section we will

consider several such basic assignments with different total numbers of balls. Thus,
e.g., for n = 5 we will consider mr,5({r}) = 1

5 and mr,5({b, y, g, w}) = 4
5 .

An interesting situation is got when we consider a basic assignment expressing
the knowledge that, like in the Ellsberg’s example, only balls of three colors (red,
blue, and yellow) are in the urn, and we know that at least 20 % of them are red
and not more than 50 % are yellow. This knowledge is expressed by the following
basic assignment mq: mq({r}) = 0.2, mq({r, b}) = 0.5, mq({r, b, y}) = 0.3. Notice
that in this case the focal elements of mq are nested ({r} ⊆ {r, b} ⊆ {r, b, y}) , and
therefore the corresponding belief function is known to be a possibilistic measure.

Another possibilistic measure is the following basic assignment mp for which:
mp({r}) = 0.1, mp({r, b}) = 0.2, mp({r, b, y}) = 0.3, mp({r, b, y, g}) = 0.2,
mp(Ω) = 0.2.

For a survey of all basic assignments considered in the following section see
Table 1. In this table, only focal elements are presented. In other words, if a set
a ∈ 2Ω does not explicitly appear in the table, it means that its corresponding basic
assignment equals 0.

For the purpose of this paper, we used just eight utility function. Naturally, to
make a really serious comparison of probability functions we expect to use much
larger batteries of basic assignments and utility functions, as well as we expect
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Table 1: Basic assignments

denotation values of all focal elements

ιX ιX(Ω) = 1

me me({r}) = 1
3 , me({b, y}) = 2

3

mr,n mr,n({r}) = 1
n , mr,n({b, y, g, w}) = n−1

n

mq mq({r}) = 0.2, mq({r, b}) = 0.5, mq({r, b, y}) = 0.3

mp mp({r}) = 0.1, mp({r, b}) = 0.2, mp({r, b, y}) = 0.3,

mp({r, b, y, g}) = 0.2, mp(Ω) = 0.2

ma ma({r, b}) = 0.2, ma({y, g, w}) = 0.3, ma(Ω) = 0.5

to widen also the set of the compared probability transforms. For the considered
utility functions see Table 2. Notice that the first four utility functions correspond
to the Ellsberg’s example.

Table 2: Utility functions

r b y g w

u1 100 0 0 0 0
u2 0 100 0 0 0
u3 100 0 100 0 0
u4 0 100 100 0 0
u5 0 100 200 300 0
u6 0 100 0 200 0
u7 100 0 0 200 100
u8 50 150 70 220 30

5 Computations

In this section, we describe results obtained from the experimental computations.
For each pair, a basic assignment from Table 1 (we considered three basic assign-
ments corresponding to one-red-ball example: mr,3, mr,5, and mr,15, i.e., 8 basic
assignments in total) and a utility function from Table 2 we compute five values:

• Shenoy’s expected utility value;

• expected utility value computed using pignistic transform;

• expected utility value computed using plausibility transform;
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• expected utility value computed using maximum entropy transform;

• expected utility value computed using Perez’ barycenter transform.
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(a) Pignistic transform
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(b) Plausibility transform
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(c) Maximum entropy
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Figure 1: Difference between Shenoy’s expected utility values and those computed
using probability transforms

Each expected utility value computed using a probability transform is then
compared with the corresponding Shenoy’s expected utility value. Thus, for each
probability transform we receive 8 × 8 = 64 matrix of values (absolute values of
the differences) expressing the difference between the results achieved with the
help of the corresponding probability transform and those achieved by the new
operator. To make it visually attractive, we depict each such matrix by a 8×8 table,
where each difference corresponds to one box. The darker the box, the higher the
corresponding difference. Figure 1 depicts the corresponding differences, Figure 2
depicts by how many percent the expected value computed with the help of the
respective probability transform differs from the Shenoy’s expected value.

We see that the first row in all tables corresponding to ιX is empty meaning
that under the condition of total ignorance all the considered approaches yield
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(a) Pignistic transform
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(b) Plausibility transform
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Figure 2: Relative difference between Shenoy’s expected utility values and those
computed using probability transforms

the same expected utility (all probability transforms give the uniform probability
distribution).

6 Conclusions

Though the results achieved in this study should be considered preliminary, they
give a hint that the plausibility transform, regardless it is considered by Cobb and
Shenoy the only one corresponding to Dempster-Shafer theory of evidence, is quite
unsuitable for estimating the expected utility. The question is whether there is
any positive result that can be concluded from the described simple study. The
achieved results may support the Smets’ conviction that the pignistic transform
is the best one for decision-making. The results may also suggest that for the
situations described by simple basic assignments, the pignistic transform yield the
same results as the maximum entropy principle and the Perez’ barycenter.

In any case, this study is a starting milestone for further research. From the
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theoretical viewpoint, it would be interesting to know whether our conjecture about
the nonexistence of a probability transform yielding the same expected values as
Shenoy’s operator is true or not. From the practical point of view, because of a
great computational complexity of the new expectation operator, it is interesting to
perform a study similar to the one presented in this paper, but with much greater
the number of basic assignments and a higher the number of utility functions.
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Abstract

p-Hacking is a bad science practise, when researchers selects statistical
hypothesis ex post such that they omits unsignificant results. From the game-
theoretic point of view, the exchange of scientific information via publications
is a Bayesian game: Each player-experimenter publishes a favourable part of
the result of the experiment, but the ”denominator” of this result (= number
of test and set of negative results) remains his private information. Publishing
and citation practice then demotivates researchers to show full and correct
results, and favors the p-Hacking-biased results. As a step to the solution,
I propose the concept of Compromise Correction. Firstly we adjust the ob-
tained p-values by transforming p → 1

p
Now we model the multiple-testing

problem as a cooperative game: For each S - subset of the tests, value of char-

acteristic function is ν(S)= Max
i∈S

(
1
pi

)
The idea of compromise correction is

to solve the problem of multiple testing, when taking into account the worth
of each coalition = each subset of set of experiments. The solution to this
problem is the Shapley value:

pk → 1
1

kpk
−∑n

i>k
1

(i(i−1))pi

p1 ≤ p2 ≤ ... ≤ pn
The solution of this problem is tractable, keeps the order of values, is ro-
bust w.r.t. changes in ”tail” (e.g. increasing the number of strongly negative
results) and is piecewise-rational. Robustness w.r.t. tail changes is a prop-
erty that motivates testing and additional questions and publishes results
correctly without fear of relativizing the already achieved significant results.
Bonferoni’s, resp. Šidak’s correction, unlike a compromise correction, limits
the maximum ”safe” number of additional tests
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1 Introduction

1.1 Problem: p-hacking & replication crisis

The replication crisis is a crisis of credibility of the published results of scientific
experiments. There is a growing suspicion that many of the results reported as
statistically correct, were in actual fact the fluctuation of the random component
of observing one experiment in one laboratory. We must always take into account
the non-zero frequency of non-replicable and randomly emerged results; part of
them arises necessarily, on the basis of statistical error or professional misconduct.
However, the ratio of studies whose published results had not been repeated even
within the maximum imitation of the original laboratory conditions, significantly
exceeds the degree of what could be explained by statistical error. Extensive re-
search [1] has succeeded in repeating 25 % of 67 articles; all of them were from the
oncology and haematology areas. This replication crisis increases research costs
into amounts spent on fruitless follow-up clinical trials and, in addition, threat-
ens health as well as confidence in science. A study of a similar type [10] has
also shown ”resistance” of non-replicable results to the prestige of the journal :
” The reproducibility of published data did not significantly correlate with journal
impact factors, the number of publications on the respective target or the number
of independent groups that authored the publications. ” [10]

One of the causes is the so-called p-Hacking [15] The idea of p-Hacking is the
hypothesis that non-replicable results arise by the researcher hiding some of the
experiment’s circumstances. Experimenters conceal multiple-testing and publish,
without correction, only those conclusions that have been proven to be significant in
the experiment. The p-Hacking hypothesis is statistically testable on large data (=
p-values from many articles). [2] statistically proved the non-standard behaviour
of the p-value curve around the ”magical” threshold p=0.05

However, the replication crisis is not reducible to a mere p-value crisis. The
problem would not be solved by replacing a p-value by other statistical indicators
in scientific outputs. Cherry-picking can be done based on any statistical indicator.
For instance, [3] proved limited replicability of effect size of published results. The
p-value is advantageous due to its universality and predictable statistical distribu-
tion. For negative results, there is an uniform distribution U(0, 1) and, for all the
results, a mix of uniform and β-distribution [8]

1.2 Cooperative Game Theory: Basic Definitions

The main of this article is to look to replication crisis and p-hacking from the game-
theoretic point of view. So, this chapter contains basic definitions and concepts of
the cooperative game theory.

Definition: The pair (Ω, v) is a cooperative game (in characteristic function
form) if Ω is a finite set of players and ν : 2Ω → R is a characeristic function that
assigns to every coalition S ⊆ Ω an attainable profit v(S) such that v(∅) = 0.

A cooperative game is caled
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• aditive, if for all S, T ∈ 2Ω with S ∩ T = ∅, v(S ∪ T ) = v(S) + v(T ).

• monotone, if for all T,R ∈ 2Ω with S ⊂ T , ν(S) ≤ ν(T )

• superaditive, if for all S, T ∈ 2Ω with S ∩ T = ∅, v(S ∪ T ) ≥ v(S) + v(T ).

• subaditive, if for all S, T ∈ 2Ω with S ∩ T = ∅, v(S ∪ T ) ≤ v(S) + v(T ).

Superadditivity implies monotonity, but but monotonity does not imply super-
additivity. The game class maxV alueGame[] examined in the following section is
the set of monotones, but generically subaditive games.

Let Γ = Γ(Ω) the set of all cooperative games on Ω and by Γ1 = Γ1(Ω) the
subset of all aditive cooperative games on Ω

Definition: A value of games is an operator Ψ : Γ→ Γ1 s.t. Ψ ◦Ψ = Ψ
In particular, we define Ψi(v) := Ψ◦v({i}). Clearly, Ψ◦v is uniquelly determined

by the numbers Ψi(v).
A special case of the value is the Shapley value:
Definition (formula): The Shapley value is a value φ defined by the formula

φi ◦ v =
∑

R⊇{i}

∆v(R)

|R|

where ∆R(v) ∈ R is a Harsanyi dividend of the coalition R ⊆ Ω defined by

∆R(v) =
∑

T⊆R
(−1)|R|−|T |v(T )

An alternative, but equivalent definition of the Shaplye value is axiomatic.
Shapley theorem [13] proves the existence of a unique game-value operator ϕ as-
suming it satisfies the following four axioms:

1. Linearity: ϕ(αv + βv′) = αϕ(v) + βϕ(v′) for all (Ω, v), (Ω, v′) ∈ Γ and
α, β ∈ R

2. Efficiency: For all games (Ω, v):
∑

i ϕi(v) = v(Ω)

3. Null-player property: if i ∈ Ω is a null-player, i.e. ∀R ⊆ Ω v(R ∪ {i}) =
v(R), then ϕi(v) = 0

4. Symmetry (sometimes called anonymity): ϕ(ρ(i))(ρ · v) = ϕi(v) for every
permutation ρ ∈ SΩ (the function ρ · v is defined by ρ · v(ρ(R)) := v(R)) for
any R ⊆ Ω)

Axioms 1-4 are independent; in [5] and in [12] are examples of values satisfying
any 3 of them and not the 4th.

From the geometric point of view, cooperative game is a point of R2Ω

and set
of all cooperative games Ω is a 2|Ω| − 1 dimensional subspace of the vector space
R2Ω
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From the game-theoretic point of view, cooperative game illustrates an economic
situation where a coalition profit or cost depends in general on the involved players
in a non-aditive way.

Values of games provide a tool how to evaluate the contibutions of the players.
In particular, the Shapley value describes a way how to do it in a fair way. Linearity
means that fair value should be linear. In other words, if the same plaers play two
games (v1, v2) independently, value of every player should be in sum the same as
a value of ”join” game v1 + v2 The second axiom is equivalent to the requirement
”The maximum coalition will be formed and its profit will be exactly divided”.
Null player is a player without any benefit of any coalition; null player property
means that value of null player should be 0

The axiom of symmetry is an expression of equality of all the participating
players. This means that the game-value assigned to them is calculated only from
their contributions to the coalitions and does not depend on the particular identity
of the player.

Once again from the geometric point of view, a value is an operator Ψ : Γ→ Γ1.
First axiom required that Ψ should be linear, i.e. matrix-representable. Harsanyi
dividents (∆R(v))R⊆Ω are coefficients in the unanimity basis (uS)∅6=S⊆Ω

uS(R) =

{
1 S ⊆ R
0 otherwise

(∆R(v))R⊆Ω evaluate a net contribution of coallition R to the total profit v(Ω)
Shapley value of uS is 1

|S| for a members of coalllition S and 0 for non-members.

The Shapley value divides the net benefit of each coalition, may be negative, among
its members.

2 Compromise correction

2.1 Multiple-testing problem

The research design one experiment - one atomic result (one null hypothesis OR
one estimeted parameter OR one comparison...) is highly inefficient. So, analysis
of experimental data usually tests several hypotheses and estimates several param-
eters. There are many statistical methods for error-controlling of the experiments
with multiple testing: Common known Bonfferoni correction p → Np and similar
Šidak’s correction p→ 1− (1− p)N [14], where p is the number of tests. Complex
procedures as a [4], [7], [6]. However, there is no incentive mechanism to actually
use these procedures, to publish full resut including unsuccessful tests. And simul-
taneously, each of these procedures rapidly aggravate the score of the basic result
when giving more tests. Scientist who only publishes positive results (and con-
ceals negative) is more successful in publishing. And the set of published scientific
information is biased. In the sense of [11], the market of scientific informations
exchange is poorly designed.
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2.2 Compromise correction: idea

The purpose of each correction of p-values is conrolling of probabilities of type I
errors (false positives)

The idea of compromise correction is to evaluate net contributtion in the sense
of cooperative game theory of any test result pi to the best result Mini[pi]:

Firstly, we adjust the obtained p-values by transforming them such that the
higher value formally means the more convincing results (instead of original order-
ing lower value = better results) p→ 1/p. We assume that an individually rational
experimenter without interest in credibility, whose primary motivation is to show
the outcome as significant as possible, published the most significant result only,
without any correction. On the other hand, the rule of multiple testing requires
the Bonferoni or another correction. The compromise correction is based on the
question of which of the values contributes to the most significant result Max[ 1

pi
]

Let us interpret the problem of the best result as a game over partial results.
If the experimenter would only execute a subset S of experiment, his best value
vould be Maxi∈S [ 1

pi
] . The idea of compromise correction is to solve the problem

of multiple testing, when taking into account the worth of each coalition = each
subset of set of experiments.The solution to this problem is the Shapley value. So
we calculate the Shapley value for the cooperative maxV alueGame

maxValueGame: v(S) = Max

[
Xi =

1

pi
: i ∈ S

]

2.3 Compromise correction: solution

The solution of this problem is tractable: Let p1 ≤ p2 ≤ ... ≤ pn, X =
(

1
pi

)n
i=1

Then Shapley value in the coordinate k is

Shapley[maxValueGame[X]]k =
Xk

k
−

n∑

i>k

Xi

i(i− 1)

and compromise correction operator asigns to the k-th best value a corrected
value

pk →
1

1
kpk
−∑n

i>k
1

i(i−1))pi

Proof: Let X1 ≥ X2 ≥ ... ≥ Xn ≥ Xn+1

maxV alueGame[X1...Xn+1] =

= maxV alueGame[X1−Xn+1, X2−Xn+1, ...Xn−Xn+1, 0]+constantGame[Xn+1]

where constantGame[y][S] = y for any nonempty coallition S
By linearity, Shapley value of the maxV alueGame[X1...Xn+1] = is the sum

of Shapley values of two games defined above. For the first game, value 0 is the

Aleš A. Kuběna
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nullplayer in the sense of Shapley 3rth axiom: Xi − Xn+1 ≥ 0 and Max[S] =
Max[S ∪ {0}] for S ⊆ {X1 − Xn+1, X2 − Xn+1, ...Xn − Xn+1}. For the second

game, Shapley value is (Xn+1

n+1 )i=1...n according to the symmetry of Shapley value.
So

Shapley[maxValueGame[[(X)n1 ∪ {Xn+1}]]k =
Xk

k
−

n+1∑

i>k

Xi

i(i− 1)

and after inverse transform

pk →
1

1
kpk
−∑n+1

i>k
1

i(i−1)pi

♦

3 Properties of compromise correction

3.1 Mathematical & computational

• Compromise correction keeps the order of values. The k-th best value
remains the k-th best value after correction

• Piecewise linearity of the operator (Xi)
n
i=1 → Shapley[maxValueGame[X]]i

We reassess the data with a more sensitive test, and we assume that only the
first result will improve,

p′1 < p1 ≤ p2 = p′2 ≤ p3... ≤ pn = p′n

Then the compromise correction of all the improvements also gives the best
result,

p̂′1 < p̂1 ≤ p̂2 = p̂′2 ≤ p̂3... ≤ p̂n = p̂′n

where

ˆ(pi)
n
i=1 = CompromiseCorrection[((pi)

n
i=1]

3.2 Game-theoretic, Reverse-game-theoretic & motivational

• Robustness against tail changes: Let’s assume that the experimenter
has achieved a significant result, but there is still material left to test addi-
tional questions with a low likelihood of becoming significant. When honestly
applying Bonferoni’s correction, it is preferable not to carry out further an-
alyzes. The reason is the risk of destroying existing and confirmed results
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- the Bonferoni correction coefficient increase after each new test. Compro-
mise corrections cause only small bounded fluctuations of the first results.
Intuitively, we consider the test and publishing of additional results to be
collectively rational. Compromise correction is not in contradiction with in-
dividual rationality.

• Copromise correction is a centralized mechanism. It needs to collect all
the data for the calculation. However, for the above reasons, it motivates the
publication of a whole set of p-values better than Bonferoni’s correction.

• Bonferoni’s correction defines the upper limit of Compromise correction.

4 Limitations and future work

Unfortunately, compromise correction is a decentralized mechanism. From the
reverse-game-theoretic point of view, compromise correction is a half-solution only.
Compromise correction eliminates the fears and some disadvantages of complying
with the rules of good science, but it does not remove the temptation to do so.
Compromise correction works as a lifeline for researchers willing to publish cor-
rectly, but does not work well as a sticks on those who do not care about the
replicability of their published results. However, I hope that in the second plane
higher number of published full-set results will help to improve of power of detec-
tion of inaccuracies. Construction of decentralized mechanism is the next plan of
the research.

The second weak point of compromise correction is its implausible behavior in
situation with two or more very similar tests, i.e. with tests with a high a-priori
conditional probability P (T2 is significant|T1 is significant). For instance Kaplan-
Meier test and Cox-regression for the same data. The compromise-correction coef-
ficient for both is implausible close to maximal (but still smaller than Bonferroni!).
The usual motivation in this case is not to increase the number of tests, but to find
out more of the model parameters.

Further research will focus on the ability to replace the Shapley value with value
associated with a pre-defined network structure: Myerson value [9]
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Abstract

Iterative Scaling is a widely used method to solve maximum entropy prob-
lems. Depending on the application they are used for, there are many different
versions of Iterative Scaling algorithms. This paper compares and reconnects
two popular algorithms, which share a name, but are not equal and even
converge to different limit points.

Keywords: iterative scaling, maximum entropy estimation

1 Introduction

Beginning with the Iterative Scaling algorithm described by Csiszár in [6], there
now exist many different types of Iterative Scaling algorithms depending on the
respective application. There are two frequently used algorithms, which converge
to different limit points but are both called Generalized Iterative Scaling (GIS)
algorithm. These algorithms are the one presented by Darroch and Ratcliff in [8]
and the algorithm used for example by Goodman in [10] or Huang et al. in [11].
To prevent confusion we will call the last one Conditional Generalized Iterative
Scaling (CGIS) algorithm.

In order to emphasize their similarities and differences we present both algo-
rithms and categorize them according to two different properties. At first we take
a look at the instance they are operating on. In the case of the GIS algorithm it is
the full probability distribution, in contrast to the CGIS algorithm that operates on
parameters λ. We introduce an intermediate algorithm, the Joint GIS algorithm
to analyse this difference.
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Secondly, the form of the probability distribution is different in both algorithms.
The GIS and Joint GIS algorithm use joint distributions while the CGIS algorithm
computes conditional distributions. This transformation is the reason for the differ-
ent limit points. GIS and Joint GIS converge to the maximum entropy estimation,
in contrast to CGIS which converges to the conditional maximum entropy estima-
tion. Our tool to study this difference is the conditional GIS algorithm, a new
algorithm which works on the whole probability distribution but with the condi-
tional maximum entropy principle. The categorization of these four algorithms is
shown in Figure 1.

iteration on
distribution

joint conditional

full distribution GIS [8], [5] conditional GIS
Section 3 Section 5

parameter Joint GIS CGIS [10], [11]
Section 4 Section 6

Figure 1: Categorization of the four different algorithms, namely GIS, conditional GIS,
Joint GIS and CGIS according to the used distribution and the component over which
they iterate.

2 Iterative Scaling

This section gives a brief introduction to Iterative Scaling. The probability distri-
butions discussed here are discrete distributions on a finite set X and the set of
these distributions will be denoted by P.

Iterative Scaling algorithms are a method to solve maximum entropy problems.
In this setting, the algorithms determine a probability distribution on X with pre-
determined properties. The properties are fixed by introducing constraints which
describe the expected value of a feature and are defined for i P t1, . . . ,mu as:

ÿ

xPX

P pxqfipxq “ ki, ki ě 0,
ÿ

i

ki “ 1. (1)

The constraints are called consistent, if the set of positive probability distri-
butions on X, which fulfil these, is not empty. An important result for Iterative
Scaling is the duality in Lemma 1. We will need the following sets:

Lpf, kq “ tP P P |
ÿ

xPX

P pxqfipxq “ ki, i P t1, . . . ,muu

Qpf, P p0qq “

"

P P P | P pxq “
1

ZP p0q pλ ¨ fq
e

ř

i
λifipxq

P p0qpxq, λi P R, x P X

*

.
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Lemma 1. Suppose that the distribution pP satisfies the constraints and that
Dp pP ‖ P p0qq ă 8 for a probability distribution P p0q. Then any of the following
properties determine P ‹ uniquely and the following statements are equivalent:

(1) P ‹ “ arg min
pQPQpf,P p0qq

Dp pP ‖ pQq

(2) P ‹ “ arg min
PPLpf,kq

DpP ‖ P p0qq

(3) P ‹ P Lpf, kq X Qpf, P p0qq

Proof. The proof is given by Ay et al. in Section 2.8.3 Theorem 2.8 in [1].

3 The GIS algorithm

In order to prove the convergence of the algorithm Darroch and Ratcliff apply in
[8] the following restrictions to the features:

ÿ

x

fipxq “ 1 and fipxq ě 0. (2)

It is possible to define less strict restrictions as for example Curran and Clark point
out in [7], but at this point it is sufficient to use the original ones.

Theorem 3.1 (The GIS algorithm, [8]). Let P p0q be the uniform distribution, fi
as in (2), n P N and

P pnqpxq “ P pn´1qpxq

m
ź

i“1

¨

˝

ki
ř

x1PX

P pn´1qpx1qfipx1q

˛

‚

fipxq

.

The P pnq converges to a positive and unique solution P ‹ P Qpf, P p0qq fulfilling the
constraints (1) and the properties described in Lemma 1.

Additionally, it is possible to prove that P ‹ P Lpf, kq X Qpf, P p0qq under the
condition that the constraints are consistent.

Proof. This was proven by Csiszár in [5].

4 The Joint GIS algorithm

The parameters λi and the features fi determine the density of a Gibbs distri-
bution uniquely. Therefore, we do not have to compute P pnq in each step of the
algorithm in order to find P ‹. That is why it is sufficient to find an iteration for
the parameters. In each step, the parameters λi will be altered by δi, so that

λ
pn`1q

i “ λ
pnq

i ` δi.
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Although it is easy to check that the iteration below and the one described in
Theorem 3.1 are related, we are not able to conclude immediately that this new
algorithm converges. Darroch and Ratcliff state in [8] at the end of Section 2
without a proof that the parameters can be compiled in an easy way. In [2] Brown
et al. are able to give this proof for some cases, but not for the general case.

In conclusion, we will prove the convergence of the algorithm based on the
framework Pietra et al. use in [13] to prove the convergence of another form of
iterative scaling algorithm, their Improved Iterative Scaling algorithm. Denote by

Pδpxq “
1

Zpλ ` δ, fq
¨ e

m
ř

i“1
pλi`δiqfipxq

, Zpλ ` δ, fq “
ÿ

xPX

e

m
ř

i“1
pλi`δiqfipxq

. (3)

The goal is to maximize MpQ,Pδq :“ ´DpQ ‖ Pδq with a fixed Q P P that satisfies
the constraints and to use Lemma 1. Therefore we need to find a lower bound of
the steps of the iteration which is easy to maximize respecting δ. The following
Definition 1 and Theorem 4.1 are the ones Pietra et al. use in [13] in Section 4.B.

Definition 1. A function B : Rm ˆ P Ñ R is an auxiliary function for MpQ,Pδq

if it holds the following properties:

(1) For all P P P and δ P Rm we have: MpQ,Pδq ě MpQ,P q ` Bpδ, P q.

(2) Bpδ, P q is continuous in P P P and C 1 in δ P Rm.

(3) Let t P R. Then Bp0, P q “ 0 and:

d

dt

ˇ

ˇ

ˇ

ˇ

t“0

Bpt ¨ δ, P q “
d

dt

ˇ

ˇ

ˇ

ˇ

t“0

MpQ,Pt¨δq.

It is possible to define the following sequence:

P pn`1q “ P
pnq

δpnq , with δpnq “ arg max
δPRm

Bpδ, P pnqq.

Property p1q of Definition 1 makes sure that MpQ,Pδpnq q increases with every step.
With this we can get to the next result:

Theorem 4.1. Let P pnq P P be a sequence where the support of P p0q is X and
the properties

P pn`1q “ P
pnq

δpnq , δpnq P Rpmq, Bpδpnq, P pnqq “ sup
δPRm

Bpδ, P pnqq.

Then MpQ,Pδpnq q increases monotonically, it converges to

max
pQPQ̄pf,P p0qq

MpQ, pQq and lim
nÑ8

P pnq “ P ‹ “ arg max
pQPQpf,P p0qq

MpQ, pQq.

Proof. This is proven in [13] Section 4.B.
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In order to resemble the CGIS algorithm, we will now make use of new restric-
tions towards the features:

f c :“ max
xPX

m
ÿ

i“1

fipxq 0 ď fipxq ď 1, i “ 1, . . . ,m.

Additionally, we assume that f c ě 1. Note that we no longer need the fi to sum
up to 1 or any fixed constant. In [7] Curran and Clark proved the convergence of
the algorithm without a correction feature

fm`1 :“ 1 ´

m
ÿ

i“1

fipxq

f c

by fixing its value with λm`1 ” 0 to zero. In order to apply the Jensen’s inequality
we will use the same trick in the next lemma.

Lemma 2. Let Q,P P P and δ P Rm. Then the function

Bpδ, P q “ 1 `
ÿ

xPX

Qpxq

m
ÿ

i“1

δifipxq ´
ÿ

xPX

P pxq

m`1
ÿ

i“1

fipxq

f c
eδif

c

is an auxiliary function for MpQ,P q with δm`1 “ 0 fixed.

Proof of Lemma 2. We will prove the properties listed in Definition 1. To prove
the first property we use logpxq ď x ´ 1, for all x ą 0 and the Jensen’s inequality.

(1) MpQ,Pδq ´ MpQ,P q ě
ÿ

xPX

Qpxq

m
ÿ

i“1

δifipxq ´
ÿ

xPX

Qpxq

˜

ÿ

x1PX

e

m
ř

i“1
δifipx1

q

P px1q ´ 1

¸

ě Bpδ, P q.

(2) The definition of f c assures that f c ą 0. As a sum of continuous functions
Bpδ, P q is continuous in P and

d

dδ
Bpδ, P q “

˜

ÿ

xPX

Qpxqf1pxq ´ P pxqf1pxqeδ1f
c

. . .
ÿ

xPX

Qpxqfmpxq ´ P pxqfmpxqeδmfc

¸

.

Every entry of the Jacobian matrix is continuous in δi and we gain property (2).

(3) For δ “ 0pmq we get: Bp0, P q “ 1 ´
ř

xPX

P pxq
m`1
ř

i“1

fipxq

f c
“ 1 ´ 1 “ 0. With t P R

the differentiation leads to:

d

dt

ˇ

ˇ

ˇ

ˇ

t“0

MpQ,Pt¨δq “
d

dt

ˇ

ˇ

ˇ

ˇ

t“0

ÿ

xPX

ln

˜

1

ZP pt ¨ σ, fq
e

m
ř

i“1
t¨δifipxq

P pxq

¸

´
ÿ

xPX

QpxqlnpQpxqq

“
ÿ

xPX

Qpxq

m
ÿ

i“1

δifipxq ´
ÿ

xPX

P pxq

m
ÿ

i“1

δifipxq “
d

dt

ˇ

ˇ

ˇ

ˇ

t“0

Bpt ¨ δ, P q.
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It remains to show that BpQ,P q and Theorem 4.1 result in the desired iteration:

Lemma 3 (The Joint GIS algorithm). Let λ
p0q

i “ 0 and

λ
pn`1q

i “ λ
pnq

i `
1

f c
ln

¨

˝

ki
ř

xPX

P pnqpxqfipxq

˛

‚ . (4)

This converges to λ‹
i “ lim

nÑ8
λ

pnq

i . Additionally we have

P pxq “
1

Zpλ‹, fq
e

m
ř

i“1
λ‹
i fipxq

“ P ‹pxq

for all x and P ‹ is the same limit point as the one of GIS in Theorem 3.1.

Proof of Lemma 3. Theorem 4.1 provides us with an iteration that convergences

to arg max
pQPQpf,P p0qq

MpQ, pQq. Choosing λ
p0q

i to be zero leads to P p0q as the uniform

distribution. That means that the initial points of both algorithms are the same.
Now we will take a look at δpnq defined in Theorem 4.1 and maximize Bpδ, P pnqq

in respect to δ. For every i P t1, . . . ,mu we get:

δi “
1

f c
ln

¨

˝

ki
ř

xPX

P pnqpxqfipxq

˛

‚ .

This is in fact a maximum of Bpδ, P pnqq because of the negativity of the Hessian
matrix. We are now able to iterate over the λi separately, because of the following
equality:

sup
δPRm

Bpδ, P pnqq “ 1 `

m
ÿ

i“1

sup
δiPR

˜

ÿ

xPX

Qpxqδifipxq ´
ÿ

xPX

P pxq
fipxq

f c
eδif

c

¸

.

Together with (3) this leads to the iteration stated in this Lemma. This proves
the convergence of the algorithm. Lemma 1 additionally yields the equality of the
limit of this algorithm and the one of the algorithm described in Theorem 3.1.

5 The conditional GIS algorithm

In this section we will perform the second step towards the implemented CGIS
algorithm. This approach was also described in [14] in Section 4.5 and in [3] in
Section 3. We will switch from joint distributions to conditional distributions. The
GIS algorithm can be very expensive regarding the needed time for each step in
the iteration. In each step the algorithm iterates over every x P X. Consider an
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experiment as an application for the algorithm with a huge space X of possible
outcomes. It is likely to assume that there are applications in which the space
of actually occurring x is a rather small subset X 1 Ă X. By substituting the
joint probabilities with a special form of probability, we are able to iterate only
over the x that actually appear in the data. First, we will introduce this new
form of probability distributions regarding a target distribution Pt satisfying the
constraints in general. This approach allows us to introduce the next step without
assuming the existence of data.

In contrast to the parameter estimation this step actually changes the limit of
the convergence. By using a different form of probability distributions the maxi-
mum entropy principle turns into the conditional maximum entropy principle.

To do so, we have to be able to write X as X “ X1 ˆ X2 by defining two
disjoint subsets A1, A2 of t1, . . . , ru with A1 Y A2 “ t1, . . . , ru and the alphabets
Aβ , β P t1, . . . , ru of xβ P Aβ :

Xi “ txi “ pxβqβPAi
| x P

ą

βPAi

Aβu, i P t1, 2u.

The probability of P P P on X1 is defined by:

P pxA1q “
ÿ

xPXpxAi
q

P pxq, xA1 P X1 with XpxAiq “ ty P

r
ą

β“1

Aβ | yAi “ xAiu.

With the additional restriction that the marginal possibility of the x1 P X1 equals
the empirical distribution pP px1q, x1 P X1 derived from a fixed set of data, we are
able to define an algorithm iterating only over the x1 P X1 occurring in the tests.
Suppose that Pt P P satisfies the constraints (1). Now we are able to change P px1q

to Ptpx1q to create the new constraints:
ÿ

x1PX1

Ptpx1q
ÿ

x2PX2

P px2 | x1qfipx1, x2q “ ki. (5)

This leads to the definition of a new probability distribution on X:

P cpxq “ Ptpx1q ¨ P px2 | x1q, for all x1 P X1, x2 P X2.

Now we take a closer look at the new probability distribution P c. While Pt is fixed
to the target distribution, P px2 | x1q is a conditional Gibbs-distribution:

P px2 | x1q “
1

Zx2
px1q

e

m
ř

i“1
λifipx1,x2q

, Zx2px1q “
ÿ

x2PX2

e

m
ř

i“1
λifipx1,x2q

. (6)

It is possible to define similar sets to the ones in Section 2:

Lcpf, kq “

#

P P P | P px1q “ Ptpx1q, for all x1 P X1 and
ÿ

xPX

P pxqfipxq “ ki

+

Qcpf, P p0qq “

#

P P P | P pxq “ Ptpx1q
1

Zx2
px1q

e

m
ř

i“1
λifipxq

P p0qpxq, λi P R, x P X

+

.
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Now we are able to define a conditional equivalent to Lemma 1:

Lemma 4. Suppose that the distribution pP P Lcpf, kq satisfies the constraints and

that Dp pP ,Uq ă 8. If P ‹ P Lcpf, kq X Qcpf, Uq exists, it is unique and holds the
properties:

(1) P ‹ “ arg min
pQPQcpf,Uq

Dp pP pX2 | X1q ‖ pQpX2 | X1qq

(2) P ‹ “ arg min
PPLpf,kq

DpP pX2 | X1q ‖ UpX2 | X1qq

Proof. With the chain rule (9) the proof can be easily derived from the one pre-
sented by Pietra et Al. in Proposition 4 in [13].

All things considered, we are able to maximize the conditional entropy by ad-
justing the parameters λi of (6). Now we define the conditional GIS and it con-
verges to the distribution of the form of P c that maximizes the conditional entropy.

Lemma 5 (The conditional GIS algorithm). Let ki be defined as in (5) and P p0q

be the uniform distribution. If a probability distribution of the form (6) satisfying
the constraints exists, then

P pnqpxq “ P pn´1qpxq

m
ź

i“1

¨

˚

˝

ki
ř

x1PX1

Ptpx1q
ř

x2PX2

P pn´1qpx2 | x1qfipx1, x2q

˛

‹

‚

fipxq

fc

converges to P ‹ of the form (6), satisfying the constraints and maximizing the
conditional entropy.

Proof. The following proof is derived from the one Darroch and Ratcliff presented
in [8] of Theorem 1. At first we will use the inequality between the generalized
arithmetic and geometric means:

m
ź

i“1

˜

ki

k
pn´1q

i

¸

fipxq

f c

ď

m
ÿ

i“1

fipxq

f c
¨

˜

ki

k
pn´1q

i

¸

(7)

with k
pn´1q

i “
ř

x1PX1

Ptpx1q
ř

x2PX2

P pn´1qpx2 | x1qfipx1, x2q. Applying this leads to

ÿ

xPX

P pnqpxq ď
ÿ

xPX

P pn´1qpxq

m
ÿ

i“1

fipxq

f c
¨

¨

˝

ki
ř

xPX

fipxqP pn´1qpxq

˛

‚ “
1

f c

m
ÿ

i“1

ki “
1

f c
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and we have
ř

xPX

P pnqpxq ď
1

f c
ď 1, therefore

m
ř

i“1

ř

xPX

P pnqpxqfipxq ď 1
fc ď 1.

For all n, P pnqpxq ą 0 and k
pnq

i “
ř

xPX

P pnqpxqfipxq ą 0. The positivity of the

KL-divergence leads to

Dpki ‖ kpnq

i q “

m
ÿ

i“1

kilog2

˜

ki

k
pnq

i

¸

ě 0. (8)

Let Q be an arbitrary probability distribution satisfying (1). Then

DpQ ‖ P pn`1qq “
ÿ

xPX

Qpxqlog2

ˆ

Qpxq

P pn`1qpxq

˙

“ DpQ ‖ P pnqq ´
1

f c
Dpk ‖ kpnqq.

Now tDpQ ‖ P pn`1qq, n P Nu is a decreasing bounded sequence. Therefore it has
a limit point and Dpk ‖ kpnqq Ñ 0 as n Ñ 8. The properties of ki and Pinsker’s
inequality

Dpk ‖ kpnqq ě
1

2

m
ÿ

i“1

| ki ´ k
pnq

i |2

lead to k
pnq

i Ñ ki as n Ñ 8. Suppose P1, P2 are different limit points of the
bounded sequence tP pnqu. Because of (5), both satisfy the constraints (1) and are
of the form (6). Additionally P1, P2 are positive probability distributions. Now
we are able to apply Lemma 4 and this yields that P1 “ P2.

6 The CGIS algorithm

Applying both changes, the parameter estimation and the conditional distribution,
leads to the desired CGIS algorithm:

Lemma 6 (The CGIS algorithm, [10], [11], [7]). Let λ
p0q

i “ 0, ki be consistent
and as in (5) and P pnq of the form (6) with parameters λpnq. The iteration

λ
pnq

i “ λ
pn´1q

i `
1

f c
ln

¨

˚

˝

ki
ř

x1PX1

Ptpx1q
ř

x2PX2

P pn´1qpx2 | x1qfipxq

˛

‹

‚

converges to the limit λ‹
i with P ‹px2 | x1q “ 1

Zx2
e

m
ř

i“1
λ‹
i fipxq

. Additionally,

P ‹pxq “ Ptpx1qP ‹px2 | x1q is conditional maximum entropy estimation.

Proof. Curran and Clark provide a proof in the Appendix of [7].
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7 Comparison

In order to understand the relationship between GIS and CGIS, we will take a look
at the following chain rule for entropy:

HP pX1, X2q “ HP pX1q ` HP pX2 | X1q (9)

with the conditional entropy defined as

HP pX2 | X1q “ ´
ÿ

x1PX1

P px1q
ÿ

x2PX2

P px2 | x1qlog2pP px2 | x1qq.

A proof for this rule is given by [4] in Theorem 2.2.1. Notice that the entropy
equals the conditional entropy in the case of a fixed marginal distribution on X1.
That means that the algorithms GIS and Joint GIS iterate towards the same limit
as the conditional ones under the restriction that the marginal distribution on X1

is fixed in both cases to the same values. This can be easily done by introducing
an additional feature for the desired distribution. However, in the general case
the limits are not equal, as we can observe in Figure 2 (a). This example for
the different limit points of maximum entropy and conditional maximum entropy
estimation was given by Yuret in [15]. We gain the values calculated by Yuret with
an implementation of Joint GIS and CGIS in C++ available at [9].

Figure 2: (a) CGIS vs. Joint GIS (b) AND: Joint GIS, CGIS and SCGIS

Additionally, we are able to compare the performances of the algorithms with
an easy example. Consider X as X “ X1 ˆ X2 ˆ X3, with pX1, X2q as input and
X3 as output. Now, we are trying to predict the value of X3 while only knowing
the input. Our set of data is the logical AND gate listed in Figure 3(a).
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At first we assume that X3 depends on X1 and X2, but not their interactions as
illustrated in Figure 3 (a) 2. Computing the data under this assumption leads to an
probability distribution, which we compare to a second probability distribution by
calculating the KL-divergence between them. The second probability distribution
is gained by expecting that X3 depends on X1 and X2 simultaneously and their
interaction as visualized in Figure 3 (b) 2.

X1 X2 X3

0 0 0
0 1 0
1 0 0
1 1 1

X1

1.

X2

X3

X1

2.

X2

X3

Figure 3: (a) AND gate (b) different systems of dependences

As indicated above, we used a third feature in case of the Joint GIS algorithm
in order to gain the same limit point as the CGIS algorithm. Figure 2 (b) shows
the results of this test. We observe that both algorithms now share the limit point
0 and that CGIS converges considerably faster than Joint GIS. The reason for this
difference is in this case not the choice of the set X, but the additional feature we
introduced for the Joint GIS algorithm.

A downside of iterative scaling algorithms is their poor performance compared
to gradient methods shown for example by Huang et al. in [11] or by Minka in [12].
That is why we display a third algorithm in Figure 2 (b). This algorithm is a faster
version of CGIS, the Sequential Conditional Generalized Iterative Scaling (SCGIS)
algorithm presented by Goodman in [10]. Although SCGIS is considerably faster
than the other algorithms presented here, it is still not as good as the gradient
methods it was compared to by Huang et al. in [11]. This leads to the result that
an iterative scaling method may not be the fastest way to calculate a maximum
entropy model, but a reliable one.

In conclusion, we were able to fully explain the connection and highlight the
differences between the considered Generalized Iterative Scaling algorithms.
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Abstract

All companies employ business systems during the development of new
software, mechanical equipment or other services. Additionally In most busi-
ness system development projects are planned in order to reduce amount of
running cost or increase benefit. Thus More efficient project management is
needed in order to meet schedules and reduce cost. Although there are several
stages in business system development projects. There are some factors that
cause over cost or schedule delay of projects. Especially finesse in estimat-
ing for requirement from customer is the most essential in project manage-
ments. Although there are subjective factors to evaluate requirements. Thus
evaluating scientifically is needed using requirements analysis and Bayesian
estimation in project management.

1 Introduction

Business System development projects are challenging in that are many require-
ments demanded from customers even while these requirements are proposed with
the same priority. Thus it is important to narrow down and prioritize requirements
according to their essentiality and criticality to finish on schedule. Although sys-
tem developers estimate according to the complexity of projects [2], but customers
expect the cost to be based on the number of requirements they propose. Then
customers and system developers estimate differently, there are often conflicting
estimates. Thus, this paper proposes cost share rate for business system devel-
opment projects based on requirements analysis in order to estimate accurately.
Cost share rate is defined as the percentage of total cost assigned to each require-
ment. Cost share rate could distinguish essential requirements. And requirements
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that has large cost share rate must have large risk, also should be under strict
control. Because big change or modification for essential requirement give large
impact to costs or schedule. Then this paper aim to propose a method to iden-
tify essential requirements in order to estimate accurately. Then risks are assigned
to each requirements with cost share rate and probability. This research show
methods in following steps; (see Figure 1). First, this research predict cost for re-
quirement version one of past project. Next this research compares with predicted
estimate(version four) and total cost at completion of the past project. Addition-
ally there is essential point estimating is subjective. Thus this paper propose the
method how to predict cost share rate accurately using Bayesian estimation.

Figure 1: Steps for probabilistic estimation with cost share rate

2 Previous Studies

One purpose of this paper is showing that risk management could contribute reduc-
ing cost of business system development project. Additionally this paper demon-
strates the potential to evaluate risk by requirements analysis for business system
development project management with Bayesian estimation. This research is not
focused on estimating costs based on the method to measure amount of source
code of system, but rather allocating costs to each requirement. Previous research
typically focused on either schedule, cost estimation or productivity. Improving
productivity contribute to finish project fine[3]. About changing requirement in
mechanical engineering design, one example of requirements analysis research ex-
plored the ability of predicting requirements change through graphical models of
the requirements documents and historical change trends[4]. There are plus and
minus risks in system development project. although there are no research that
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refers subjective factor. This propose the method take into subjective factor in
account with Bayesian estimation.

3 Project management and Risk management

3.1 Project management and Risk management

In project management there are two important methods[5]. One is schedule man-
agement, and another one is risk management. On the other hand Equation 1
shows there are controllable factors or uncontrollable factors in business. Sale is
uncontrollable factor, because sale come under the influence of markets, customers.
Although cost is controllable factor, cost includes payment, material costs, for ex-
ample, payment for staff could be cut off by manager. It is important to identify
which factor is controllable and uncontrollable. And how appropriately controllable
factor could be controlled. Also there is possibility uncontrollable factor could be
controlled with Bayesian analyses. Usually extra budget is settled aside for re-
finement or fixing trouble in project management. This extra budget is called
for contingency budget or only contingency. If risk management would work well,
contingency budget would not be used, then contingency budget would come to
benefit. At the result prospect of profit would increase. Thus risk management
could contribute reducing contingency cost,And risk management has potential to
increase contingency profit.

Gaining = Sale− Cost (1)

3.2 Risk analysis

Risk is defined as factors that make uncertain when they will achieve their objec-
tives under ISO31000. Usually risk Analysis is started from risk identification in
risk management. Then, risk evaluation is considered by qualitative evaluation and
quantitative evaluation. Thus quantitative risk analysis is calculated by possibility
× cost. This calculated risk(cost) should be spend ,if risks comes up. It is called ex-
pected monetary value. Risks is evaluated by expected monetary value Equation 2.
And risks are prioritized by the order of expected monetary value. In quantitative
evaluation for risk management usually probability is given subjectively by staffs
subjectively. Or probability is given by experts, Delphi method or questionnaire
for skilled staffs. Thus getting accurate probability is very essential to cucullate
expected monetary value correctly. Thus this paper takes into account β distri-
bution to calculate probability, and expect monetary value. This paper propose
conditional possibility in order to cucullate risk correctly. It is very essential point
in risk management there are plus and minus risks, in addition probability is sub-
jective; (see Figure 2).In this research conditional possibility is given to essential
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risks. In many project risk comes up by misunderstanding requirements or defects
in requirements from clients in business system development project. It is vital to
get certain requirements and predict risk in requirements properly.

Figure 2: Plus and Minus risks in system development project

Risk(Expected Monetary Cost) = Probability × Cost (2)

4 Cost Prediction Methods for Business System
Development

4.1 Cost Prediction Methods

Proper estimate is essential to finish projects on schedule and under budget. Over
cost or schedule delay is caused by missing estimate. Usually amount of program
source code is predicted by some prediction method in order to estimate in business
system development project. Then amount of program source code is converted
into base monetary cost. Next total cost is made by adding contingency cost to
base monetary cost. It is finally budget for project. Then this section explains some
current methods to predict costs of business system development projects. There
is typical methods to estimate for business system, typical methods;COCOMO
method and Function Point method. Both methods predict costs for business
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system. In case of COCOMO method, it estimate by amount of program source
code. On the other hand In case of Function Point method it accumulates points
according to the complexity of system;the number of db tables, dialog boxes, print
forms and interfaces. Acquired points could be converted into cost.

4.2 COCOMO Method

COCOMO Method[6] estimate the duration (Person-Months) in system develop-
ment projects. In the COCOMO method, volume of source code is estimated by
Equation 3. Duration (Person-Months) could be calculated with dividing volume
of source code by the number of staffs. COCOMO Method propose Equation 3.
And it uses the parameters as follows: C0,Ce, P1, P2, and P3.

Ce: estimate duration (PM:Person-Months) for expectation
C0: estimate volume of source code
P1: parameter for estimated productivity
P2: exponent parameter for software development
P3: calibration parameter
A challenge with this method is the parameters used for the cost estimation method
are empirically derived and contextually dependent on many different factors, such
as team size, project complexity, cultural environment, and others.

Ce = (C0 × P1)P2 × P3 (3)

4.3 Function Point Method

Function Point Method estimate duration (PM:Person-Months) as those of CO-
COMO methods [5][6]. In the Function point method it is necessary to count the
number of internal and external files, tables and internal and external interfaces.
Function Point Method propose equation 4.And it uses the parameters as follows:
Ce,Fp, F1, P1, and P2.

Ce: estimate duration (PM:Person-Months) for expectation
Fp: estimate function points
F1: function points
P1: parameter for estimated productivity
P2: calibration parameter

Ce = (Fp × P1), Fp = F1 × P2 (4)
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4.4 Other Methods to Estimate

Additionally, there is another cost estimate method as Experience method. In
the experience method, total cost is estimated based on previous experiences. In
these methods, there are often gaps between system developers’ cost estimates
and customer expectations. This results from differences in how developers and
customers group costs. Estimating correctly is important to finish building system
on schedule and under budget. Thus, translating requirements into factors to
estimate is essential. Certain requirements are needed to estimate properly. But
there is no cost estimate method taking certainty of requirements into account.
This paper considers taking certainty of requirements into account to estimate in
order to gain customer agreement.

5 Requirement Analysis using Linguistic analysis

Figure 3: Count over lapping keywords from requirement version four

Taking correct requirements is essential to estimate properly. And over cost or
schedule delay is caused by missing evaluation of requirements. Otherwise over cost
or schedule delay is caused by many remediation of requirements. Remediation for
essential requirement and uncertain requirement has large risk.thus It is vital to
distinguish the requirement which gives large impacts to specification or budget of
project. This research propose the method to distinguish influential requirements
that has large risks. This paper shows a method to distinguish an influential re-
quirements with with linguistic analysis and cost share rate. Cost share rate is
defined as the percentage of total cost assigned to each requirement. This paper
analyzes the requirements that were requested in past small system development
projects by linguistic analysis. This small project is building a knowledge collect-
ing system. In this project requirements were revised four times. Thus this paper
analyzes requirement version one and version four. This paper predict risks from
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the result from analyzing requirement version one. Risk is considered as cost in
risk management. This results; acquired cost is compared with the actual cost at

Figure 4: Extract keywords from requirement version four

the completion of project. If risk for requirement could be predicted properly, it
would contribute project management. In this research, overlapping keywords are
extracted form each requirements with linguistic analysis. Overlapping keywords
are words that appear in one requirement and groups of keywords that appear in
each category or phase in system development project. Categories or phases are
Design, Development, Print, Test, Interface and Document. Overlapping keywords
indicates relationships between one requirement and each other. The number of
relationships that each requirement has with other requirements indicate essential-
ity and importance. Steps of linguistic analysis are as follows:
(1) Extract keywords from each requirement in version four. (see Figure 4).

(2) Count overlapping key words from extracted keywords, also count overlap-
ping key words from extracted keywords in version four (see Figure 3).

(3)Distinguish essential requirements by counting the number of over lapping key-
words and subjective cost share rate from three engineers, and measure the distance
from most essential requirement to each requirement in version four (see Figure 5).

(4)Distinguish essentiality of each requirements from these results, and distin-
guish categories that each requirements belong in version one.
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Figure 5: Specify important requirement from requirement version four

6 Prediction of Cost Share Rate

Usually costs for system development projects are estimated by grouping costs with
the number of dialog boxes, interfaces or print forms . Alternatively, costs may be
estimated by associating cost to logic design, development, test, adjustment and
documents; but, not according to the requirements .System developers estimate ac-
cording to the complexity of projects, but customers expect the cost according to
the number of requirements. Thus, customers could not understand the estimates
provided by system developers. This paper shows a method to calculate cost share
rate for each requirement in order to evaluate requirements accurately with mu-
tual understanding of the developer and customers. Also cost share rate indicates
importance of each requirement. Cost share rate is defined as the percentage of
total cost assigned to each requirement. Figure 6 sows cost share rate of version
our of past project. Although in this research cost rate(%) for each requirements
are subjective figure from the two staffs that worked on this system development
project. And cost share rates are gained by multiply cost rate by cost under the
estimate. This cost rate and estimated cost are the value that according to the
category.

7 Probability Prediction of schedule delay

This paper aim to predict risk of system development project based on require-
ments analysis. This paper consider one of risk of system development project is
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Figure 6: Cost share rate of requirement version four

schedule delay. Thus this research suppose probability of schedule delay follows β
distribution (see Equation 5), Sample data in Table 1 are surveyed in past system
development project; Rdf system for tool tracking in machine factory. Then pa-
rameters (see Table 2) are gained by curve fitting sample data into β distribution.
In this analyzing process x is probability parameter that indicates start day for
each task, and y is ratio for schedule delay against actual days. Table 1 shows
that survey/preparation, design and programming process have risk of schedule
delay. Although test and writing document process have no risk of schedule delay.
Figure 7 shows β distribution curve in this case from parameters (see Table 2).

f(x) = c× xα −1(1− x)β −1 (5)

Table 1: Sample data from past project

Item Survey/ Design Programing Test

(days) Prepare Dia. Fun DB Dia. Fun DB Test Doc. Sum

Schejule 11 29 27 27 9 58 39 3 13 216

Actual 35 34 36 27 9 55 62 2 7 267

Delay 24 5 9 0 0 -3 23 -1 -6 51

Prog 0 0.52 0.6 0.59 0.7 0.74 0.59 0.95 0.93

Prog.:Progress Rate Fun:function Doc.:Document Dia.:Dialog
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Table 2: Acquire Parameter for β distribution

C α β

0.839835 1.020625 3.047617

8 Risk Prediction for business system develop-
ment project

Figure 7 shows that probability of schedule delay is 0.225. Thus this research
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Figure 7: Beta distribution from past project

assign probability of risk;0.225 to essential requirements that distinguished by re-
quirements analysis. Actually Table 3 shows that requirement3 and requirement4
are about design and development, requirement6 is about development. These re-
quirements are essential, and assigned probability of risk as 0.225. Requirement1
is about Main Design, and assigned probability of risk as 0.1,because in past three
project contingency is set as10% (see Table 4). Contingency is set for refinement.
Refinment contains deleting, adding or refactoring. Table 4 shows occupying cost
rate for each work process from surveying of past system development project;
medical record system, knowledge management system. Thus risk is calculated
probability of risk × cost (see equation 2),cost is analyzed by cost share rate.
In estimated cost of requirement version one estimated total cost is 109 (see Ta-
ble 3).And at completion actual total cost is 109.1 (see Table 3). At the result
these results are equal.

9 Bayesian estimation

First of all, costs is estimated in the project management. Also accuracy of esti-
mation is needed. However, estimate isn’t accurate usually.
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Table 3: Total cost at completion

Aitem Attr Cost Schdule Conditional Monitary Estimated
Share delay Probability Risk Cost
Rate(%) Probability

Req1 M 22.5 0 0.1 2.25 24.75

Req2 25 0 0 0 25

Req3 D/De 5 0.225 0 1.125 6.125

Req4 D/De 7.5 0.225 0 1.6875 9.1875

Req5 22.5 0 0 0 22.5

Req6 De 17.5 0.225 0 3.9375 21.4375

Toatal 100 9 109

Req:Requirement M:Main, D:design, De:Development Attr:Attribute

The reason is that there are subjective factors, and the accuracy of the require-
ments is low. Thus, this paper propose the method to estimate of the project-
properly using Bayesian estimation(expression 6) and cost share rate proposed in
before section. The example of the adjustment to the cost estimate of past actual
projects is shown (see Table 4) This table shows there are over cost as 10% in almost

Table 4: Data from past project

Project Design Development Testing Document Refinement Total

P1 3 4 1 1 1 10

P2 1 6 1 1 1 10

P3 1 6 1 1 1 10

Average 1.7 5.3 1 1 1 10

project. There is subjective factor to estimate, and there is plus and minaus lisks.
Also there is inaccuracy in requirements. Figure 8 shows there is valiance of cost
share rate according to subjective factors and inaccuracy in requirements .Thus
data from past project(Table 5) are inputted into Bayesian estimation(expression
7)[6]. Thus The result was 1.07 is gained. It is important point plus risks are esti-
mated as 1.0. Plus risk are risks that have minus difference. This result shows only
minus risks influence cost or estimate. Also this results shows possibility estimate
would be gained accurately with Bayesian estimation.

P (B|A) =
P (A|B)P (B)

P (A)
(6)
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P (Obud|Est) =

P (Est|Obud)P (Obud)

P (Obud)P (Est|Obud) + P (Obud)P (Est|Obud)

Obud : Proceedon budget Actually

Est : Estimation

(7)
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Figure 8: Variation of each cost share rate and revise

10 Conclusion

Meeting budget, finishing on schedule, and maintaining high quality are all im-
portant in project management. If cost and duration would be gained accurately,
meeting budget and finishing on schedule would be achieved and managing project
well. Estimate miss by developer causes finally over cost and schedule delay. Sub-
jective factor and inaccuracy in requirements are reasons why estimate miss is
caused. Generally estimate is measured by amount of source code of system or
complexity of system. Also it is not estimated based on essentiality or risk of re-
quirements. Misunderstanding of requirements and subjective factors cause misses
in estimate or schedule. Then, this paper proposes cost share rate to measure
essentiality of requirements in order to estimate accurately. Cost share rate is de-
fined as the percentage of total cost assigned to each requirement Usually on risk
management risks are evaluated according to staffs’ experience. Also risks are not
evaluated based requirement analysis. Evaluating risk properly is needed in order
to manage project well. Thus this paper show better results by using cost share

Proposal of probability risk Evaluation for System Development Project Based on Requirements Analysis and
Bayesian estimation

128



rate from requirement analysis. Additionally, this method helps prioritize require-
ments and narrow down specifications of the project. Prioritizing requirements and
narrowing down specifications accurately help ensure it meets budget and duration
targets. Additionally, this paper shows possibility to obtaining probability for risks
accurately with cost share rate and Bayesian estimation. However, this result was
obtained by small case. Thus further research and study is needed to refine and
improve this method to obtain cost share rate and risk more accurately.

Table 5: Bayesian estimation and actual cost by cost share rate

Aitem First Middle Final Difference Accuracy Bayesian
estimation

Correction
value

Req1 10 6 5 5 0.95 0.99 5.03

Req2 13 10 8 5 0.95 0.99 8.05

Req3 5 7 6 -1 1 1.00 6.04

Req4 5 7 6 -1 1 1.00 6.04

Req5 5 7 6 -1 1 1.00 6.04

Req6 5 7 10 -5 1 1.00 10.06

Req8 2 1 1 1 0.99 1.00 1.01

Req9 2 1 1 1 0.99 1.00 1.01

Req10 2 2 1 1 0.99 1.00 1.01

Req11 2 2 5 -3 1 1.00 5.03

Req13 13 14 16 -3 1 1.00 16.09

Req14 5 8 11 -6 1 1.00 11.06

Req15 2 2 3 -1 1 1.00 3.02

Req16 2 2 2 0 1 1.00 2.01

Req17 2 2 2 0 1 1.00 2.01

Req18 5 5 4 1 0.99 1.00 4.02

Req19 5 5 4 1 0.99 1.00 4.02

Req20 5 5 4 1 0.99 1.00 4.02

Req21 2 2 1 1 0.99 1.00 1.01

Req22 8 9 11 -3 1 1.00 11.06

Total 100 104 107 -7 21.83 21.98 107.63
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11 Discussion

Customers and developers estimate costs differently, resulting in differing expecta-
tions for project cost. Because in business system development projects there are
many ways to implement requirements, there are large variability in translating
user’s requirement into system specification. It differs greatly according to staff’s
skill. Additionally subjective factors is another reasons why estimate does not
meet final cost. Thus proper estimate by requirement analysis is needed in order
to finish business system development project fine. Also correct probability for
risk is needed to build proper estimate. Requirements have invisible risks. There
are plus risk and minus risk. Minus risk gets prospect of profit worse, but plus
risk gets prospect of profit well. But plus risk is not visible, plus risk is only in
mind of staffs individually. This is one reason why estimated cost:109 match total
cost:109 (see Table 3).Additionally, this paper shows potential accurate estimation
would be gained by ruling out plus risks in estimating with Bayesian estimation.
Therefore there is potential to predict risk accurately using conditional probability
or Bayesian estimation [7][8][9]in order to predict cost accurately.
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Abstract

We are interested in action selection mechanisms, policies, that maximize
an expected long term reward. In general, the identity of an optimal policy
will depend on the specifics of the problem, including perception and memory
limitations of the agent, the system’s dynamics, and the reward signal. We
discuss results that allow us to use partial descriptions of the observations,
state transitions, and reward signal, in order to localize optimal policies to
within a subset of all possible policies. These results imply that we can reduce
the search space for optimal policies, for all problems that share the same
general properties. Moreover, in certain cases of interest, we can identify the
policies that produce the same behaviors and the same expected long term
rewards, thereby further reducing the search space.

1 Introduction

We study stochasticity of optimal policies in decision making. We want to under-
stand under which conditions a deterministic behaviour is optimal.

In many contexts, optimal policies are deterministic: in each situation, there is
an action (not necessarily unique) that can be considered as the optimal action in
this situation. Thus, an optimal policy for a decision maker can be implemented
algorithmically as a mapping from situations to actions. Examples are Markov
Decision Problems (MDPs). In an MDP the variables determining the immediate
reward are available to the decision maker. One can show that in an MDP, there
always exists a deterministic optimal policy.
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Figure 1: The graphical structure of an MDP and a POMDP.

However, there are situations where optimal policies are not deterministic. The
classical example is game theory, as illustrated by the rock-paper-scissors game:
when the game is repeated several times, any fixed deterministic strategy can be
learned by the opponent, who will then win the game.

Another example is given by Partially Observed Markov Decision Processes
(POMDPs). In this case, only a stochastic measurement of the relevant variables
is available to the decision maker. In order to be more precise, we now introduce the
basic setting and the corresponding notation (see also the graphical representation
in Figure 1):

• Wt – world state

• St – sensor value

• At – chosen action
at time t

• α, β – fixed transitions

• π – policy (→optimize)

• After each step, agent receives re-
ward R(wt, at).

What are the mechanisms that lead to stochastic optimal policies? The game
theoretic setting and POMDPs share the following properties:

• Uncertainty: The reward R depends on unobserved quantities:

1. the opponent’s strategy

2. the world state Wt

• Feedback: Actions influence the hidden state:

1. The opponent observes my strategy and adapts.

2. At influence Wt+1 via α.

Can we control policy stochasticity by controlling uncertainty? One result in this
direction is due to [4] (which generalizes [2]). We formulate this kind of problems
as localization of optimal policies, and formulate various scenarios in Section 4.

2 Definitions

We consider a POMDP defined by a tuple (W,S,A, α, β,R), where W , S, A are
finite sets of world states, sensor states, and actions, β : W → ∆S and α : W ×
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A → ∆W are Markov kernels describing sensor measurements and world state
transitions, and R : W × A×W → R is a reward signal depending on the current
world state, chosen action, and resulting world state. It is also useful to consider
the expected value over resulting world states, R : W × A → R, with R(w, a) =∑
w′∈W α(w′|w, a)R(w, a,w′). A policy is a mechanism for selecting actions. We

will focus on stationary (memoryless and time independent) policies, which we
simply call policies, described by Markov kernels of the form π : S → ∆A. We
denote the set of policies by ∆S,A. The deterministic policies map each sensor
state to one specific action. They correspond to the vertices of ∆S,A.

The world state is updated at discrete time step by iterating the kernels β, π, α.
The objective of learning is to find a policy that maximizes some form of expected
long term reward. We focus on the average reward, which for an initial world state
distribution µ ∈ ∆W and a policy π ∈ ∆S,A, is given by

Rµ(π) = lim
T→∞

Eπ,µ

[
1

T

T−1∑

t=0

R(Wt, At,Wt+1)

]
. (1)

We will make the standard assumption that for each fixed policy, the Markov
chain of world states is irreducible and aperiodic. This implies that there is a
unique stationary limit distribution pπ ∈ ∆W of world states. Moreover, this limit
distribution is independent of the initial distribution µ. In this case the average
reward can be written as

R(π) =
∑

w

pπ(w)
∑

a

∑

s

π(a|s)β(s|w)
∑

w′

R(w, a,w′)α(w′|w, a). (2)

Although we restrict the exposition to average rewards as defined above, we note
that some of the results hold as well in the setting of discounted rewards, where
the rewards in (1) are not weighted uniformly but by a factor γt with γ ∈ (0, 1).

3 The optimization problem

Before we present the main localization results of this paper, we first explore the
structure of the optimization problem in terms of simple examples. They highlight
the geometry that underlies the stochasticity of optimal policies.

The objective function (2) reduces to

R(π) =
∑

w,a

pπ(w)pπ(a|w)R(w, a), (3)

if we introduce the effective state policy pπ(a|w) =
∑
s β(s|w)π(a|s). The station-

ary state distribution pπ(w) is the solution of

(T (α,β,π) − I)p = 0 and
∑

w

pw = 1 and pw ≥ 0, (4)
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where we have defined the state transition matrix

T (α,β,π) = [pπ(w′|w)]w′,w =

[∑

a

α(w′|w, a)pπ(a|w)

]

w′,w

. (5)

In the following example we give (3) in an explicit form, involving only algebraic
operations on π (note that we also use the somewhat more suggestive index nota-
tion, for instance π1|2 instead of π(1|2)). This gives us a sense of the structure of
the optimization problem.

Example 1 (Optimization for two states, two actions, two observations). Let
W = {1, 2}, S = {1, 2}, A = {1, 2}. In this case we have

R(π) = ((R11 −R12)ξ1|1 +R12)p1 + ((R21 −R22)ξ1|2 +R22)(1− p1), (6)

where the effective world state policy

ξ1|1 = β1|1π1|1 + (1− β1|1)π1|2 and ξ1|2 = β1|2π1|1 + (1− β1|2)π1|2, (7)

and the stationary state distribution obtained by solving (4)

p1 =
(α1|21 − α1|22)ξ1|2 + α1|22

(α1|21 − α1|22)ξ1|2 + α1|22 + (α2|11 − α2|12)ξ1|1 + α2|12
. (8)

Note that the denominator can only vanish if the nominator also vanishes.

So, the objective function R(π) is a rational function of degree 2 in (π1|1, π1|2) ∈
[0, 1]2, with coefficients depending on α, β, and R. We can plot R over ∆S,A

∼=
[0, 1]2. Examples are shown in Fig. 2.

Example 2 (Optimization for two states, two actions, blind agent). Let W =
{1, 2}, S = {1}, A = {1, 2}. We set β(s = 1|w = 1) = 1, β(s = 1|w = 2) = 1, and
π(a|s) = π(a), in eq. (6), and solve ∇πR(π) = 0. Using the symbolic mathematics
library SymPy, we find

π1 =
−(α122 + α212)C ±

√
(α121α212 − α122α211)CD

C(α121 − α122 + α211 − α212)
, (9)

where

C = ((R11 −R12)(α121 − α122) + (R21 −R22)(α211 − α212)) (10)

D = ((R11 −R21)(α122 + α212)− (R12 −R22)(α121 + α211)). (11)

These are critical points of the objective function, which might be negative or larger
than 1.
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Figure 2: A random choice of α, R, and four choices of βs|w going from [0, 1; 1, 0]
(fully observable) to [1, 1; 0, 0] (blind). Top row shows the joint distributions
pπ(w, a). Bottom row shows the policies (π1|1, π1|2). Color codes the expected
reward R(π) =

∑
w,a p

π(w, a)Rw,a. The reward is linear in the space of joint dis-
tributions over w and a. The kernel α defines a slice in that space, and β certain
inequality constraints. Note that, even in the fully observable case, the expected
reward is not a linear function of the policy.

4 Localization of optimal policies

We are interested in saying something about the location of optimal policies. Let
M be a subset of all possible policies. Let A be a subset of all possible state
transition kernels W × A → ∆W . Let B be a subset of all possible observation
kernels W → ∆S . Let R be a subset of all possible reward functions W ×A→ R.

Problem 3. Given A, B, R, find a subset N = N (A,B,R,M) ⊆M such that,
for any POMDP (W,S,A, α, β,R) with α ∈ A, β ∈ B, R ∈ R, there is a policy
π∗ ∈ N that is optimal among all policies in M. Ideally, the set N should be
minimal.

We call N (A,B,R,M) a (minimal) solution set over M for the POMDP
class (A,B,R). In this language, Theorem 4 below shows that N = {π ∈
∆S,A : | supp(π(·|s))| ≤ ks} is a minimal solution set over M = ∆S,A, for the
POMDPs with observation kernels from B = {β ∈ ∆W,S : | supp(β(s|·))| ≤ ks}.

Knowing that there is a set N ⊆ ∆S,A which contains an optimal policy allows
us to focus the search for optimal policies to the set N . As proposed in [1, 2], this
can be used to define a suitable policy model with a reduced number of parameters,
without compromising our ability to maximize the average reward.
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Observation model

When the world state can be fully recovered from the sensor value, there is an
optimal policy within the set of deterministic policies (see, e.g., [5]). This holds
irrespective of the specific reward signal and the world state transition kernel. This
is an important and well known result in the theory of Markov decision processes.
On the other hand, when the agent is blind, it is not possible to localize an optimal
policy without taking other specific properties of the system into account.

The following Theorem 4 is a result from [4] refining results from [2]. It gen-
eralizes the above discussion to cases where the agent can partially recover the
underlying world state. If an observation identifies the world state, there is an
optimal policy that is deterministic on this observation. More generally, if a sensor
state can result from at most k world states, then there is an optimal policy that
randomizes at most k actions at this sensor state. This holds irrespective of the
specific reward R and the world state transition kernel α.

Theorem 4. Consider a POMDP (W,S,A, α, β,R). Then there is a policy π∗ ∈
∆S,A with | supp(π∗(·|s))| ≤ | supp(β(s|·))| for all s ∈ S, and R(π∗) ≥ R(π) for all
π ∈ ∆S,A. Moreover, there are POMDPs (W,S,A, α, β,R) where each policy π∗ ∈
∆S,A that is optimal among all policies satisfies | supp(π(·|s))| ≥ | supp(β(s|·))|.

One might think that the randomization of actions in a POMDP simply allows
the agent to assign weights to the optimal deterministic actions that he would
choose if he knew the underlying world state. However, the situation is more subtle:
being uncertain about the underlying world state, the agent might need to take
distance from actions that have the potential of causing a catastrophic outcome
when performed in the wrong state, causing him to choose totally different, more
conservative, actions.

Transition model

It is also interesting whether we can localize optimal policies given some information
about the world state transition kernel α. For instance, [6] studied blind policies for
POMDPs and showed that, if each kernel α(·|·, a) : W → ∆W , a ∈ A, is symmetric
and the reward R is proportional to the starting distribution, then there exists
a deterministic optimal blind policy. This result can be slightly generalized as
follows, dropping the condition on the reward signal.

Theorem 5. If all kernels α(·|·, a) : W → ∆W , a ∈ A, have the same stationary
distribution and β(·|w) ∈ ∆S is independent of w ∈W , then there is a deterministic
policy π∗ ∈ ∆S,A with R(π∗) ≥ R(π) for all π ∈ ∆S,A.

As an example for the first assumption one can consider doubly stochastic
matrices, which all have the uniform distribution as stationary distribution. The
second assumption means for practical purposes that the agent is blind.

Let us briefly discuss this result in relation to Theorem 4. Assuming that the
sensor kernel β always outputs the same sensor state s, the bound of Theorem 4 is
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trivial since it upper bounds the number of actions by min{|W |, |A|}. Nonetheless,
under the above assumptions, Theorem 5 guarantees the existence of an optimal
policy that is deterministic. This shows that incorporating properties of the tran-
sitions α, in addition to the observation kernels β, allows us to localize optimal
policies even further. The next Theorem 6 extends this line of reasoning by taking
some of the structure of the reward R into account.

Reward signal

We consider the case where the reward signal takes the form R(w, a,w′) = R(w,w′),
that is, depending on the sequences of world states but not on the specific actions
taken by the agent. For instance, one may be interested in rewarding the motion
of a robotic arm, without regard of the specific torques applied to the articulations
in order to obtain this motion.

For this type of reward signal, the system can be studied in terms of the
world state transitions. Each policy π corresponds to a world state transition
pπ : W → ∆W with pπ(w′|w) =

∑
a

∑
s β(s|w)π(a|s)α(w′|w, a). Since the reward

only depends on these transitions, any two policies that represent the same world
state transition can be regarded as being equivalent. This allows us to restrict the
search for optimal policies to a set of unique representatives.

In [3] it is shown that any feasible world state transition kernel can be repre-
sented in terms of a policy π with | supp(π)| ≤ |S|+dα,β . Here dα,β is the dimension
spanned by the vectors (β(s|w)(α(w′|w, a0)− α(w′|w, a)))w∈W,w′∈W ∈ RW×W , for
s ∈ S, a ∈ A \ {a0}, for any fixed a0 ∈ A. This is the rank of the linear map from
policies to world state transition kernels. In particular, there is an optimal policy
that satisfies this property, which implies the following result.

Theorem 6. Consider a POMDP (W,S,A, α, β,R) with R(w, a,w′) = R(w,w′).
Then there is a policy π∗ ∈ ∆S,A with | supp(π)| ≤ |S| + dα,β and R(π∗) ≥ R(π)
for all π ∈ ∆S,A.

Let us comment this result in intuitive terms. It states that if the rewardR is not
sensitive to the inner working of the control, such that R(w, a,w′) is not dependent
on a but only on the outcome w′ as result of a, then a number of actions can be
ignored when maximizing the expected long term reward. The required number
of actions essentially involves the dimensionality dα,β of the effect that the control
has in the world. Note that this number involves α and β in an entangled way.

5 Conclusion

Given a set of policies and a description of the system, we searched for a smallest
set of policies that is guaranteed to contain an optimal policy. In particular, we
have discussed how the randomization that is needed in optimal actions is related
to the amount of information available to an agent at the moment of deciding on
the actions. The results presented here can be summarized as follows:
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• If the world state is observable, then there is an optimal policy that is deter-
ministic.

• If an observation uniquely identifies the world state, then there is an optimal
policy that is deterministic on this observation.

• More generally, if an observation results from at most k world states, then
there is an optimal policy which randomizes at most k actions on this obser-
vation.

• If all world transition kernels (indexed by the actions) have the same station-
ary distribution and the observation kernel is independent of the world state,
then there is an optimal policy that is deterministic.

• If the reward signal depends on the current and the future world states but
not on the specific actions taken, then there is an optimal policy within a
low-dimensional face of the set of all possible policies.
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Abstract

We present an interdisciplinary approach to study systematic relations
between logical form and attacks between claims in an argumentative frame-
work. We propose to generalize qualitative attack principles by quantitative
ones. Specifically, we use coherent conditional probabilities to evaluate the
rationality of principles which govern the strength of argumentative attacks.
Finally, we present an experiment which explores the psychological plausibil-
ity of selected attack principles.

1 Introduction

Various disciplines study argumentation, including computer science (e.g., [6, 1]),
philosophy (e.g., [21]), and psychology (e.g., [11, 13]). Our approach is an inter-
disciplinary one, as we combine elements of Dung-style abstract argumentation
[6], logical argument forms, coherent conditional probability, and also present an
experimental assessing the descriptive validity of selected formal principles.

We investigate systematic relations between logical form and attacks between
claims in an argumentative framework. Argumentation is a highly complex and
dynamic process. Usually, arguments are conceived as premise (“support”) and
conclusion (“claim”) pairs. We focus on static argumentation and are only inter-
ested in claims formalized by classical propositional formulæ.

The outline of the paper is as follows: Section 2 gives a brief survey of qualita-
tive attack principles which were investigated in a modal logical framework [3]. We
argue, that the modal logical framework appears to be too coarse, especially for

∗We thank Gernot Salzer for making the experiment possible during his class: thanks also to
his students for their participation. Niki Pfeifer is supported by his DFG project PF 740/2-2
(part of the SPP1516).
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modelling the quantitative dimension of attack principles. We therefore propose
to generalize these principles by adopting a probabilistic framework. Specifically,
we use coherent conditional probabilities to evaluate systematically the rationality
of attack principles: coherence provides a criterion for selecting attach principles
(i.e., “good” principles should be coherent). In Section 3 we show how to model the
qualitative attack principles in probabilistic terms. Section 4 presents our prob-
abilistic analysis of the quantitative attack principles and their semantics. Sec-
tion 5 presents an experiment which aims to explore the psychological plausibility
of selected quantitative attack principles. Section 6 concludes the paper by some
remarks on future research.

2 Qualitative attack principles

In what follows we write “A−→B” to denote that there is an argument claiming A
that attacks an argument with claim B. Thus, strictly speaking, attack relations
are between arguments. However, we simply say “A attacks B”.

It seems intuitively obvious that given attacks on claims implicitly entail attacks
on further claims which logically imply the original, explicitly attacked claims. A
corresponding ‘general attack principle’ has been formulated in [3]:

(A.gen) If F−→A and B |= A then F−→B.

While it may be problematic to consider all classical logical implicants as inducing
implicit attacks in this manner, at least the following instances of (A.gen) seem
reasonable, since they are immediate and hold even if the consequence relation (|=)
is constrained to minimal logic [12].

(A.∧) If F−→A or F−→B then F−→A ∧B.

(A.∨) If F−→A ∨B then F−→A and F−→B.

(A.⊃) If F−→A ⊃ B then F−→B.

Actually, (A.⊃) may raise concerns, since A ⊃ B does not relevantly follow from B,
cf. [7]. Hence, one may prefer the following weaker rationality postulate, instead.

(B.⊃) If F−→B and F 6−→A1 then F−→A ⊃ B.

Concerning negation, the following principle is intuitively plausible.

(A.¬) If F−→A then F 6−→¬A.

On the other hand, one can formulate inverse forms of the above principles:

(C.∧) If F−→A ∧B then F−→A or F−→B.

(C.∨) If F−→A and F−→B then F−→A ∨B.

1F 6−→A denotes that A is not attacked by F .
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(C.⊃) If F−→A ⊃ B then F−→B and F 6−→A.

(C.¬) If F 6−→A then F−→¬A.

These last mentioned principles seem, at least partly, to be intuitively much more
demanding than those following from (A.gen). Indeed, the results of [3] imply
that imposing all of the above (connective specific) attack principles amounts to
an alternative characterization of classical logic, while proper subsets of the full
set of these principles lead to weaker logics that result from discarding some of the
logical inference rules of Gentzen’s classical sequent calculus LK.

The indicated situation calls for a robust interpretation of the attack relation
that is capable of formally supporting (or questioning, as appropriate) informal
intuitions about the varying strength of the attack principles. To this aim the
authors of [3] suggest to translate F−→A into the modal formula �(F ∧ ¬G),
where in the underlying Kripke frame 〈W,R〉, W models the set of possible states
of affairs and wRv is read as “v is a possible alternative from the viewpoint of w”.
In other words, this setup suggests that a given attack refers to all possible states
of affairs in which the attacking claim holds and asserts that the attacked claim
does not hold in any of those states. If one stipulates that R is reflexive (or
at least serial) than this interpretation of F−→A renders the principles (A.∧),
(A.∨), (C.∨), (C.⊃), and (A.¬) formally sound while one may construct counter
examples for the translations of the principles (C.∧), (C.¬), (B.⊃), and therefore
also of (A.⊃). Since this result is unsatisfying, in particular with respect to the
arguably counter-intuitive classification of attack principles for implication, three
alternative modal interpretations where briefly discussed in [3] as well. However,
each of the suggested translations of F−→A into modal logic is too coarse, since
there seems be no principled way to disentangle strong and weak attack principles.
Moreover, modal logic does not support quantitative refinements of the qualitative
attack principles.

3 Probabilistic semantics

In light of the results of [3], as sketched in Section 2, the challenge to come up with
an intuitively convincing and formally sound interpretation of the attack relation
between claims of arguments remains open. This motivates us to explore to which
extent one may employ coherence-based conditional probability (see, e.g., [2, 9]) for
this purpose. Concretely, we suggest to read “F attacks A” as the assertion that
it is likely that A does not hold, given that F holds. More precisely, we interpret
F−→A by p(¬A|F ) ≥ t for some threshold 0.5 < t ≤ 1. Throughout the paper, we
assume that F is not a logical contradiction (i.e., F is not equivalent to ⊥), since
otherwise the corresponding conditional probability is undefined.

Translating the attack principles that refer to conjunction, disjunction, and
negation according to the suggested interpretation is straightforward. The following
claims correspond to the ‘weak’ principles (A.∧), (A.∨), and (A.¬):
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(A.∧)p If p(¬A|F ) ≥ t or p(¬B|F ) ≥ t , then p(¬(A ∧B)|F ) ≥ t.

(A.∨)p If p(¬(A ∨B)|F ) ≥ t, then p(¬A|F ) ≥ t and p(¬B|F ) ≥ t.

(B.¬)p If p(¬A|F ) ≥ t, then p(¬¬A|F ) = p(A|F ) < t.

Analogously, the inverse (‘strong’) principles translate as follows:

(C.∧)p If p(¬(A ∧B)|F ) ≥ t then p(¬A|F ) ≥ t or p(¬B|F ) ≥ t.

(C.∨)p If p(¬A|F ) ≥ t and p(¬B|F ) ≥ t then p(¬(A ∨B)|F ) ≥ t.

(C.¬)p If p(¬A|F ) < t then p(¬¬A|F ) = p(A|F ) ≥ t.

It is straightforward to check the following.

Proposition 1. (A.∧)p, (A.∨)p, (B.¬)p, and (C.¬)p hold in the sense of coherence-
based probability logic. However, (C.∧)p and (C.∨)p do not hold in this sense.

Note that our probabilistic interpretation of the attack relation, justifies not
only (A.¬), but also the intuitively more demanding principle (C.¬)p. This is a
consequence of the fact that we insist on classical negation here and hence have
p(¬¬A) = p(A) = 1 − p(A). It might be worth mentioning that actually both
(B.¬)p and (C.¬)p cease to hold if one admits .5 as a threshold value. Another
interesting observation is that for t = 1 (C.∨) is justified, since: if p(¬A|F ) = 1
and p(¬B|F ) = 1, then p(¬(A ∨ B)|F ) = p(¬A ∧ ¬B|F ) = 1 is coherent (cf. the
probabilistic version of the And rule of System P, [9]).

Interpreting attack principles involving the implication connective is more del-
icate, since it is widely agreed that the natural language conditional (‘if . . . then
. . . ’) should not be identified with classical (truth-functional) implication. Ac-
tually, as argued, e.g., in [10, 15], coherence-based conditional probability itself
provides a sound and robust semantics for the conditional. Following this insight
would force us to use degrees of beliefs in nested conditionals (e.g., in terms of pre-
visions in conditional random quantities; see, e.g., [19, 20]) to interpret principles
like (A.⊃). While this is an interesting topic for future research, here we only want
to check how our probability-based interpretation of the attack relation classifies
(B.⊃), (A.⊃), and (C.⊃), if we replace A ⊃ B by ¬A ∨ B. The corresponding
translations are as follows:

(A.⊃)p If p(¬B|F ) ≥ t then p(¬(A ⊃ B)|F ) ≥ t.

(B.⊃)p If p(¬B|F ) ≥ t and p(¬A|F ) < t, then p(¬(A ⊃ B)|F ) ≥ t.

(C.⊃)p If p(¬(A ⊃ B)|F ) ≥ t then p(¬B|F ) ≥ t.

A ⊃ B = ¬A∨B turns (A.⊃)p and (C.⊃)p into instances of (A.∨)p and (C.∨)p,
respectively. Moreover, (B.⊃)p follows from (A.⊃)p. Consequently we obtain:

Proposition 2. (A.⊃)p and (B.⊃)p both hold in the sense of coherence-based
probability logic, but (C.⊃)p does not hold in this sense.
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In [3] also logically contradictory claims are considered by formulating the fol-
lowing corresponding attack principle:

(A.⊥) For every F : F−→⊥.

In other words, it is stipulated that every argument (implicitly or explicitly) attacks
contradictory claims. We may observe that this assumption is in line with our
interpretation of the attack relation, since p(¬⊥|F ) = 1. However, note that
we cannot interpret any principles that involve contradictory claims of attacking
arguments, since the corresponding conditional probability must remain undefined.

4 Quantitative attack principles & their semantics

So far, we have only discussed qualitative attack principles, i.e., principles that
only care for the presence or absence of an attack between (claims of) given ar-
guments. However it is natural to refine such an analysis by considering weights
or varying strength of attacks. Various suggestions regarding so-called weighted
argumentation frames can be found in the literature on argumentation in AI, see,
e.g., [8, 5]. But, similarly to the qualitative scenario, there is as yet hardly any
analysis of rationality postulates that systematically relates weights of explicit and
implicit attacks to the logical form of involved claims of arguments. A first step in
that direction has been attempted in [4], where the principles introduced in [3] are
generalized to the context of weighted argumentation frames. The aim of [4] is to
explore under which assumptions one can characterize various t-norm based fuzzy
logics in terms of ‘weighted attack principles’. As expected, it turns out that some
of the principles that are needed to recover a truth-functional (fuzzy) semantics are
implausible from an intuitive, argumentation based point of view. In any case, the
situation, once more, calls for a systematic interpretation of the relevant principles,
that enables one to formally judge their respective plausibility.

Rather than just distinguishing between F−→A and F 6−→A (“F attacks / does

not attack A”), we will use F
w−→A to denote that F attacks A with weight (or

degree) w. The corresponding weights are understood to be normalized, with 1

being the maximal weight of any attack, whereas F
0−→A means that F in fact does

not attack the claim A at all. Note that this stipulation entails that the qualitative
scenario discussed in sections 2 and 3 amounts to an instance of the weighted case,
where the only possible weights are 0 and 1.

An attractive feature of the probabilistic approach taken here is the fact that it
immediately leads to a quantitative refinement of the qualitative case: interpreting
attacks in terms of coherent conditional probabilities suggests to directly attach
weights, instead of using thresholds to judge whether a given statement attacks
another one. As pointed out in [4], there are several non-equivalent ways in which
the the qualitative attack principles reviewed in Section 2 can be generalized to
‘weighted attack principles’. The most straightforward generalization of principle
(A.∧) to weighted attacks is arguably the following:
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(Aw.∧) If F
x−→A and F

y−→B, then F
z−→A ∧B, where z ≥ max(x, y).

Actually, since we also consider attacks of weight 0 (interpreted as ‘no attack’), we
may assume without loss of generality that there is a weighted attack between any
pair of formulæ. This means that (Aw.∧) can be reformulated as a constraint on
the corresponding weights, s.t.:

(Gw
≥.∧) If F

x−→A, F
y−→B, and F

z−→A ∧B, then z ≥ max(x, y).

Alternative weighted attack principles for conjunction, formulated in the same
manner, are:

( Lw
≥.∧) If F

x−→A, F
y−→B, and F

z−→A ∧B, then z ≥ min(1, x + y).

(Pw
≥.∧) If F

x−→A, F
y−→B, and F

z−→A ∧B, then z ≥ x + y − xy.

As the labels indicate, these principles are essential for obtaining an argumenta-
tion based semantics for Gödel logic G,  Lukasiewicz logic  L and Product logic P,
respectively. Moreover the subscript ‘≥’ attached to these letters indicate that
upper bounds for the weight of attacks of conjunctive claims (in terms of weights
of attacks on conjuncts) are formulated here. In fact, also principles expressing
matching lower bounds are needed to characterize the three mentioned t-norm
based fuzzy logics. Correspondingly, we use (Gw

≤.∧), ( Lw
≤.∧), and (Pw

≤.∧) to refer
to the principles that arise by just replacing ‘≥’ by ‘≤’ in the respective constraint.

As already indicated, in contrast to the qualitative case of Section 3, we do
not have to involve threshold values in interpreting a weighted attack relation, but
simply identify the weight with which F attacks A with the conditional probability
that A does not hold, given that F holds. More formally, our probabilistic semantics
interprets F

w−→A by p(¬A|F ) = w. (Remember that this is only viable if we
exclude the possibility that F is a logical contradiction.) Accordingly, the above
versions of weighted attack principles translate into the following statements.

(Gw
≥.∧)p If p(¬A|F ) = x and p(¬B|F ) = y then p(¬(A ∧B)|F ) ≥ max(x, y).

( Lw
≥.∧)p If p(¬A|F ) = x and p(¬B|F ) = y then p(¬(A ∧B)|F ) ≥ min(1, x + y).

(Pw
≥.∧)p If p(¬A|F ) = x and p(¬B|F ) = y then p(¬(A ∧B)|F ) ≥ x + y − xy.

(Gw
≤.∧)p If p(¬A|F ) = x and p(¬B|F ) = y then p(¬(A ∧B)|F ) ≤ max(x, y).

( Lw
≤.∧)p If p(¬A|F ) = x and p(¬B|F ) = y then p(¬(A ∧B)|F ) ≤ min(1, x + y).

(Pw
≤.∧)p If p(¬A|F ) = x and p(¬B|F ) = y then p(¬(A ∧B)|F ) ≤ x + y − xy.

According to our probability based interpretation we obtain the following classifi-
cation of these principles.

Proposition 3. The principles (Gw
≥.∧)p and ( Lw

≤.∧)p hold in the sense of coherence-
based probability logic. However, ( Lw

≥.∧)p, (Pw
≥.∧)p, (Gw

≤.∧)p, and (Pw
≤.∧)p do

not hold for all coherent probability assessments.
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Proof. Remember that we assume that all involved propositions are classical. There-
fore ¬(A∧B) is equivalent to ¬A∨¬B, and hence the well known Fréchet inequal-
ities (generalized to conditional probabilities) for logical disjunction yield (Gw

≥.∧)p
and ( Lw

≤.∧)p.
The four other principles can all be violated:

( Lw
≥.∧)p, (Pw

≥.∧)p: Let A = B and p(¬A|F ) = p(¬B|F ) = 0.5. Then p(¬(A ∧
B)|F ) = p(¬(A ∧ A)|F ) = p(¬A|F ) = 0.5, which is strictly smaller than
min(1, 0.5 + 0.5) = 1, but also strictly smaller than 0.5 + 0.5− 0.52 = 0.75.

(Gw
≤.∧)p, (Pw

≤.∧)p: Let A = ¬B and p(¬A|F ) = p(¬B|F ) = 0.5. Then p(¬(A ∧
B)|F ) = p(¬(A ∧ ¬A)|F ) = p(¬⊥|F ) = p(>|F ) = 1, which is strictly larger
than max(0.5, 0.5) = 0.5 and strictly larger than 0.5 + 0.5− 0.52 = 0.75.

Note that (Gw
≥.∧)p and ( Lw

≤.∧)p define the best possible coherent lower and
upper bounds, respectively. The principles ( Lw

≥.∧)p, (Pw
≥.∧)p, (Gw

≤.∧)p, and
(Pw

≤.∧)p, which do not hold under coherence, are not simply unjustifiable from
a probabilistic point of view. They rather apply only to specific cases. The follow-
ing corresponding propositions are straightforward.

Proposition 4. Under the assumption that p(A|F ) and p(B|F ) are independent,
(Pw

≥.∧)p and (Pw
≤.∧)p hold.

Proposition 5. Under the assumption that A |= B or B |= A (Gw
≤.∧)p holds.

Proposition 6. Under the assumption that A |= ¬B or B |= ¬A ( Lw
≤.∧)p holds.

The picture obtained for attack principles involving disjunction is, of course,
dual to that just outlined for conjunction. The Fréchet inequalities justify the
following two principles:

(Gw
≤.∨)p If p(¬A|F ) = x and p(¬B|F ) = y then p(¬(A ∨B)|F ) ≤ min(x, y).

( Lw
≥.∨)p If p(¬A|F ) = x and p(¬B|F ) = y then p(¬(A∨B)|F ) ≥ max(0, x+y−1).

Other principles are justified according to the probabilistic semantics of argument
attack only under additional assumptions about the (in)dependence of involved
propositions.

For negation the probability semantics directly justifies the following attack
principle, that combines and generalizes the qualitative principles (A.¬) and (C.¬).

(ACw.¬) F
x−→A if and only F

1−x−→¬A.

Regarding implication, one may of course extract corresponding principles from
the above mentioned ones, under the stipulation that A ⊃ B is understood, clas-
sically, as equivalent to ¬A ∨ B. But, once more, let us emphasize that it were
actually more adequate to model (informal) implication as a conditional. This
leads to the tricky and, as yet, only partially explored terrain of iterated condi-
tional probabilities; thus providing a challenging topic for future research.
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Draft names Task/argument form Task

(A.∧) if A
x−→B, then A

[x,1]−→(B ∧ C) B2,C4

(C.∧) if A
x−→(B ∧ C), then A

[0,x]−→B A1,C1

(A.∨) if A
x−→(B ∨ C), then A

[x,1]−→B A2,C3

(C.∨) if A
x−→B, then A

[0,x]−→(B ∨ C) B3,C6

Irrelevant premise if A
x−→B and C |= B then A

x−→B A3,C5

(B.¬’) if A
x−→B, then A

1−x−→¬B B1,C2

Complement if A
x−→¬B, then A

1−x−→B A4,C7
(B.¬) “if A−→B, then ¬(A−→¬B)” is true B11,C18
(B.¬”) “if A−→¬B, then ¬(A−→B)” is true B12,C19

Narrow negation if A
x−→B, then A

1−x−→¬B A7, B5,C11

(A.⊥) A
1−→(B ∧ ¬B) B4,C9

(A.>) A
0−→(B ∨ ¬B) B8,C15

Aristotle’s thesis 1 ¬(¬A−→A) is false B6,C12
Aristotle’s thesis 2 ¬(A−→¬A) is false A5,C8
Abelard’s thesis ¬((A−→B) ∧ (A−→¬B)) is true B7,C14

Reflexivity A
0−→A A6,C10

Contingent attack A
[0,1]−→B A8,C13

ProbToAttack if P (B|A) = x, then A
x−→¬B A10,B9,C17

AttackToProb if A
x−→B, then P (¬B|A) = x A9,B10

AttackToProb’ if A
x−→B, then P (B|A) = 1− x C16

ProbToAttack’ if P (B|A) = x, then A
1−x−→B C17

Table 1: Task names/argument forms of the task sets with closed (i.e., conditions

A and B) and open (i.e., C) response format. “A
x−→B” denotes “A attacks by

strength x the assertion B”, where x can be point- or interval-valued.

5 Experiment

In this section we explore the psychological plausibility of the proposed approach.
Coherence-based probability logic received empirical support in recent years (e.g.,
[14, 16, 17, 18]). However, principles governing the strength of attacks have not yet
been investigated empirically (neither within nor outside the coherence framework).

Participants The sample consists of 139 students of the Technical University of
Vienna (18 females, 116 males, and 5 who chose not to reveal their gender) with a
mean age of 21.1 years (SD = 3.2). Only German native speakers were included
in the data analysis. Seven participants were excluded from the analysis because
of missing data in the target tasks. Most students were in their second semester
and did not receive a thorough training in logic yet.

On the average, the participants rated the overall task clearness and difficulty
on an intermediate level (M = 4.9 and M = 4.3, respectively, on a rating scale out
of 10). This reflects the fact that since our study aims to explore the interpretation
of attack principles, the participants had first to reason towards how to interpret
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the tasks and then, after fixing their interpretation, to draw conclusions based on
their interpretation. This can also explain why the participants were not highly
confident in the correctness of their solutions (M = 4.1 out of 10) even if in general
they tend to like solving mathematical puzzles (M = 7.5 out of 10).

Method and materials Each participant was administered a DIN-A4 page,
containing an introduction on the first page and the target tasks on both pages.
There were three between-participant conditions, two with multiple-choice (A: n1 =
44 and B: n2 = 48) and one with an open choice response format (C: n3 = 47).
After showing how to express the degree of attack from a scale form 0 to 10 and that
claims can also be compounded (like [A and B]), the participants were presented
with those tasks which are described in Table 1. For example, Task A1 presents the
antecedent of a conditional: “If A attacks with exactly the strength 7 the claim
B, then . . . ”. Then seven consequent candidates were presented, which completed
the conditional. Eight consequents were of the form “. . . attacks A with [M] with
the strength [S] the claim B”, where “[M]” indicates a precise value (“exactly”), a
lower (“at least”), or an upper bound (“at most”) on the strength [S]. [S] was either
0, 3, 7, or 10. All possible point and interval options were formulated in ascending
order (see Table 2 for the attack strength options we used). Except for the interval
[0, 10] we used “nothing follows about how strong . . . attacks . . . ”, as the ninth
response option within each task. The participants were asked to tick for each of
nine items whether the according sentence is correct (“richtig”) or false (“falsch”).
In the open response format condition C, the participants were instructed to fill in
“exactly”, “at least”, or “at most”, the value of the strength, and additionally had
to mark the strength of attack (either as a point value or an interval) on a scale
as introduced in the introduction. In all conditions, those tasks which were not
formulated directly in terms of a conditionals, the instruction required to choose
among “true”, “false”, or “undetermined” by ticking one corresponding box (e.g,
A6, B4, B6, or B11 ; see Table 1).

The experiment took place during the last part of the first lecture on “formal
modeling”. The three conditions were administered in a systematically alternated
way to reduce the chance of plagiarized responses.

Results and discussion The main results are presented in tables 2–6. First
we observe that most people are unaware of the best possible coherent bounds
(marked in bold). Responses which are within the optimal coherent bounds are of
course also coherent, like in task A1 where 45% of the participants responded that
“precisely 7” is correct. In this task, 43% responded that the interval “at most 7”
is correct, which corresponds to the coherent interval. Second, we observe that
compared to direct tests of coherence-based probability logic (e.g., [14, 16, 17, 18]),
the agreement between the predictions concerning the quantitative attack principles
and the participant’s responses are modest, especially for the conditions with closed
response formats (A and B). For the condition C, more than half of the participants
responded by at least a coherent lower or a coherent upper bound as predicted (see
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Task 0 [0,3] 3 [0,7] [3,10] 7 [7,10] 10 nf
A1 0.00 0.00 0.00 43.18 18.18 45.45 18.18 0.00 31.82
A2 0.00 0.00 0.00 63.64 6.82 25.00 9.09 0.00 34.09
A3 0.00 2.27 0.00 25.00 18.18 93.18 27.27 0.00 4.55
A4 20.45 18.18 18.18 11.36 2.27 2.27 0.00 0.00 59.09
A7 15.91 22.73 20.45 13.64 6.82 9.09 0.00 0.00 52.27
A8 6.82 4.55 4.55 6.82 4.55 4.55 4.55 4.55 88.64
A9 2.27 13.64 22.73 2.27 9.09 13.64 6.82 4.55 56.82

A10 4.55 4.55 13.64 2.27 9.09 11.36 11.36 2.27 63.64

Table 2: Percentages of “correct” responses concerning the point valued/interval
attack strength options in condition A (n1 = 44). The response options of A9 were
normalized to probability values. “nf” denotes “nothing follows”. Best possible
coherent response options are in bold (for predictions see Table 1).

Task 0 [0,3] 3 [0,7] [3,10] 7 [7,10] 10 nf
B1 8.33 31.25 29.17 2.08 4.17 2.08 0.00 0.00 43.75
B2 2.08 4.17 2.08 22.92 18.75 16.67 20.83 0.00 39.58
B3 2.08 4.17 2.08 27.08 18.75 25.00 33.33 4.17 27.08
B5 8.33 31.25 29.17 0.00 4.17 0.00 2.08 4.17 45.83
B9 4.17 14.58 16.67 8.33 0.00 2.08 4.17 0.00 62.50
B10 2.08 12.50 14.58 8.33 4.17 20.83 4.17 0.00 47.92

Table 3: Percentages of “correct” responses in condition B (n2 = 48). The response
options of B10 were normalized to probability values. See also caption of Table 2.

median values in Table 5). Concerning the seven forced choice tasks in condition C,
the most frequent responses were consistent with our coherence-based predictions
in five tasks (see Table 6). In tasks C9 and C15 people chose incoherent responses,
which involve contradictions and tautologies, which appear difficult to interpret
in the context of principles about argument strength. We observed an analogous
effect in the corresponding tasks B4 and B8 in the closed response format condition
(see Table 4).

The Contingent attack tasks serve to check whether people read the tasks care-
fully. The Irrelevant premise task was intended to test (A.gen) but due to a
systematic error in the translation of this argument form into the corresponding
tasks, we use it now as a consistency check. In both tasks almost all participants
responded as expected. The results of those tasks, which serve to explore directly
the connection between probability and strength of attack (i.e., ProbToAttack, At-
tackToProb, and AttackToProb) were disappointing in the closed response format
conditions A and B. In the open response format task C16, which investigates
AttackToProb, the majority of participants responded as predicted. In task C17,
which investigates ProbToAttack, the majority of only the lower bound responses
were coherent. Again, participants scored better in the open response format con-
dition compared to the closed one.
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A5 A6 B4 B6 B7 B8 B11 B12
false 43.18 40.91 31.25 47.92 41.67 16.67 31.25 31.25
correct 31.82 22.73 25.00 35.42 31.25 56.25 39.58 35.42
undetermined 25.00 36.36 43.75 16.67 27.08 27.08 29.17 33.33

Table 4: Percentages of responses in conditions A (n1 = 44) and B (n2 = 48). Best
possible coherent response options are in bold (see Table 1).

C1l C1u C2l C2u C3l C3u C4l C4u C5l C5u C6l
0 .70 .30 .30 .70 1 .70 1 .70 .70 0

a .42 .70 .16 .43 .25 .74 .37 .83 .63 .73 .31
b .33 .20 .20 .36 .33 .18 .33 .22 .22 .08 .35
c .70 .70 .00 .30 .00 .70 .30 1.00 .70 .70 .00

C6u C7l C7u C11l C11u C13l C13u C16l C16u C17l C17u
.70 .30 .30 .30 .30 0 1 .30 .30 .30 .30

a .77 .17 .51 .14 .48 .24 .92 .31 .51 .28 .57
b .18 .21 .40 .19 .38 .33 .21 .33 .34 .28 .34
c .70 .00 .30 .00 .30 .00 1.00 .30 .30 .30 .70

Table 5: Mean (a), standard deviations (b), and medians (c) of lower (L) and
upper (U) bound responses in condition C (n3 = 47). Except for the probability
responses to task C16, all values are normalized to the value range [0, 1]. Best
possible coherent response options are in bold (see Table 1).

6 Concluding remarks

We showed how the coherence approach to probability can serve to guide the ra-
tional selection of qualitative and quantitative attack principles. More research is
needed to deepen and to generalize our formal results: e.g., by interpreting implica-
tion by conditional probability (or by previsions in conditional random quantities)
or by generalizations to fuzzy events. We also presented an experiment to explore
the psychological plausibility of the proposed approach. While we are convinced
that our approach is intuitive and plausible, we were surprised by the relatively
heterogeneous results. Open response format tasks turned out the be more appro-
priate to investigate quantitative attack principles. The heterogeneous agreement
between the predictions and the responses could be caused by various factors in-
cluding (i) lower data quality in a lecture hall experiment compared to individ-
ual testing, (ii) different response formats, and (iii) possible confusions caused by
the negations involved in the probabilistic semantics of the attack relations (i.e.,
p(¬B|A) should be high in order that A−→B holds). Future experimental work is
needed to further explore the psychological plausibility of formal attack principles.
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Abstract

Learning parameters of a probabilistic model is a necessary step in most
machine learning modeling tasks. When the model is complex and data
volume is small the learning process may fail to provide good results. In this
paper we present a method to improve learning results for small data sets
by using additional information about the modelled system. This additional
information is represented by monotonicity conditions which are restrictions
on parameters of the model. Monotonicity simplifies the learning process and
also these conditions are often required by the user of the system to hold.

In this paper we present a generalization of the previously used algorithm
for parameter learning of Bayesian Networks under monotonicity conditions.
This generalization allows both parents and children in the network to have
multiple states. The algorithm is described in detail as well as monotonicity
conditions are.

The presented algorithm is tested on two different data sets. Models are
trained on differently sized data subsamples with the proposed method and
the general EM algorithm. Learned models are then compared by their ability
to fit data. We present empirical results showing the benefit of monotonicity
conditions. The difference is especially significant when working with small
data samples. The proposed method outperforms the EM algorithm for small
sets and provides comparable results for larger sets.
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1 Introduction

In our research we address Computerized Adaptive Testing (CAT) [1, 13]. CAT is
a concept of testing latent student abilities which allows us to create shorter tests,
asking less questions in a shorter time while keeping the same level of information.
This task is performed by asking the right questions for each individual student.
Questions are selected based on a student model. In common practice experts
often use Item Response Theory models [10] (IRT) which are well explored and
have been in use for a long time. Nevertheless, we have focused our attention on
a different family of models to model a student using Bayesian Networks (BNs)
since they offer more options in the modelling process. It is for example possible to
model more complex influences between skills and questions as BNs are not limited
to connecting each skill with each question as well as we can introduce connections
between skills themselves.

During our research we noticed that there are certain conditions which should
be satisfied in this specific modelling task. We especially focused on monotonic-
ity conditions. Monotonicity conditions incorporate qualitative influences into a
model. These influences restrict conditional probabilities inside the model in a
specific way to avoid unwanted behavior. Monotonicity in Bayesian Networks has
been discussed in the literature for a long time. It is addressed, selecting the most
relevant to our topic, by [14, 3] and more recently by ,e.g., [11, 5]. Monotonicity
restrictions are often motivated by reasonable demands from model users. In our
case of CAT it means we want to guarantee that students having certain skills will
have a higher probability of answering questions correctly.

Certain types of models include monotonicity naturally by the way they are
constructed. In the case of general BNs this is not true. In order to satisfy these
conditions we have to introduce restrictions to conditional probabilities during the
process of parameter learning.

In our previous work we first showed that monotonicity conditions are uself in
the context of CAT [8]. Later we applied these conditions to Bayesian Network [9].
In this article we extend our earlier presented gradient descent optimum search
method for BN parameter learning under monotonicity conditions. The last article
covers only specific BNs. It works solely with binary children variables in the model
(yes/no answers in terms of CAT). The extension we present in this article provides
a tool to include monotonicity in BN models with multiple-state children nodes.
Additionally, in this article we perform experiments on a new dataset. It is consists
of data from the Czech high school state final exam. This data source contains a
large volume of reliable data, and it is very useful for the empirical verification of
our ideas.

We implemented the new method in R language and performed experimental
verification of our assumptions. We used two data sets. The first one, a synthetic
data set, is generated from artificial models satisfying monotonicity conditions.
The second one, an empirical data set, is formed by data from the Czech high
school final exam. Experiments were performed on these data sets also with the
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ordinary EM learning without monotonicity restrictions in order to compare these
two approaches.

The structure of this article is as follows. First, we establish our notation
and describe monotonicity conditions in detail in Section 2. Next, we present the
extended method in Section 3. In Section 4 of this paper, we take a closer look
at the experimental setup and present results of our experiments. The last section
contains an overview and a discussion of the obtained results.

2 BN Models and Monotonicity

2.1 Notation

In this article we use the new gradient descent method for BNs which are used to
model students in the domain of CAT. Details about BNs can be found, for example,
in [7, 6]. We restrict ourselves to the BNs that have two levels. In compliance with
our previous articles, variables in the parent level are addressed as skill variables S.
The children level contains questions variables X. Examples of network structures,
which we also used for experiments, are shown in Figures 1 and 2.

• We use the symbol X to denote the multivariable (X1, . . . , Xn) taking states
x = (x1, . . . , xn). The total number of question variables is n, the set of all
indexes of question variables is N = {1, . . . , n}. Question variables’ individ-
ual states are xi,t, t ∈ {0, . . . , ni} and they are observable. Each question can
have a different number of states, the maximum number of states over all
variables is Nmax = max

i
(ni) + 1. States are integers with natural ordering

specifying the number of points obtained in the i− th question1.

• We use the symbol S to denote the multivariable (S1, . . . , Sm) taking states
s = (s1, . . . , sm). The set of all indexes of skill variables is M = {1, . . . ,m}.
Skill variables have a variable number of states, the total number of states of a
variable Sj is mj , and individual states are sj,k, k ∈ {1, . . . ,mj}. The variable

Si = Spa(i) stands for a multivariable containing only parent variables of the
question Xi. Indexes of these variables are M i ⊆M . The set of all possible
state configurations of Si is V al(Si). Skill variables are unobservable.

The BN has CPT parameters for all questions Xi, i ∈ N , si ∈ V al(Si) which
define conditional probabilities as

P (Xi = t|S = s) = θti,si ,

and for all parent variables Sj , j ∈M as

P (Sj = sj) = θ̃j,sj .

1The interpretation of points is very complex and has to be viewed as per question because
we use the CAT framework. In this context getting one point in one question is not the same as
one point in another.
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Figure 1: An artificial BN model

Figure 2: A BN model for CAT

From the definition above it follows that parameters are constrained to be
between zero and one and to sum up to one. For question variable the condition
is
∑ni

t=0 θ
t
i,si = 1, ∀i, si and for parent variables it is

∑
sj
θ̃j,sj = 1, ∀j. To remove

this condition for the later use in the gradient method we reparametrize parameters

θti,si =
exp(µti,si)∑ni

t′=0 exp(µ
t′
i,si

)

θ̃j,sj =
exp(µ̃j,sj )∑mi

s′j=1 exp(µ̃j,s′j )
.

The set of all question parameters θti,si and all skills parameters θ̃j,sj is θ without
the reparametrization and µ with the reparametrization.

2.2 Monotonicity

The concept of monotonicity in BNs has been discussed in the literature since the
last decade of the previous millennium [14, 3]. Later its benefits for BN parameter
learning were addressed, for example, by [12, 2]. This topic is still active, e.g.,
[4, 11, 5].

We consider only variables with states from N0 with their natural ordering, i.e.,
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the ordering of states of skill variable Sj for j ∈M is

sj,1 ≺ . . . ≺ sj,mj
.

A variable Sj has a monotone effect on its childXi if for all k, l ∈ {1, . . . ,mj}, t′ ∈
{0, · · · , ni}:

sj,k � sj,l ⇒
t′∑

t=0

P (Xi = t|Sj = sj,k, s) ≥
t′∑

t=0

P (Xi = t|Sj = sj,l, s)

and antitone effect:

sj,k � sj,l ⇒
t′∑

t=0

P (Xi = t|Sj = sj,k, s) ≤
t′∑

t=0

P (Xi = t|Sj = sj,l, s) ,

where s is a configuration of remaining parents of question i without Sj . For
each question Xi, i ∈ M we denote by Si,+ the set of parents with a monotone
effect and by Si,− the set of parents with an antitone effect.

The conditions above are defined for states of question variable Xi in the set
{0, · · · , (ni − 1)}. Given the property of conditional probabilities, i.e.

θni

i,si = 1−
ni−1∑

t=0

θti,si ,

it holds for the state ni in the form for monotonic:

sj,k � sj,l ⇒ P (Xi = ni|Sj = sj,k, s) ≤ P (Xi = ni|Sj = sj,l, s)

and for antitonic:

sj,k � sj,l ⇒ P (Xi = ni|Sj = sj,k, s) ≥ P (Xi = ni|Sj = sj,l, s)

Next, we create a partial ordering �i on all state configurations of parents Si

of the i-th question, where for all si, ri ∈ V al(Si):

si �i ri ⇔
(
sij � rij , j ∈ Si,+

)
and

(
rij � sij , j ∈ Si,−

)
.

The monotonicity condition then requires that the probability of an incorrect
answer is higher for a lower order parent configuration (chances of correct better an-
swers increasing for higher ordered parents’ states), i.e., for all si, ri ∈ V al(Si), k ∈
{0, . . . , (ni − 1)}:

si �i ri ⇒
k∑

t=0

P (Xi = t|Si = si) ≥
k∑

t=0

P (Xi = t|Si = ri) .

In our experimental part we consider only the monotone effect of parents on
their children. The difference with antitone effects is only in the partial ordering.
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3 Parameter Gradient Search with Monotonicity

To learn the parameter vector µ we have developed a method based on gradient
descent optimization. We follow the work of [2] where authors use a gradient
descent method with exterior penalties to learn parameters. The main difference
is that we consider models with hidden variables. In this article we generalize the
method from [9] to multistate question variables.

We denote by D the set of indexes of question vectors. One vector xk, k ∈D
corresponds to one student and an observation of i-th variable Xi is xki . The
number of occurrences of the k-th configuration vector in the data sample is dk.

We use the model as described in Section 2 having unobserved parent variables
and observed children variables. With sets Ikt , t ∈ {0, . . . , Nmax} of indexes of
questions answered with the point gain of t points, we define the following products
based on observations in the k-th vector:

pt(µ, s, k) =
∏

i∈Ik
t

exp(µti,s)∑ni

t′=0 exp(µ
t′
i,s)

, t ∈ {0, · · · , Nmax}; pµ(µ, s) =

m∏

j=1

exp(µ̃j,sj ).

We work with the log likelihood of data modelled by BN with the parameter
vector µ:

LL(µ) =
∑

k∈D
dk · log


 ∑

s∈V al(S)

m∏

j=1

exp(µ̃j,sj )∑mj

s′j=1 exp(µ̃j,s′j )
·
Nmax∏

t=0

pt(µ, s, k)




=
∑

k∈D
dk · log

( ∑

s∈V al(S)

pµ(µ, s)

Nmax∏

t=0

pt(µ, s, k)
)
−N ·

m∑

j=1

log

mj∑

s′j=1

exp(µ̃j,s′j ) .

In the gradient descent optimization we need partial derivatives to establish the
gradient. The partial derivatives of LL(µ) with respect to µi,si for i ∈ N , si ∈
V al(Si) are

δLL(µ)

δµt
i,si

=

∑

k∈D
dk·

I(t, i, si, k)− (
∑ni

t′=0 exp(µ
t′

i,si)− exp(µti,si)) · pµ(µ, si)
∏Nmax

t=0 pt(µ, s, k)

∑ni

t′=0 exp(µ
t′

i,si) ·
∑

s∈V al(S)

(
pµ(µ, s)

∏Nmax

t=0 pt(µ, s, k)
) ,

where I(t, i, si, k) =

{
exp(µt

i,si), if t = k

0, otherwise
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and with respect to µ̃i,l for i ∈M , l ∈ {1, . . . ,mi} are

δLL(µ)

δµ̃i,l
=

∑

k∈D
dk ·

∑si=l
s∈V al(S) pµ(µ, s)

∏Nmax

t=0 pt(µ, s, k)
∑

s∈V al(S) pµ(µ, s)
∏Nmax

t=0 pt(µ, s, k)
−

−N · exp(µ̃i,l)∑mi

l′=1 exp(µ̃k,l′)
.

3.1 Monotonicity Restriction

To ensure monotonicity we use a penalty function which penalizes solutions that
do not satisfy monotonicity conditions

C(θi,si , θi,ri , t′, c) = exp(c · (
t′∑

t=0

θti,ri −
t′∑

t=0

θti,si))

for the log likelihood:

LL′(θ, c) = LL(θ)−
∑

i∈N

∑

si�iri

Nmax∑

t′=0

C(θi,si , θi,ri , t′, c),

and in the case of reparametrized parameters:

LL′(µ, c) = LL(µ)−
∑

i∈N

∑

si�iri

Nmax∑

t′=0

C(
exp(µt

i,si)
∑ni

t′=0 exp(µ
t′

i,si)
,

exp(µt
i,ri)

∑ni

t′=0 exp(µ
t′

i,ri)
, t′, c),

where c is a constant determining the slope of the penalization function. The higher
the value the more strict the penalization is. Theoretically, this condition does not
ensure monotonicity but, practically, selecting high values of c results in monotonic
estimates. If the monotonicity is not violated then the penalty value is close to
zero. Otherwise, the penalty is raising exponentially fast. In our experiments we
have used the value of c = 200 but any value higher than 100 provided almost
identical results.

After adding the penalized part to the log likelihood, partial derivatives with
respect to µi,l remain unchanged. Partial derivatives with respect to µt

i,si change.

The reparametrization causes the derivatives to become very complex. Due to
limited space in this paper we do not include their full description here.

Using the penalized log likelihood, LL′(µ, c), and its gradient ∇(LL′(µ, c)) we
can use standard gradient descent optimization methods to find the paramters of
BN models.

4 Experiments

We designed tests to verify our assumptions. We want to show that if we learn
parameters of BNs with little amount data it is beneficial to use monotonicity
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Figure 3: Artificial model: The ratio between the fitted and the real log likelihood
(measured on the whole data set) obtained by models trained with EM and the
restricted gradient methods for different training set sizes. Notice the logarithmic
scale of the x axis. Curves are slightly misaligned in the direction of the x-axis to
avoid overlapping.

constraints. We designed two experiments to test the method described above.
The first one works with artificial (synthetic data); the other uses a real world
empiric data sample.

Parameters are learned with our gradient method and the standard unrestricted
EM algorithm. In both cases, we learn model parameters from subsets of data of
different sizes. The quality of the parameter fit is measured by the log likelihood.
The log likelihood is measured on the whole data set to provide results comparable
between subsets of different sizes.

4.1 Artificial Model

The structure of the first model is shown in Figure 1. This model reflects the usual
model structure used in CAT where there are two levels of variables, one level of
questions, and one level of parents (skills). Parents S1 and S2 have 3 possible
states and children X1, X2, X3, X4 also have three states. The model was set up
with 10 different sets of parameters θ∗a satisfying the monotonicity conditions.
Furthermore, every model produced 10 000 test cases.

To learn parameters of these models we drew random subsets of size d of 10,
50, 100, 200, 1 000, 5 000. Ten different sets for each size (indexed by b). Next,
we created 10 initial starting points (indexed by c) for the model learning phase.
The structure of both generating and learning models is the same and is shown in
Figure 1. Starting parameter vectors θb are randomized so that they satisfy the
monotonicity conditions. Parameters of all parent variables are uniform. Starting
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Figure 4: Artificial model: Mean parameter distance between real and fitted param-
eters in models trained with the EM and restricted gradient methods for different
training set sizes. Notice the logarithmic scale of the x axis. Curves are slightly
misaligned in the direction of the x-axis to avoid overlapping.

points are the same for both the EM and the gradient method alike. In this
setup we have 10 different original models, 10 different observation subsets, and
10 different starting parameters, which gives 1 000 combinations for each set size.
Each combination has a set of parameters θda,b,c, a, b, c ∈ {1, . . . , 10}. We performed
tests for all these combinations and the results are evaluated as follows.

We measure the log likelihood on the whole data set in order to keep results
comparable. The resulting log likelihood after learning is compared with the log
likelihood obtained with the real model and then averaged over all instances. This
process gives us the average percentual difference between the original and fitted
model. For the set size d:

LRd =

∑
a,b,c

LL(θ∗a)

LL(θda,b,c)

1000

Resulting valus for all set sizes are shown in Figure 3. In this artificial setup we
are also able to measure the distance of learned parameters from the generating
parameters. First we calculate an average error for each learned model:

edi,j =
|θ∗a − θda,b,c|
|θ| ,

where || is the L1 norm. Next we average over all results in one set size d:

ed =

∑
a,b,c ei,j

1000
.

The summary of results is shown in Figure 4.
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4.2 CAT Model

The second model is the model presented in Figure 2 and we use it for our CAT
research. Parent variables S1, . . . , S8 have 3 states and each one of them represents
a particular student skill. Children nodes Ui are variables representing questions
which have a various number of states (based on the evaluation of the specific
question). This model was learned from data contained in the data sample collected
from the Czech high school final exam2. The data set contains answers from over
20 000 students who took the test in the year 2015. We created the model structure
based on our expert analysis and assigned skills to questions. To learn parameters
we use random subsets of size of 10, 50, 100, and 500 cases of the whole sample. We
drew 10 random sets for each size. Models were initiated with 10 different initial
random starting parameters θi.

Figure 5: BN model for CAT empirical data: LLIK scored on the whole dataset for
models trained with the EM and restricted gradient methods for different training
set sizes. Notice the logarithmic scale of the x axis. Curves are slightly misaligned
in the direction of the x-axis to avoid overlapping.

For the learned models we computed the log likelihood for the whole data set.
These values are then averaged over all results of the same size LLA(k) similarly
to the artificial model. Results are presented in Figure 5. In this case we cannot
compare learned parameters because the real parameters are unknown.

2The test is accessible here (Czech language):http://www.statnimaturita-matika.cz/
wp-content/uploads/matematika-test-zadani-maturita-2015-jaro.pdf
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5 Conclusions

In this article we presented a new gradient based method for learning parameters
of Bayesian Networks under monotonicity restrictions. The method was described
and then tested on two data sets. In Figures 3 and 5 it is clearly visible that
the newly proposed method provide better results than the general EM algorithm
for small set sizes. When the size of learning set grows both method are getting
more accurate and fitting data better. As we can see in results of the artificial
model, both methods converge to the same point which is almost identical to the
log likelihood of the model with real parameters. The speed of convergence is slower
for the gradient method, nevertheless in the artificial case, it is not outperformed
by the EM algorithm. In the case of empirical data, we can observe the same
notion where for small set sizes the new gradient method is scoring better results.
In this case EM is getting better log likelihood for larger data sets. This is caused
by the fact that for these larger sets monotonicity restrictions start to make the
learning process harder. For smaller sets they are showing the right path and
guiding the learning process to a better solution. For larger sets they are restricting
parameters and making the process harder. On the other hand, in case when we use
the gradient method, we are working with learned model satisfying monotonicity
conditions which may be desirable given its purpose.

This article shows that it is possible to benefit from monotonicity conditions. It
presents the method to be used to learn parameter of BNs under these conditions.
A possible extension of our work is to design a method which would use gradient
descent optimization in a polytope defined by monotonicity conditions instead of
using a penalty function. This approach has certain benefits as it ensures ending
with strictly monotonic solution, on the other hand the current method allows
small deviations from monotonicity if data strongly contradicts it.
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Abstract

The main contribution of this paper is a new definition of an expectation op-
erator for belief functions in the Dempster-Shafer (D-S) theory of evidence.
Our definition shares many of the properties of the expectation operator in
probability theory. Also, for Bayesian belief functions, our definition provides
the same expected value as the probabilistic expectation operator. A tradi-
tional method of computing expected values of real-valued functions is to first
transform a D-S belief function to a corresponding probability mass function,
and then use the expectation operator for probability mass functions. Our
expectation operator works directly with D-S belief functions. In general, our
definition provides different expected values than, e.g., if we use probabilistic
expectation using the pignistic transform or the plausibility transform of a
belief function.

1 Introduction

The main goal of this paper is to propose an expectation operator for belief func-
tions in the D-S theory of evidence [2, 6].

In probability theory, for discrete real-valued random variables characterized
by a probability mass function (PMF), the expected value of X can be regarded
as a weighted average of the states of X where the weights are the probabilities
associated with the values. Our definition is similar. As we have probabilities
associated with subsets of states, first we define the value of a subset as the weighted
average of the states of the subset where the weights are the commonality values
of the singleton states. Then the expected value of X is defined to be the weighted
average of the values of the subsets where the weights are the commonality values
of the subsets.
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A traditional method of computing expectation of real-valued functions is to
first transform a D-S belief function to a corresponding PMF, and then use the
expectation operator for PMFs. Our expectation operator works directly with D-S
belief functions. In general, our definition provides different expected values than,
e.g., if we use the pignistic transform or the plausibility transform.

An outline of the remainder of the paper is as follows. In Section 2, we review the
definition of expected value of a discrete real-valued random variable characterized
by a PMF. Also, we review some of the main properties of the definition. In Section
3, we review the representations and operations of the D-S theory of belief functions.
In Section 4, we provide our definition of the expected value of a real-valued random
variable characterized by a commonality function. For a symbolic-valued random
variable X, assuming we have a real-valued function g from the set of all non-
empty subsets of the states of X, we also provide a definition of the expected
value of g. Also, we show that our definition of expected value shares many of the
properties of the probabilistic expected value, and we compare our definition with
the probabilistic expectation using pignistic and plausibility transforms. Finally,
in Section 5, we summarize and conclude.

2 Expected Values of Discrete Probability Distri-
butions

In this section we briefly review the expectation operator for discrete random
variables with finite state space whose behavior is described by probability mass
functions.

2.1 Definition of probabilistic expectation

Suppose X is a discrete real-valued random variable with a finite state space ΩX ,
and suppose PX : ΩX → [0, 1] is a probability mass function (PMF) for X, i.e.,
PX(x) ≥ 0 for all x ∈ ΩX , and

∑
x∈ΩX

PX(x) = 1. Then the expected value of X
with respect to PX , denoted by EPX

(X), is defined as follows:

EPX
(X) =

∑

x∈ΩX

x · PX(x) (1)

Notice that as X is real-valued, the definition in Eq. (1) is well defined. Also, as
ΩX is finite, EPX

(X) always exists.

2.2 Properties of probabilistic expectation

Consider the situation in the definition of probabilistic expectation. The expecta-
tion operator has the following properties.

1. (Expected value of a constant) If X is a constant, i.e., PX(a) = 1, where a is
a real constant, then EPX

(X) = a.
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2. (Expected value of a function of X) Suppose Y = gX : ΩX → R is a well-
defined function of X, where R is the set of all real numbers. Then, EPY

(Y )
is as follows:

EPY
(Y ) =

∑

x∈ΩX

gX(x) · PX(x) (2)

For convenience, the right-hand-side of Eq. (2) is denoted by EPX
(gX). This

property is referred to as the law of the unconscious statistician. If Y = gX ,
then Y is a random variable whose PMF PY is defined in terms of PMF PX
as follows:

PY (y) =
∑

x∈ΩX :gX(x)=y

PX(x) (3)

It follows from the definition of expected value that EPY
(Y ) = EPX

(gX).
The result in Eq. (2) says that EPY

(Y ) can be computed directly from the
PMF of X without computing the PMF of Y .

3. (Expected value of a linear function of X) Suppose Y = gX = aX + b where
a and b are real constants. Then EPY

(Y ) = aEPX
(X) + b.

4. (Expected value of a function of X and Y ) The law of the unconscious
statistician generalizes to the multidimensional case. Suppose X and Y
are discrete random variables with state spaces ΩX and ΩY , respectively,
with joint PMF PX,Y , i.e., PX,Y (x, y) ≥ 0 for all (x, y) ∈ ΩX × ΩY , and∑
x∈ΩX

∑
y∈ΩY

PX,Y (x, y) = 1. Then if Z = gX,Y : ΩX × ΩY → R is a
well-defined function of (X,Y ), then

EPZ
(Z) = EPX,Y

(gX,Y ) =
∑

x∈ΩX

∑

y∈ΩY

gX,Y (x, y)PX,Y (x, y) (4)

5. (Expected value of a linear function of X and Y ) If Z = gX,Y = aX+ bY + c,
where a, b, and c are real constants, then

EPZ
(Z) = aEPX,Y

(X) + bEPX,Y
(Y ) + c (5)

3 Basic Definitions in the D-S Belief Functions
Theory

In this section, we review the basic definitions in the D-S belief functions theory.
Like the various uncertainty theories, D-S belief functions theory includes func-
tional representations of uncertain knowledge, and operations for making inferences
from such knowledge. Most of this material is taken from [5].
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3.1 Representations of belief functions

Belief functions can be represented in four different ways: basic probability assign-
ments (BPA), belief functions, plausibility functions, and commonality functions.
Here, we focus only on BPA and commonality functions.

Suppose X is a random variable with state space ΩX . Let 2ΩX denote the set
of all non-empty subsets of ΩX . A basic probability assignment (BPA) mX for X
is a function mX : 2ΩX → [0, 1] such that

∑
a∈2ΩX mX(a) = 1.

The non-empty subsets a ∈ 2ΩX such that mX(a) > 0 are called focal elements
of mX . An example of a BPA for X is the vacuous BPA for X, denoted by ιX ,
such that ιX(ΩX) = 1. If all focal elements of mX are singleton subsets of ΩX ,
then we say mX is Bayesian. In this case, mX is equivalent to the PMF PX for X
such that PX(x) = mX({x}) for each x ∈ ΩX .

The information in a BPA mX can also be represented by a corresponding com-
monality function QmX

that is defined as follows: QmX
(a) =

∑
b∈2ΩX : b⊇amX(b)

for all a ∈ 2ΩX . For the example above with ΩX = {x, x̄}, the commonality
function QιX corresponding to BPA ιX is given by QιX ({x}) = 1, QιX ({x̄}) = 1,
and QιX (ΩX) = 1. If mX is a Bayesian BPA for X, then QmX

is such that
QmX

(a) = mX(a) if |a| = 1, and Qm(a) = 0 if |a| > 1. QmX
is a non-increasing

function in the sense that if b ⊆ a, then QmX
(b) ≥ QmX

(a). Finally, QmX
is a

normalized function in the sense that:

∑

a∈2ΩX

(−1)|a|+1QmX
(a) =

∑

a∈2ΩX

(−1)|a|+1


 ∑

b∈2ΩX : b⊇a
mX(b)




=
∑

b∈2ΩX

mX(b)


 ∑

a∈2ΩX : a⊆b
(−1)|a|+1




=
∑

b∈2ΩX

mX(b) = 1.

Next, we describe the two main operations for making inferences.

3.2 Basic operations in the D-S theory

There are two main operations in the D-S theory—Dempster’s combination rule
and marginalization.

In the D-S theory, we can combine two BPAs m1 and m2 representing distinct
pieces of evidence by Dempster’s rule [2] and obtain the BPA m1 ⊕ m2, which
represents the combined evidence. Dempster referred to this rule as the product-
intersection rule, as the product of the BPA values are assigned to the intersection of
the focal elements, followed by normalization. Normalization consists of discarding
the probability assigned to ∅, and normalizing the remaining values so that they
add to 1. In general, Dempster’s rule of combination can be used to combine two
BPAs for arbitrary sets of variables.
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Let X denote a finite set of variables. The state space of X is ×X∈XΩX . Thus,
if X = {X,Y } then the state space of {X,Y } is ΩX × ΩY .

Projection of states simply means dropping extra coordinates; for example, if
(x, y) is a state of {X,Y }, then the projection of (x, y) to X, denoted by (x, y)↓X ,
is simply x, which is a state of X.

Projection of subsets of states is achieved by projecting every state in the subset.
Suppose b ∈ 2Ω{X,Y } . Then b↓X = {x ∈ ΩX : (x, y) ∈ b}. Notice that b↓X ∈ 2ΩX .

Dempster’s rule can be defined in terms of commonality functions [6] as follows:
Suppose m1 and m2 are BPAs for X1 and X2, respectively. Suppose Qm1

and Qm2

are commonality functions corresponding to BPAs m1 and m2, respectively. The
commonality function Qm1⊕m2

corresponding to BPA m1⊕m2 for X1 ∪X2 = X is
as follows:

Qm1⊕m2(a) = K−1Qm1(a↓X1)Qm2(a↓X2), (6)

for all a ∈ 2ΩX , where the normalization constant K is as follows:

K =
∑

a∈2ΩX

(−1)|a|+1Qm1
(a↓X1)Qm2

(a↓X2). (7)

The definition of Dempster’s rule assumes that the normalization constant K is
non-zero. If K = 0, then the two BPAs m1 and m2 are said to be in total conflict
and cannot be combined. In terms of commonality functions, Dempster’s rule is
pointwise multiplication of commonality functions followed by normalization.

Marginalization in D-S theory is addition of values of BPAs. Suppose m is a
BPA for X . Then, the marginal of m for X1, where X1 ⊆ X , denoted by m↓X1 , is
a BPA for X1 such that for each a ∈ 2ΩX1 ,

m↓X1(a) =
∑

b∈2ΩX : b↓X1= a

m(b). (8)

This completes a brief description of D-S theory of belief functions. For more
details, see [6].

4 A New Definition of Expected Value for the D-S
Theory

In this section, we provide a new definition of expected value of belief functions in
the D-S theory, and describe its properties.

As in the probabilistic case, we will assume that ΩX is a finite set of real
numbers. In a PMF, we have probabilities assigned to each state x ∈ ΩX . In a
BPA mX for X and its equivalent representations, we have probabilities assigned
to subsets of states a ∈ 2ΩX . Before we define expected value of X with respect
to BPA mX , we will define a real-valued value function vmX

: 2ΩX → R for all
subsets in 2ΩX . If a = {x} is a singleton subset, then we can consider vm({x}) = x.
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Remember that the elements of ΩX are real numbers. For non-singleton subsets
a ∈ 2ΩX , it makes sense to define vmX

(a) such that the following inequality holds:

min a ≤ vmX
(a) ≤ max a (9)

One way to satisfy the inequality in Eq. (9) is as follows:

vmX
(a) =

∑
x∈a x ·QmX

({x})∑
x∈aQmX

({x}) for all a ∈ 2ΩX (10)

In words, the value function vmX
(a) is the weighted average of all x ∈ a, where the

weights are the commonality numbers QmX
({x}).

4.1 Definition of expected value for D-S belief functions

Suppose mX is a BPA for X with real-valued state space ΩX , and suppose QmX

denotes the commonality function corresponding to mX . Then the expected value
of X with respect to mX , denoted by EmX

(X), is defined as follows:

EmX
(X) =

∑

a∈2ΩX

(−1)|a|+1vmX
(a) ·QmX

(a) (11)

4.2 Properties of expected values of D-S belief functions

Some important properties of our definition in Eq. (11) are as follows. Consider
the situation in the definition of expected value of D-S belief functions in Eq. (11).

1. (Consistency with probabilistic expectation) If mX is a Bayesian BPA for X,
and PX is the PMF for X corresponding to mX , i.e., PX(x) = mX({x}) for
all x ∈ ΩX , then EmX

(X) = EPX
(X).

Proof : As mX is Bayesian, QmX
(a) = mX(a) if |a| = 1, and QmX

(a) = 0 if
|a| > 1. Also, vmX

({x}) = x. Thus, EmX
(X) in Eq. (11) reduces to EPX

(X)
in Eq. (1).

2. (Expectation of a constant) If X is a constant, i.e., mX({a}) = 1, where a is
a real constant, then EmX

(X) = a.

Proof : Notice that in this case, m is Bayesian, and as this property holds for
the probabilistic case, it also holds for the D-S theory from the consistency
with probabilistic expectation property.

3. (Expected value of a function of X) Suppose Y = gX : ΩX → R is a linear
function, then EmY

(Y ) can be computed as follows:

EmY
(Y ) = EmX

(gX) =
∑

a∈2ΩX

(−1)|a|+1 gX(vmX
(a))QmX

(a) (12)
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In probability theory, this property is valid for any well-defined function of X.
Our definition does not satisfy this property for any well-defined function (see
Examples 1 and 2 that follow), but it is satisfied only for a linear function
of X. This property allows us to compute the expected value of Y = gX
without first computing its commonality function.

Proof : As gX is linear, it is a 1-1 function. Therefore, ΩY = {gX(x) :
x ∈ ΩX}. Thus, the values of the commonality function QmY

for Y are the
same as the corresponding values of the commonality function Qm for X,
i.e., QmY

(aY) = QmX
(a), where aY ∈ 2ΩY is the subset that corresponds

to subset a of ΩX , i.e., aY = {gX(x) : x ∈ a}. It suffices to show that
vmY

(aY) = g(vm(a)) for all a ∈ 2ΩX . Suppose Y = gX = aX + b.

vmY
(aY ) =

∑
y∈aY y ·QmY

({y})∑
y∈aY QmY

({y})

=

∑
x∈a(ax+ b) ·QmX

({x})∑
x∈aQmX

({x})

= a

∑
x∈a x ·QmX

({x})∑
x∈aQmX

({x}) + b

= avmX
(a) + b

= gX(vm(a))

This completes the proof.

4. (Expected value of a linear function of X) Suppose Y = gX = aX + b
where a and b are real constants, and suppose mX is a BPA for X. Then
EmY

(Y ) = aEmX
(X) + b.

Proof : From the expected value of a function of X property, it follows that
that EmY

(Y ) = EmX
(gX) = EmX

(aX + b). Thus,

EmY
(Y ) =

∑

a∈2ΩX

(−1)|a|+1(avmX
(a) + b)QmX

(a)

= a
∑

a∈2ΩX

(−1)|a|+1vmX
(a)QmX

(a) + b
∑

a∈2ΩX

(−1)|a|+1QmX
(a)

= aEmX
(X) + b.

5. (Expected value of a function of X and Y ) The law of the unconscious statisti-
cian generalizes to the multidimensional case. Suppose X and Y are discrete
random variables with state spaces ΩX and ΩY , respectively, with joint BPA
mX,Y for (X,Y ). If gX,Y : ΩX ×ΩY → R is a linear function of (X,Y ), then

Em(gX,Y ) =
∑

a∈2ΩX×ΩY

(−1)|a|+1 gX,Y (v(a))Q(a) (13)
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Table 1: Expected value of a function Y = gX = X2 that is not 1-1

a ∈ 2ΩX mX(a) QmX (a) vmX (a) EmX (X) (vmX (a))2 EmX (gX)
{−1} 0.02 0.63 −1.00 0.059 1.00 1.188
{0} 0.05 0.70 0.00 0.00
{1} 0.09 0.81 1.00 1.00
{−1, 0} 0.12 0.42 −0.47 0.22
{−1, 1} 0.19 0.49 0.13 0.02
{0, 1} 0.23 0.53 0.54 0.29
{−1, 0, 1} 0.30 0.30 0.08 0.01

b ∈ 2ΩY mY (b) QmY (b) vmY (b) EmY (Y )
{1} 0.30 0.95 1.00 0.576
{0} 0.05 0.70 0.00
{1, 0} 0.65 0.65 0.58

As in the case of expected value of a function of X property, this property
holds only for the case where gX,Y is a linear function.

A proof of this property is similar to the proof of the expected value of a
function of X property, and is therefore omitted.

6. (Expected value of a linear function of X and Y ) If Z = gX,Y = aX+ bY + c,
where a, b, and c are real constants, and mX,Y is a joint BPA for (X,Y ),
then

EmZ
(Z) = EmX,Y

(aX + bY + c) = aEmX,Y
(X) + bEmX,Y

(Y ) + c (14)

A proof of this property is similar to the proof of the expected value of a linear
function of X property, and is therefore omitted.

Example 1 (Non 1-1 function) Consider a real-valued variable X with ΩX =
{−1, 0, 1}, and suppose mX is a BPA for X as shown in Table 1. Suppose Y =
gX = X2. Notice that gX is not 1-1. Then, ΩY = {1, 0}, and mY is as shown in
Table 1. For this example, EmY

(Y ) = 0.576, and EmX
(gX) = 1.188. Thus, Eq.

(12) does not hold.

Example 2 (Nonlinear 1-1 function) Consider a real-valued variable Z with
ΩX = {1, 2, 3}, and suppose mZ is a BPA for Z as shown in Table 2. Suppose
Y = gZ = log(Z). Then, ΩY = {log(1), log(2), log(3)} ≈ {0, 0.30, 0.48}, and mY

is as shown in Table 2. As the function is 1-1, the values of mY are the same as
the values of mZ . For this example, EmY

(Y ) = 0.273, and EmZ
(log(Z)) = 0.241.

Thus, Eq. (12) does not hold.
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Table 2: Expected value of Y = gZ = log(Z), a nonlinear 1-1 function

a ∈ 2ΩZ mZ(a) QmZ (a) vmZ (a) EmZ (Z) log(vmZ (a)) EmZ (gZ)
{1} 0.02 0.63 1.00 2.059 0.00 0.241
{2} 0.05 0.70 2.00 0.30
{3} 0.09 0.81 3.00 0.48
{1, 2} 0.12 0.42 1.53 0.18
{1, 3} 0.19 0.49 2.12 0.33
{2, 3} 0.23 0.53 2.53 0.40
{1, 2, 3} 0.30 0.30 2.08 0.32

aY ∈ 2ΩY mY (aY ) QmY (aY ) vmY (aY ) EmY (Y )
{0} 0.02 0.63 0.00 0.273
{0.30} 0.05 0.70 0.30
{0.48} 0.09 0.81 0.48
{0, 0.30} 0.12 0.42 0.16
{0, 0.48} 0.19 0.49 0.27
{0.30, 048} 0.23 0.53 0.40
{0, 0.30, 0.48} 0.30 0.30 0.28

Example 3 (Linear function) Consider a real-valued variable X with ΩX =
{−1, 0, 1}, and suppose mX is a BPA for X as shown in Table 3. Suppose Y =
gX = 2X + 1. Then, ΩY = {−1, 1, 3}, and mY is as shown in Table 3. Notice that
as a linear function is 1-1, the values of mY are the same as the corresponding
values of mX . Also, notice that as the function gX is linear, g(vm(a)) = vmY

(aY ),
where subset aY corresponds to subset a. For this example, EmY

(Y ) = 1.117,
and EmX

(gX) = 1.117. Thus, Eq. (12) holds. Also notice that EmX
(gX) =

EmX
(2X + 1) = 2EmX

(X) + 1 = 2(0.059) + 1 = 1.117.

4.3 A definition of expected value of a real-valued function
of X

Suppose QmX
is a commonality function for X corresponding to BPA mX for X,

and ΩX may not be real-valued, but gX : 2ΩX → R is a well-defined real-valued
function of X, then we define expected value of gX with respect to mX , denoted
by EmX

(gX), as follows:

EmX
(gX) =

∑

a∈2ΩX

(−1)|a|+1 gX(a)QmX
(a) (15)

The definition of the expected value of gX with respect to mX is similar to Eqs. (12)
and (13). Such a definition may be useful in comparing preference for lotteries that
are characterized by D-S belief functions similar to von Neumann-Morgenstern’s
utility theory for probabilistic lotteries [11].
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Table 3: Expected value of Y = 2X + 1, a linear function

a ∈ 2ΩX mX(a) QmX (a) vmX (a) EmX (X) 2 vmX (a)) + 1 EmX (gX)
{−1} 0.02 0.63 −1.00 0.059 −1.00 1.117
{0} 0.05 0.70 0.00 1.00
{1} 0.09 0.81 1.00 3.00
{−1, 0} 0.12 0.42 −0.47 0.05
{−1, 1} 0.19 0.49 0.12 1.24
{0, 1} 0.23 0.53 0.53 2.07
{−1, 0, 1} 0.30 0.30 0.08 1.16

aY ∈ 2ΩY mY (aY ) QmY (aY ) vmY (aY ) EmY (Y )
{−1} 0.02 0.63 −1.00 1.117
{1} 0.05 0.70 1.00
{3} 0.09 0.81 3.00
{−1, 1} 0.12 0.42 0.05
{−1, 3} 0.19 0.49 1.24
{1, 3} 0.23 0.53 2.07
{−1, 1, 3} 0.30 0.30 1.16

4.4 A comparison with expectation of pignistic and plausi-
bility transforms

As we said earlier, a traditional method of computing expectations of random
variables characterized by a D-S BPA is to first transform the BPA to a PMF,
and then use the probabilistic expectation operator. There are several methods
of transforming a BPA to a PMF. Here we focus on the pignistic [9] and the
plausibility [1] transforms.

As D-S theory is a generalization of probability theory, there is, in general, more
information in a BPA m than in the corresponding transform of m to a PMF. Thus,
by computing expectation of X whose uncertainty is described by BPA m by first
transforming m to a pignistic PMF BetPm, or to a plausibility PMF Pl Pm, there
may be loss of information.

In general, the expected value defined in this paper may yield different values
than the probabilistic expectation using pignistic or plausibility transformation.
Table 4 compares the expectation defined in this paper with probabilisitic expec-
tation using pignistic and plausibility transforms for the various BPAs described
in Tables 1, 2, and 3. Two observations. First, although the three definitions
yield different answers, they are all approximately of the same order of magnitude.
Second, all three definitions satisfy the expected value of a linear function of X
property. Thus, BPA mZ in Table 2 can be obtained from BPA mX in Table 1
using the transformation Z = X + 2. All three expected values satisfy the expected
value of a linear function of X property. Also, BPA mY in Table 3 is obtained
from BPA mX in Table 1 using the transformation Y = 2X + 1. Again, all three
expected values satisfy the expected value of a linear function of X property.
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Table 4: A comparison of our expected value with probabilistic expectation using
pignistic and plausibility transforms

BPA m Em(·) EBetPm (·) EPl Pm (·)
mX in Table 1 0.059 0.125 0.084
mY in Table 1 0.576 0.625 0.576
mZ in Table 2 2.059 2.125 2.084
mY in Table 2 0.273 0.289 0.278
mY in Table 3 1.117 1.250 1.168

5 Summary and Conclusions

We propose a new definition of expected value for real-valued random variables
whose uncertainty is described by D-S belief functions. Also, if we have a random
variable with a symbolic frame of discernment, but a real-valued function defined
on the set of all non-empty subsets of the frame, then we propose a new definition
of expectation of the function in a similar manner.

Our new definition satisfies many of the properties satisfied by the probabilistic
expectation operator, which was first proposed by Christiaan Huygens [3] in the
context of the problem of points posed by Chevalier de Méré to Blaise Pascal.

The expectation operator can be used to define variance, covariance, correlation,
and higher moments of D-S belief functions [8].

If we define I(a) = log2( 1
QmX

(a) ) as the information content of observing subset

a ∈ 2ΩX whose uncertainty is described by mX , then similar to Shannon’s definition
of entropy of PMFs [7], we define entropy of BPA mX for X as an expected value
of the function I(a), i.e., H(mX) = EmX

(I(a)). This is what is proposed in [5].
This definition of entropy has many nice properties. In particular, it satisfies the
compound distributions property: H(mX ⊕mY |X) = H(mX) + H(mY |X), where
mY |X is a conditional BPA for Y given X obtained by ⊕{mY |x : x ∈ ΩX}, and
mY |x is a conditional BPA for Y given X = x.

There are several decision theories for lotteries whose uncertainty is described
by D-S belief functions theory. The most prominent ones are by Jean-Yves Jaffray
[4]/Thomas Strat [10], and Philippe Smets [9]. The proposal by Jaffray/Strat
is to first reduce a D-S belief function to an upper and lower PMFs, and then
define an expected value that is a convex combination of the upper and lower
probabilistic expectation. This proposal is justified in [4] by some axioms similar
to the axioms proposed by John von Neumann and Oskar Morgenstern [11] for
probabilistic lotteries. The proposal by Smets is to transform a D-S belief function
to a corresponding PMF called the pignistic transform, and then use von Neumann-
Morgenstern’s expected utility theory. Our definition of expected value can be used
in a decision theory for D-S theory without transforming belief functions to PMFs.
This remains to be done.
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studeny@utia.cas.cz
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Abstract

The sets of balanced, totally balanced, exact and supermodular games
play an important role in cooperative game theory. These sets of games are
known to be polyhedral cones. The (unique) non-redundant description of
these cones by means of the so-called facet-defining inequalities is known in
cases of balanced games and supermodular games, respectively. The facet
description of the cones of exact games and totally balanced games are not
known and we present conjectures about what are the facet-defining inequal-
ities for these cones.

We introduce the concept of an irreducible min-balanced set system and
conjecture that the facet-defining inequalities for the cone of totally balanced
games correspond to these set systems. The conjecture concerning exact
games is that the facet-defining inequalities for this cone are those which
correspond to irreducible min-balanced systems on strict subsets of the set
of players and their conjugate inequalities. A consequence of the validity of
the conjectures would be a novel result saying that a game m is exact if and
only if m and its reflection are totally balanced.

1 Introduction: former results overview

Important classes of set functions used as mathematical models in the coalition
game theory are: the class of balanced games B(N), the class of totally balanced
games T (N), the class of exact games E(N) and the class of supermodular games
S(N), named traditionally convex in game-theoretical community. One has

B(N) ⊇ T (N) ⊇ E(N) ⊇ S(N)

and it is well-known that all these sets are polyhedral cones in the space RP(N),
where P(N) = {A : A ⊆ N} is the power set of the set of players N . That means
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that each of the cones can be specified by finitely many linear inequalities.

These set functions occur in other contexts, for example, in the context of impre-
cise probabilities. More specifically, supermodular games correspond to 2-monotone
lower probabilities, exact games to coherent lower probabilities and balanced games
to lower probabilities avoiding sure loss [9].

Recall that every full-dimensional polyhedral cone K in an Euclidean space
has uniquely determined set of the so-called facet-defining inequalities, where the
uniqueness of each inequality is up to a positive multiple. Specifically, these in-
equalities determine proper faces of K of maximal dimension, called facets. The
complete list of facet-defining inequalities then provides the least possible inequality
description of K, unique up to positive multiples.

The above cones B(N), . . . ,S(N) are not full-dimensional in RP(N) but adding
a one-dimensional linear space C(N) of constant functions turns them into full-
dimensional cones B(N), . . . , S(N). The facet-defining inequalities of these ex-
tended cones then induce a non-redundant inequality description of the original
cones of games. The non-redundant inequality description of these cones is known
in cases of supermodular and balanced games only.

The facets of the supermodular cone S(N) are defined by inequalities of the
form m({i, j} ∪ L) + m(L) −m({i} ∪ L) −m({j} ∪ L) ≥ 0 for m ∈ S(N), where
L ⊂ N and i, j ∈ N \L are distinct [6]; these inequalities were known to correspond
to elementary conditional independence statements [13].

The non-redundant inequalities for the cone B(N) of balanced games were char-
acterized by Shapley [12] on basis of former results by Bondareva [1]. These inequal-
ities correspond to “minimal balanced collections” of subsets of N whose union is
N ; in this paper we call such collections min-balanced systems on N .

The consequence of the fact that B(N) is a polyhedral cone is the observation
that the set of totally balanced games T (N) is a polyhedral cone. Nonetheless, as
far as we know, the facet-defining inequalities for the cone T (N) have not been
described/discussed in the literature.

Recently, the fact that set of exact games E(N) forms a convex cone has been
derived [3]. Shortly after that Lohman et al. [8] even showed that the set of exact
games is a polyhedral cone. Specifically, the exact games were characterized by
means of finitely many linear inequalities that correspond to the so-called “min-
imal exact balanced” collections of subsets of N . Although finitely many linear
inequalities specifying E(N) were classified in [8], many of these inequalities are
already known to be redundant.

In this paper we mainly deal with the question of what are the facet-defining
inequalities for the exact cone. On basis of our own computations as well as com-
putations made by Quaeghebeur in connection with his thesis [11] we found and
classified these inequalities in case |N | ≤ 5. We analyzed the results and revealed
certain symmetry in the problem. More specifically, the facet-defining inequalities
for E(N) come in pairs: every such inequality is accompanied with a conjugate
one. We have shown that this is a consequence of the fact that the cone E(N) is
closed under a special reflection transformation.
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We even came to sensible conjectures about what are the facet-defining in-
equalities for the cones T (N) and E(N). The basis of them is the concept of a
min-balanced system on M ⊆ N , where |M | ≥ 2, which is a certain collection of
subsets of M . Special irreducible min-balanced systems seem to play the crucial
role. The conjecture concerning the totally balanced cone is that these irreducible
systems correspond to facets of T (N). The conjecture concerning the exact cone
is that every facet-defining inequality for E(N) is either given by an irreducible
min-balanced system on some strict subset M ⊂ N , |M | ≥ 2, or it a conjugate
inequality to such an inequality.

We also briefly report on our effort to develop a computer programme for gen-
erating all (permutational types of) min-balanced systems and irreducible min-
balanced systems. We employed the algorithm by Peleg [10] and reformulated the
problem in terms special bipartite graphs using the BLISS algorithm by Junttila
and Kaski [5].

2 Basic concepts and facts

Throughout the text N is a finite set of players such that |N | ≥ 2. Given S ⊆ N ,
the symbol χS will denote zero-one incidence vector of S (in RN ); that is, χS(i) = 1
if i ∈ S and χS(j) = 0 if j ∈ N \ S.

A game is a set function m : P(N) → R such that m(∅) = 0. The core of a
game m is a polytope (= bounded polyhedron) in RN given by

C(m) := { [xi]i∈N :
∑

i∈N
xi = m(N) & ∀S ⊆ N

∑

i∈S
xi ≥ m(S) } .

A game m is balanced if it has a non-empty core: C(m) 6= ∅; it is called totally
balanced if, for each M ⊆ N , |M | ≥ 2, the restriction of m to P(M) is balanced.
A balanced game is called exact if every lower bound is tight:

∀S ⊆ N ∃x ∈ C(m)
∑

i∈S
xi = m(S) ;

an equivalent definition is that m can be reconstructed from its core by minimiza-
tion: m(S) = min {∑i∈S xi : x ∈ C(m)} for any S ⊆ N . Well-known facts are
that every exact game is totally balanced and that every supermodular game is
exact [4].

Definition 1 A system B ⊆ P(N) is min-balanced on a non-empty set M ⊆ N if
it is a minimal set system such that χM is in the conic hull of {χS : S ∈ B}.

Of course, the minimality is meant in sense of inclusion of set systems.

Lemma 2 A set system B ⊆ P(N) is min-balanced on ∅ 6= M ⊆ N if and only if
the following two conditions hold:
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(i) there exist strictly positive coefficients λS > 0 for S ∈ B such that

χM =
∑

S∈B
λS · χS where M =

⋃B, and

(ii) the incidence vectors {χS ∈ RN : S ∈ B} are linearly independent.

Hence, B ⊆ P(N) is min-balanced iff it is a minimal set system satisfying (i).

The condition (i) is the balancedness condition from [12]; (ii) is equivalent to
minimality and implies the uniqueness of the coefficients λS in (i).

Proof. To show the necessity of (i) write χM =
∑
S∈B λS · χS with λS ≥ 0. If λS

vanishes for some S then we take B′ = {T ∈ B : λT > 0} to get a contradictory
conclusion that B′ is a strict subsystem of B satisfying the requirement. The
necessity of (ii) can then be shown by a contradiction: otherwise a non-vanishing
system of coefficients {γS : S ∈ B} exists such that

∑
S∈B γS · χS = 0 ∈ RN . For

any ε ≥ 0 put λεS := λS + ε · γS and consider χM =
∑
S∈B λ

ε
S · χS . Since all λS

are strictly positive, maximal ε > 0 exists such that λεS are all non-negative. Put
B′ = {T ∈ B : λεT > 0} and derive the contradiction analogously.

Conversely, if both (i) and (ii) holds then χM =
∑
S∈B λS · χS with λS > 0.

Assume for a contradiction that C ⊂ B exists such that χM =
∑
S∈C νS · χS with

νS ≥ 0, S ∈ C. Put νS = 0 for S ∈ B \ C. Then 0 =
∑
S∈B(λS − νS) · χS , which

contradicts (ii). The last claim is easy to derive from the former one. �

We intentionally restrict our attention to non-trivial min-balanced systems B
with |B| ≥ 2; each such a system is ascribed the following inequality

m(
⋃
B)−

∑

S∈B
λS ·m(S) ≥ 0 (1)

in which variables are represented by m(S), S ⊆ N . We have shown in [7, Obser-
vation 4] that any non-trivial min-balanced system B on M satisfies the following
conditions:

• the intersection
⋂B is empty, one has ∅,M 6∈ B, |M | ≥ 2, and

• there are at most |M | sets in B.

The result from [12] is as follows.

Proposition 3 The facet-defining inequalities for the cone B(N) are just the in-
equalities (1) for non-trivial min-balanced systems B on N .
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3 Conjugate inequalities

To reveal some important symmetry in the problem, it is suitable to consider
the space RP(N) and extend all considered cones B(N), . . . ,S(N) to this space.
Formally, for m ∈ RP(N), a shifted function m̃ given by m̃(S) := m(S)−m(∅) for
S ⊆ N is a game and one can define:

B(N) := {m ∈ RP(N) : m̃ is a balanced game },
T (N) := {m ∈ RP(N) : m̃ is a totally balanced game },
E(N) := {m ∈ RP(N) : m̃ is an exact game },
S(N) := {m ∈ RP(N) : m̃ is a supermodular game }.

All these cones are full-dimensional in RP(N) and their shared linearity space ap-
pears to be the linear space of modular functions

L(N) := {m ∈ RP(N) : m(C ∪D) +m(C ∩D) = m(C) +m(D) for C,D ⊆ N},

which has the dimension 1 + |N |; see [7, § 1.1].
The task to find/characterize facets of the original cones B(N), . . . ,S(N) of

games appears to be equivalent to finding facets of the above extended cones. Some
geometric considerations lead to the conclusion that every facet-defining inequality
for such a full-dimensional cone K in RP(N) has the form

∑

S⊆N
α(S) ·m(S) ≥ 0 for m ∈ RP(N), (2)

where
∑
S⊆N α(S) = 0,

∑
S⊆N :i∈S α(S) = 0 for any i ∈ N ,

and the coefficients α(S), S ⊆ N , are rational numbers. Thus, without loss of gen-
erality, we can multiply (2) by a positive factor to obtain relatively prime integers
as coefficients. This is a standardized form of the inequality (2).

An inequality of the form (2) for m ∈ B(N), . . . , S(N) can be identified with
the inequality

∑
∅6=S⊆N α(S) · m̃(S) ≥ 0 for m̃ ∈ B(N), . . . ,S(N): for the inverse

relation put α(∅) := −∑∅6=S⊆N α(S); for details see [7, § 1.1]. In particular, the
inequality (1) has an extended version

m(
⋃
B)−

∑

S∈B
λS ·m(S) + (−1 +

∑

S∈B
λS) ·m(∅) ≥ 0 .

The point is that the considered cones, except for T (N), are closed under the
following linear self-transformation of RP(N). By a reflection of m ∈ RP(N) we
mean m∗ ∈ RP(N) given by

m∗(T ) := m(N \ T ) for any T ⊆ N .

It is nothing but inner composition with the “complement” mapping.
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The inequality (2) can be ascribed a conjugate inequality of the form
∑

T⊆N
α∗(T ) ·m(T ) ≥ 0 where α∗(T ) := α(N \ T ) for any T ⊆ N, (3)

required for m ∈ RP(N). An important observation appears to be the equality
∑

T⊆N
α∗(T ) ·m(T ) =

∑

T⊆N
α(N \ T ) ·m∗(N \ T ) =

∑

S⊆N
α(S) ·m∗(S) ,

which easily implies that, whenever (2) is valid for vectors in a cone K which is
closed under reflection, then (3) is valid for vector in K, and, of course, vice versa.
In fact, one of our theoretical results is that (2) is facet-defining for K closed under
reflection iff (3) is facet-defining for K [7, Lemma 26].

Every inequality of the form (2) defines a set system

Bα := {S ⊆ N : α(S) < 0} . (4)

Our analysis of facet-defining inequalities for E(N) in case |N | ≤ 5 written in the
form (2) revealed that every system Bα is either min-balanced on M ⊂ N or it is
conjugate to such a system B, which means it is of the form

B∗ := {N \ S : S ∈ B} .
We explain now that any min-balanced system B defines a unique standardized
inequality (2) with α ∈ ZP(N) such that B = Bα.

3.1 How to assign an inequality to a min-balanced system

Given a min-balanced system B, unique coefficients λS > 0, S ∈ B, exist with

χM =
∑

S∈B
λS · χS where M =

⋃B.

In fact, one can even show that λS ∈ Q. Indeed, one has χM =
∑
S∈B λS ·χS means

that the coefficient vector λ ∈ RB is a solution of a matrix equality λ · C = χM
with a zero-one matrix C ∈ RB×N . Since a unique solution exists, a regular column
B×T -submatrix of C, where T ⊆ N , |T | = |B|, exists such that λ ·CB×T = χM∩T .
Since C has zero columns for i ∈ N \M one has T ⊆M . Nevertheless, the inverse
of this regular zero-one submatrix is a rational matrix, which implies that the
components of λ are in Q. Thus, a unique integer k ≥ 1 exists such that k ·λS ∈ Z,
S ∈ B, are relatively prime. One can put

αB(M) := k,

αB(S) := −k · λS for S ∈ B,
αB(∅) := −αB(M)−

∑

S∈B
αB(S) = −k + k ·

∑

S∈B
λS ,

αB(R) := 0 for remaining R ⊆ N .
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It is shown in [7, § 3.1] that these coefficients define a standardized form of the
inequality (2) and one has Bα = B with α = αB. This yields mutually inverse
transformation between min-balanced systems and the coefficient vectors of as-
cribed inequalities.

4 Irreducible min-balanced systems

The next concept is related to the conjectures below.

Definition 4 We say that a min-balanced system B ⊆ P(N) is reducible if there
exists X ⊂M ≡ ⋃B and Y ∈ BX := {S ∈ B : S ⊂ X} such that

• χX is in the conic hull of {χS : S ∈ BX},
• χM is in the conic hull of {χT : T ∈ {X} ∪ B \ {Y } }.

A min-balanced system B ⊆ P(N) which is not reducible is called irreducible.

We say that a min-balanced system B ⊆ P(N) is weakly irreducible if no set
X ⊂ ⋃B exists such that both BX and {⋃BX} ∪ (B \ BX) are min-balanced.

Note that, without loss of generality, one can only require X =
⋃BX 6∈ B in

the above definitions and the irreducibility implies the weak irreducibility; see [7,
Observation 8]. The intended meaning of the irreducibility condition is that the
inequality ascribed to B is not derivable from other inequalities for min-balanced
systems B′ where

⋃B′ ⊆ ⋃B.

Here is an example of a reducible system.

Example Put N = {a, b, c, d} and consider the set system B = { {a}, {b}, {c} },
whose corresponding inequality is

m(abc)−m(a)−m(b)−m(c) + 2 ·m(∅) ≥ 0 . (5)

Take X = {a, b} and observe that BX = { {a}, {b} } is min-balanced; the same
holds for C = {X} ∪ (B \ BX) = { {a, b}, {c} } . Thus, B is not weakly irreducible,
and therefore, not irreducible. The respective inequalities are

m(ab)−m(a)−m(b) +m(∅) ≥ 0, (6)

m(abc)−m(ab)−m(c) +m(∅) ≥ 0,

both facet-defining for E(N). Clearly, (5) is the sum of the inequalities in (6).

An analogous procedure is possible for every reducible min-balanced system.
The following result is shown in [7, Corollary 9].

Observation 5 Given a reducible min-balanced system B, the corresponding in-
equality is a conic combination of inequalities which correspond to other min-
balanced systems B′ with

⋃B′ ⊆ ⋃B.

In particular, the inequalities ascribed to reducible systems are never facet-
defining for T (N) or E(N).
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5 Conjectures

The first conjecture concerns the totally balanced cone.

Conjecture 1 The facet-defining inequalities for T (N) are just those ascribed to
non-trivial irreducible min-balanced systems B on M ⊆ N , |M | ≥ 2.

Note that T (N) is not closed under reflection; therefore, one cannot expect that
a conjugate inequality to a facet-defining inequality is also facet-defining.

Conjecture 2 The facet-defining inequalities for E(N) are just those ascribed to
non-trivial irreducible min-balanced systems B on M ⊂ N , |M | ≥ 2, and the
conjugate inequalities to these.

Conjecture 2 is in line with the fact that E(N) is closed under reflection. Note
that the inequalities in Conjecture 2 imply inequalities ascribed to min-balanced
systems on N . Moreover, if both conjectures are true, then one can derive easily
that m ∈ E(N) iff m,m∗ ∈ T (N). That would imply that a game m is exact iff
both m and m̃∗ are totally balanced.

6 Computations and examples

A former version of the conjectures was based on weak irreducibility concept.
Therefore, in case |N | ≤ 8, we have computed the permutational types of min-
balanced and weakly irreducible min-balanced systems, respectively. We listed all
min-balanced systems type representatives in a tree-like catalog with the following
access keys (for example, take B = {a, bd, cd, abc}):

• the number |N | of players (B: |{a, b, c, d}| = 4),

• the number of sets |B| in the system (B: 4),

• ordered players’ multiplicities |{B ∈ B : i ∈ B}|, i ∈ N , (B: (2, 2, 2, 2)),

• ordered cardinalities |B|, B ∈ B, (B: (1, 2, 2, 3)),

• ordered balancing coefficients λS , S ∈ B, (B: ( 1
2 ,

1
2 ,

1
2 ,

1
2 )).

To recognize whether two given min-balanced systems are of the same type, we
transformed the problem to the task of recognizing bipartite graph isomorphism.
Specifically, players and sets are turned into graph nodes of two different parts. If
a player is in a set, then an edge exists between the respective nodes. We have used
BLISS algorithm [5], as implemented in igraph package [2] of R environment. To
check whether a newly found min-balanced system is of a recorded permutational
type (= already stored in the catalog), we searched through the leaves of the respec-
tive branch of the above tree only. Just one representative of each permutational
class is stored in the catalog.
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number of players n = 3 n = 4 n = 5 n = 6 n = 7 n = 8

min-balanced types 3 9 40 428 15.309 1.597.581
weakly irreducible types 2 5 16 164 6.188 704.995

Table 1: Permutational types of non-trivial min-balanced systems on N .

To find whether the permutational type of min-balanced system is weakly ir-
reducible, we applied Definition 4 directly. The above mentioned catalog of min-
balanced systems was used to speed-up the computations.

The resulting numbers of permutation types for 3 ≤ n = |N | ≤ 8 are shown in
Table 1. Note that for n ≤ 4 each weakly irreducible system is irreducible. In the
case |N | = 2 only one non-trivial min-balanced system on N exists. It is irreducible
and has the form B = {a, b} (2-partition).

In the case n = |N | = 3 five min-balanced systems exist which break into three
permutational types; two of these types are irreducible:

• B = {a, b, c} represents a reducible type, 3-partition (1 system),

• B = {a, bc} represents an irreducible type, 2-partition (3 systems),

• B = {ab, ac, bc} represents an irreducible type (1 system).

In the case n = |N | = 4 one has 41 min-balanced systems which break into nine
permutational types; five of these types are irreducible.

1. B = {a, b, c, d} represents a reducible type, 4-partition (1 system),

2. B = {a, b, cd} represents a reducible type, 3-partition (6 systems),

3. B = {ab, cd} represents an irreducible type, 2-partition (3 systems),

4. B = {a, bcd} represents an irreducible type, 2-partition (4 systems),

5. B = {a, bc, bd, cd} represents a reducible type (4 systems),

6. B = {ab, acd, bcd} represents an irreducible type (6 systems),

7. B = {a, bd, cd, abc} represents a reducible type (12 systems),

8. B = {ab, ac, ad, bcd} represents an irreducible type (4 systems),

9. B = {abc, abd, acd, bcd} represents an irreducible type (1 system).

Most of the above min-balanced systems are families of sets incomparable with
respect to inclusion. Nonetheless, the min-balanced system in the 7-th item con-
tains comparable sets a and abc.

Our computation also revealed irreducible min-balanced systems containing
at least one pair of comparable sets: in case N = {a, b, c, d, e} the system B =
{ ab, acd, ace, bcde, abde} is an irreducible min-balanced system.
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7 Conclusions

Our future effort will be directed to the conjectures formulated in Section 5. The
plan is to utilize the methods of polyhedral geometry either to confirm or to dis-
prove them. The catalogues of irreducible min-balanced systems for |N | = 6, 7, 8
are highly useful in this context, because they determine the lists of inequalities
conjectured to be facet-defining for T (N) and E(N).

In another direction of research related to the cones S(N) and E(N), we found
simple linear criteria to recognize extreme supermodular/exact games and devel-
oped web platforms based on implementation of these criteria [14, 15].
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Abstract

This contribution aims at using Bayesian networks for modelling the rela-
tions between the individual subjective well-being (SWB) and the individual
material situation. The material situation is approximated by subjective
measures (perceived economic strain, subjective evaluation of the income rel-
ative to most people in the country and to own past) and objective measures
(household’s income, material deprivation, financial problems and housing
defects). The suggested Bayesian network represents the relations among
SWB and the variables approximating the material situation. The structure
is established based on the expertise gained from literature, whereas the pa-
rameters are learnt based on empirical data from 3rd edition of European
Quality of Life Study for the Czech Republic, Hungary, Poland and Slovakia
conducted in 2011. Prediction accuracy of SWB is tested and compared with
two benchmark models whose structures are learnt using Gobnilp software
and a greedy algorithm built in Hugin software. SWB prediction accuracy
of the expert model is 66,83%, which is significantly different from no in-
formation rate of 55,16%. It is slightly lower than the two machine learnt
benchmark models.

1 Introduction

Throughout the last couple of decades, subjective well-being (hereinafter referred
as “W”) has become an attractive field of study for sociologists, psychologists and
economists. Each of these branches looks at the topic from the different perspec-
tive, whereas their models reflects mainly their own needs and understanding. For
example, economists use the concept of SWB in their models as a certain approx-
imation when investigating the utility. The empirical research of SWB and its
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association with economic variables such as individual income, material situation,
relative deprivation, material deprivation etc. is usually based on the use of various
statistical methods. Applications of probability calculus and modelling to examine
sociological concepts such as SWB seem to be rather marginal. In this contribution
we tried to develop an alternative to the classical statistical approach and suggest
the probability model for the description of the relationships among the individ-
ual SWB and selected proxies of the economic situation based on empirical data
from four central European countries. For such an attempt Bayesian networks are
used, whereas the predictive capacity of the model is discussed in terms of SWB.
The broad purpose of this study is to demonstrate possible new approaches for
modelling in sociology.

2 Literature

SWB can be defined uneasily and approaches to that differ quite a lot. For the
purposes of this research the definition of SWB promoted in [9] is used. Based
on this definition there are two components of SWB, affective and cognitive. The
cognitive component can be understood as a judgement of one’s life satisfaction,
whereas the affective dimension is represented by emotions and moods. The surplus
of positive emotions over negative ones is referred as happiness. Comprehensive
overviews of the issues defining SWB are provided for example in [7] or [10]. Both
outlined dimensions of SWB are reflected in the empirical analysis in this paper.

The individual material situation can be approximated by diverse variables,
both objective and subjective. The term “material situation” appears in the study
[4] where direct and indirect measures are discussed. Economic variables once
examined were mostly limited to the income [22]. Household’s income is the most
obvious indirect measure, but the evidence of the relation between the income and
SWB is mixed. Some authors stress the importance of the income for SWB whereas
others look it rather unimportant. The reviews of the evidence are provided eg. in
[7], [9] and [25]. Overall, researchers mostly suggest that money has a positive, yet
diminishing effect on SWB [11, p. 97], which is in line with the widely accepted
economic law of declining marginal utility.

Some studies (e.g. [9]) suggest that the relative, rather than the absolute,
income matters, as people simply tend to compare one to another. Clark et al.
[5] talk about the comparison to others and the comparison to oneself in the past.
Diener et al. [8, p.195] summarize that the impact of the income depends on
“changeable standards derived from expectancies, habituation levels, and social
comparisons”. It means that the additional income has no effect on SWB if the
income of people in the reference group also increase [11, p. 98]. With some
exemptions (e.g. [8]), the research is quite consistent in the assertion of importance
not to consider the effect of income to SWB only in absolute terms.

Material deprivation measures are used in poverty research since introduced in
[3] and [30]. It is commonly assumed that there is a close relationship between
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the income and the material deprivation as the lack of resources caused by the low
income results in the lack of something considered to be a necessity. However, the
research often suggest that the discrepancies between the income and the material
deprivation exist. Studies suggesting that there are low income households not
experiencing deprivation as well as households not living in poverty but suffering
from the deprivation (measured by non-monetary indicators) are summarized, for
example, in [32]. The authors provided reasoning why the income and the material
deprivation may relate loosely – the length of time the low income persists, the
existence of other resources (savings etc.), a different view of what is necessary, and
other social and economic processes may influence the relationship between current
income and deprivation. They made analysis of the income, the deprivation and
the economic strain based on data for twelve European Union countries from the
first wave of the European Community Household Panel Study (ECHP) conducted
in 1994 and found that the relationship of the income with the deprivation “was
generally weakest in the richer countries where the level of deprivation is lowest, and
strongest where it is highest” [32, p. 370] and the economic strain (the perceived
ability to make ends meet) is impacted by both the income and the deprivation
whereas the effect of the deprivation is stronger. The structure of the deprivation
is consistent across examined EU countries. Based on European Quality of Life
Survey (EQLS) data for EU25 plus 3 candidate states at that time (Romania,
Bulgaria and Turkey) [33] later confirmed the earlier finding that the relationship
between the income and the life style deprivation is relatively weak, whereas the
income plays more important role in the poorer regions as a predictor of deprivation.
The association between the deprivation and the economic strain is the strongest
in 12 richest EU countries whereas in all other EU regions is just a bit weaker.

3 Data and method

Learning the structures and the parameters is based on the empirical data from
European Quality of Life Study (hereinafter referred as “EQLS”) carried out by
the European Foundation for the Improvement of Living and Working Conditions
– Eurofound [19] covering all 27 EU member states and 7 non-EU countries. Third
edition of the survey conducted in Autumn/Winter 2011 is used for this purpose.
Only one interview per household was held whereas the adult household member
with the next upcoming birthday was taken as the eligible respondent. The sta-
tistical population of the study covered all persons aged 18 and over whose usual
place of residence was in the territory of the surveyed country. Random probabil-
ity sampling procedures were used promising that every member of the statistical
population have non-zero probability to be included in the sample. The sample was
stratified according to NUTS2, level of urbanization and clustered geographically
on Primary Sampling Units. The sample can hence be considered representative.
All necessary technical details how the study was conducted are available in EQLS
Technical report [18] and EQLS Sampling report [17].
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Probability models presented in this contribution are learnt using only data of
four post-communist central European countries (the Czech Republic, Hungary,
Poland and Slovakia). This approach promises to have a sufficient sample from
very similar countries in terms of culture, geography, politics, economics and mod-
ern history. Total sample size for the four countries is 5.298 (1,012 in the Czech
Republic, 1.024 in Hungary, 2.262 in Poland and 1.000 in Slovakia) respondents out
of whom 3.797 (722 in the Czech Republic, 687 in Hungary, 1.707 in Poland and
681in Slovakia) complete data vectors are extracted by removing respondents not
having answered the relevant questions. This selection of countries is represented
by the node COUNTRY in the model.

Broad range of domains is covered by EQLS including SWB and the financial
situation measures. There is no single question on SWB, there are questions on both
happiness and life satisfaction instead. For the happiness respondents are asked in
the following way: “Taking all things together on a scale of 1 to 10, how happy
would you say you are?” Code 1 means very unhappy and 10 means very happy on
the scale. The question of the overall satisfaction is: “All things considered, how
satisfied would you say you are with your life these days?” Similarly to happiness
the scale of 1 to 10 is given, where 1 means very dissatisfied and 10 means very
satisfied. Model variable of the subjective well-being (abbreviated as “AVGSWB”
in the model) is binary where one state represents SWB below the median and
the other state represents SWB on or above the median. For each respondent the
average of happiness and life satisfaction is computed first and then the median
is calculated from this working scale. Because SWB is a two-item measure, the
internal consistency was checked using Cronbach’s alpha. The value of alpha is
0.774 which is generally considered acceptable in the social research.

A set of seven variables is used for the description of the individual material
situation and the deprivation in the model. Household income, material depriva-
tion, defects in housing conditions and financial problems are the objective ones.
The subjective variables comprise the subjective economic strain and the relative
income approximated by the subjective evaluation of own current financial situa-
tion compared to other people in the country and by the subjective evaluation of
own current financial situation compared to own past situation. People are often
cautious stating their household income (total of 1.333 respondents out of the 5.298
did not declared their income). The respondents were asked to state their total net
income per month from all sources of all members of the household. The household
income equalized based on purchasing power parity euros is used for the analysis,
such a figure is provided in the EQLS dataset. The variable of income is binary
where one state covers the income up to the median (including) and the second
state the income above median.

EQLS respondents were asked whether they are able to afford six items if they
would like them to get. The six items include keeping your home adequately warm,
paying for a week’s annual holiday away from home (not staying with relatives),
replacing any worn-out furniture, having a meal with meat, chicken, fish every
second day (if wanted), buying new, rather than second-hand, clothes and having
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friends or family for a drink or meal at least once a month. Resulting six binary
variables (able to afford / unable to afford) are transformed into a single binary
variable, where one group of respondents can afford all six items and the other
group cannot afford one to six items. The respondents having refused to answer
the whole set of six sub-questions are excluded from the further analysis. This
variable of the material deprivation is abbreviated as “WANTED” in the model.

Financial problems in the form of the ability to pay various households bills
as scheduled in the past 12 months is another objective variable related to the
living conditions. The question on the financial problems has five sub-questions
covering payments that typical household needs to pay regularly: rent or mortgage
payments for accommodation, utility bills, such as electricity, water, gas, payments
related to consumer loans, including credit card overdrafts and payments related
to informal loans from friends or relatives not living in the household. Four binary
variable (able to pay bills as scheduled / unable to pay bills as scheduled) are trans-
formed into a single binary variable where one state means able to afford all four
items whereas the other state means unable to afford one to six items. Consistent
principle is adopted for those not answering questions. Excluded are those who
did not answer all the sub-questions. This variable of the financial problems is ab-
breviated as “UNABLEPAY” in the model. The last objective variable related to
the material living conditions describes defects in housing conditions. The related
EQLS question has six sub-questions on type of common deficiencies of housing:
shortage of space, rot in windows, doors or floors, damp or leaks in walls or roof,
lack of indoor flushing toilet, lack of bath or shower and lack of place to sit outside
(e.g. garden, balcony, terrace etc.). Single binary variable is again derived from
the six partial binaries (problem exists / problem does not exist) same way (one
category contains only respondents having no problems with housing and the other
contains respondents having one to six problems with housing, respondents having
refused all six items are excluded from the dataset). This variable of the housing
defects is abbreviated as “ACCOMP” in the model.

Subjective measures are based on the respondent’s subjective feeling of their
own situation rather than on the objective material living conditions. Broadly
speaking the relative income is the income compared with a defined standard given
by other incomes as perceived by the respondent. As discussed before the income
can be compared with own income in the past and the income of people in the
country, region or closer neighborhood. Same for the financial situation. The
EQLS question dealing with own financial situation compared with others is the
following: “Could you please evaluate the financial situation of your household?
In comparison to most people in your country would you say it is much worse,
somewhat worse, neither worse nor better, somewhat better or much better?” For
the purpose of modelling this 5-point scale is transformed into the 3-point scale
(worse, the same and better financial situation). The variable is hence ternary
and is abbreviated as “FINSITEVAL”. The EQLS question on comparison with
own past was posed this way: “When you compare the financial situation of your
household 12 months ago and now, would you say it has become better, worse or
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remained the same?” The ternary variable is abbreviated as “PASTFIN” in the
model.

The perceived economic strain is covered by the following EQLS question:
“Thinking of your household’s total monthly income: is your household able to
make ends meet very easily, easily, fairly easily, with some difficulty, with difficulty
or with great difficulty?” This 6-point scale is transformed to only two categories
of those able to make ends meet easily and those able to make ends meet with
difficulty. The transformed variable used for modelling is abbreviated as “MEE-
TENDS”.

The model in the form of Bayesian network is constructed using the above out-
lined data. The expertise gained from the existing literature review is used to estab-
lish the structure of the model, whereas parameters are learnt using EQLS data as
described above. To evaluate the predictive accuracy of the expert model two more
benchmark models are constructed using different structure learning approaches:
a greedy algorithm and the optimal Gobnilp algorithm [6]. To summarize, in this
empirical study, following models are considered:

• Greedy-BIC – structure learnt with the greedy search-and-score algorithm
with the BIC scoring criterion.

• Gobnilp-BIC – structure learnt using the Gobnilp algorithm with the BIC
scoring criterion.

• Expert -– structure learnt using expert knowledge.

he structural learning of the Greedy-BIC model is performed in the analytic soft-
ware Hugin [23], parameters of all models are learnt in Hugin as well. Structure of
the Gobnilp-BIC model is learnt using Gobnilp software [6]. Gobnilp-BIC model
is optimal in terms of the BIC criterion.

4 Model and discussion

In Figure 1 we present the suggested Bayesian network which represents the re-
lations among SWB and the variables approximating the material situation of an
individual. The variable referred as COUNTRY represents the country the re-
spondent come from. Figure 1 Bayesian network structure (expert version). The
suggested model is examined from the perspective of conditional independencies
and the ability to predict SWB based on the given material situation variables.
Expert argumentation for the relations between the nodes is summarized with the
special respect to SWB.

4.1 4.1. Variables directly linked to SWB

SWB is directly linked with the relative income expressed as both the income
relative to own past (represented by the node PASTFIN) and the income relative
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Figure 1: Bayesian network structure (expert version)

to the other people in the country (represented by the node FINSITEVAL). The
two expressions of the relative income are also directly linked. As seen before, the
direct link between SWB and the relative income can be traced to the literature,
for example [5] and [8]. Simply said, people are unhappy and unsatisfied when
feeling their material situation get worse comparing to either what was before or
what others have. The measures are both subjective. SWB is also directly linked
with the material deprivation (represented by the node WANTED). This direct
link can also be supported by the literature, for example [1]. Basically SWB drops
down if one hunger after something that cannot be afforded. The last variable
directly linked with SWB is perceived economic strain (represented by the node
MEETENDS). The evidence for the direct link can again be found in the literature,
for example [26] and [12]. Common sense reasoning is that SWB is reduced in case
a household is unable to make ends meet. The direct link between the economic
strain and the material deprivation can be supported by the literature too, where
[32] and [33] stand as examples. Inability to make ends meet in essence corresponds
directly with the impossibility to afford things desired. Similarly, the subjective
assessment of own financial situation compared to most people in the country is
linked with the material deprivation – people are deprived as they cannot afford
things they think other people in the country mostly can. To summarize, SWB is
directly linked with all other subjective measures in the model (there is no other
subjective measure in the model). The only objective measure directly linked with
SWB is the material deprivation. These five interconnected variables constitutes a
sort of cluster within the network.
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4.2 WB and income and country

Two variables are d-separated from SWB in the model – the country and the in-
come. It means that if we know nothing else, SWB is independent of the country
and the income. It can be easily argued that the household’s income in absolute
terms is linked with the country in which the household resides. It is not that
apparent from the perspective of the four examined countries, but it is clear glob-
ally. Independence of SWB and the country means the level of SWB cannot simply
imply the characteristics of a given country and vice versa. For example, we can-
not conclude that people living in the rich countries are automatically happier and
more satisfied with their lives than those living in the poor countries although the
common sense might suggest otherwise.

Modern economic discussion on the relations between the level of SWB and
the economic performance of a country as well as household’s level of incomes was
launched by Richard Easterlin [13]. Based on the empirical evidence he proposed,
that there is a noticeable positive association of the income with the happiness
within a given country. But the picture is quite different from the international
perspective; the reported level of happiness on average was not associated with
national income per head. At least in countries, where the income per head is
sufficient to cover basic needs1. Shortly, people in a rich country are not on average
happier than people in a poor country (given that basic needs are met), but within a
given country the income and the reported happiness are associated. Furthermore,
according to the Easterlin, there is no correlation between the increase in national
product per person and the increase in the average reported happiness over the
long-term. Twenty years later Easterlin [14] reacted to the criticism of his research
(e.g. [31]) and refined his original conclusion. This refinement is that raising the
incomes of all people in the society does not increase the happiness of all, because,
so-called, “material norms” increase in the same proportion as the income of the
society. When the country becomes richer, higher level of income becomes normal –
although the absolute income is higher, the relative income remains the same. This
Easterlin’s arguments are in essence in line with the conclusions of the importance
of the relative income explored above. Once again Easterlin [16] confirmed his
paradox on updated dataset and stressed that the happiness and the economic
performance are not related only in long term, while short term fluctuations of the
happiness and the national income are positively associated. Because of confusion
the short and long term trends, some authors may suggest the positive relation of
SWB and GDP in long term too. There are many studies confirming (e.g. [2])
and disputing Easterlin’s conclusion (e.g. [21], [31]) and the debate is certainly not
over.

1His conclusion was later nicknamed Easterlin paradox.
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4.3 Variables intermediating SWB and income

Based on the suggested graph SWB and the country are d-connected when other
information is available; information of either relative income or material depri-
vation or perceived economic strain. The importance of the relative income as a
mediator between SWB and the economic performance of the country has just been
discussed. If the relative income is known, the conclusion on the country can theo-
retically be drawn from the level of SWB and vice versa. Still, this conclusion can
be reached rather in case of more different countries than the four examined central
European ones2. The perceived economic strain as well as the material deprivation
could be contemplated in the same way as mediators. Both variables were exam-
ined in the EU-wide context by [20], who suggest that these measures should be
employed as indicators for certain purposes rather than the income as they provide
better information that pure income thresholds in situation of inequality in the
income between the EU member states.

The important feature of the model is that the absolute level of the income
is treated as conditionally independent of SWB and the knowledge of mediating
factors is needed since SWB and the income are d-separated (given an empty set). It
is a sort of the model assumption, as immense amount of studies confirming that the
income and SWB of an individual are associated can be found as already discussed.
Still, newer research tend to understand the income rather as indirect measure (e.g.
[4]). Relative income, perceived economic strain and material deprivation are the
suggested mediators between the income and SWB in the Bayesian network. If we
know one of them, the link from the income to SWB is unblocked. Direct links
from the income to all of the three mediating variables can be well argued.

In case of higher current level of the income the probability of the subjective
evaluation of own income compared to others increases. (Absolute income is not
directly linked with the relative income compared to past, the way goes through
the node FINISTEVAL. It means the knowledge of the income is not necessary to
conclude on the relative income compared to past). Similarly higher income can be
directly associated with lower perceived economic strain (making ends meet is more
probable) as well as with less material deprivation (affordability of things wanted
is more probable). Same the other direction. It is assumed that the income and
SWB is independent, but if we know how this income is perceived relative to other
people in the community, we can conclude on SWB and vice versa. Similarly, with
the knowledge of the material deprivation or the perceived economic strain we can
conclude on SWB from the income. For example high income leading to the ability
to afford things wanted leads us to conclude on good level of SWB. On the other
hand the same level of the income can be insufficient to afford things wanted for
another household which will lead to dissatisfaction as they become deprived. We
must have such information to conclude on SWB from the income.

2For example, such a conclusion can be made in case of comparison the Czech Republic with
Bhutan, a poor Buddhists country known for their extraordinary nation-wide approach of pursuing
happiness.
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This is confirmed by the literature concerning on material aspirations. Based
on [15] the material aspirations increase together with the income over the life
course, whereas SWB, generally, rises with the income, but inversely with the
material aspirations. The rise of the income causes the rise of SWB on the one
hand, but also the rise of the material aspirations on the other hand. The rise
of the material aspirations affects negatively SWB and erase the positive effect
of the income. People tend to want more and more throughout the life, which
negatively affects their SWB (SWB would otherwise gain from the increase of the
income). Similarly [29] empirically tested the effect of the income aspirations on
people’s utility operationalized as reported satisfaction with life. He founds that,
ceteris paribus, higher income aspirations reduce people’s utility measured by the
satisfaction with life. The author offers two explanations for that: processes of
adaptation and social comparison. Firstly, the increase of the income initially
provide additional pleasure at the beginning, but the effect disappear as people get
used to the new income level. Secondly, the relative income position rather than
absolute level of the income matters, because people tend to compare themselves
with others in the community. Stutzer talks about “socially comparative or even
competitive processes in consumption” [29, p.3]. This view is in line with previously
referred Easterlin paradox, because people in a rich country are adapted to their
material standards and simple fact that they are richer than people in a poor
country cannot make them happier. People in the poor country have their own
standards they are adapted to. To conclude on the material aspirations, [28] found
the negative relationship of life-satisfaction with materialism (which could be seen
as individual orientation to possession and acquisition). Materialistically oriented
people were less satisfied with their lives as a whole, with their standard of living,
family lives and other life domains than those low in materialism.

The literature hence confirmed that it is important to know whether the income
is sufficient for the ability of afford desired thing in order to conclude on SWB. Logic
is the similar in case of the perceived economic strain. The income sufficient to
safely make ends meet probably promotes the higher level of SWB, still, the other
household may not be able to manage to make ends meet with the income in the
same amount.

4.4 Other variables

Only variables examined so far and no other variables are in the Markov blanket3

of the node SWB, the two of them (income and country) are d-separated given the
empty set and the rest is d-connected (given the empty set). If we know the states
of them, no other information is necessary to conclude on SWB. The two other
variables remains outside the Markov blanket: financial problems (UNABLEPAY)
and housing defects (ACCOMP). They are both associated with SWB, but having

3The Markov blanket of a variable A is the set consisting of the parents of A, the children
of A, and the variables sharing a child with A. If all variables in the Markov blanket for A are
instantiated, then A is d-separated from the rest of the network [24, p. 11].
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the information of either relative income or perceived economic strain or material
deprivation, information of the financial problems (and the housing defects) are
not necessary. If a household does not feel economically strained (or feels their
situation is relatively good or can afford what they otherwise want), the SWB of
that household might be good even if it has problems paying bills in arrears. On
the contrary, if there are no problems paying bills, but members of the household
feel deprived, economically strained and bad in terms of their situation compared
to others, their SWB will probably be worsen. Still, if we have no other knowledge,
information on financial problems is relevant in terms of SWB prediction.

Other links in the model can be explained in similar way and analyzed further.
For example the income is directly linked with financial problems – having less
income may affect the ability to pay bills if households has no savings. The last
comment belongs to the node of housing defects, which seems to stay a bit apart
from the heart of the network as it is linked with the rest of the network only via
the node of financial problems. This variable covers, inter alia, the problems with
payments of rents, mortgages, utility bills etc. It could hence be expected that the
inability to pay such bills is also connected with housing defects (household has to
move to a smaller apartment of a lower standard).

4.5 Prediction of SWB

We perform an evaluation of the prediction accuracy of the expert model and
compare it with two learning algorithm approaches. The prediction accuracy is
tested using the R software [27]. The adopted approach uses 75% of the available
dataset as training data to learn the parameters of the model whereas the obtained
predictions of SWB are compared with the true state of SWB on remaining 25%
observations in the second step. Ten rounds of such tests were performed. The
average accuracy of the expert model in predicting SWB is 66.83% (95% confidence
interval 65,87% to 67,78%), which is significantly different from no information rate
of 55.16%.

The prediction accuracy of the expert model is compared with the other two
models presented in Figures 2 and 3. The SWB prediction accuracy of the Greedy-
BIC model learnt with Hugin [23] is 67.01% (the 95% confidence interval is from
66.05% to 67.95%). In case of the Gobnilp-BIC model learnt with GOBNILP
software [6] the prediction accuracy of SWB is 67.00% (the 95% confidence interval
is from 66.04% to 67.94%). This third model is optimal with respect to the Bayesian
Information Criterion (BIC) and it has its BIC equal to -24390.4 while Greedy-
BIC model reached BIC of -24391.2. The expert model is worst out of the three
suggested model with BIC equal to -24754.2. The two machine learnt models
are almost identical in terms of the predictive accuracy as well as BIC, where
the Gobnilp-BIC model seems to be only marginally better as suggested by both
measures.

Although expert model is the weakest in terms of BIC and the predictive ac-
curacy, it does not significantly differ from the other two models learnt from data.
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Figure 2: Bayesian network structure (Greedy-BIC version)

Figure 3: Bayesian network structure (Gobnilp-BIC version)
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The expert version is worth considering, because it represents relations and con-
ditional independencies of SWB and factors related to material conditions known
from the social research made so far probably better that the other two models.
The key difference between the expert version and the other two models is the
conditional independence of the income and SWB as well as the country and SWB.
The key feature of the expert version is that the income (the country) and SWB are
conditionally independent (given the empty set) as explained earlier, whereas the
income and SWB as well as country and SWB are d-connected in the benchmark
models.

5 Concluding remarks

This contribution is an attempt to employ Bayesian networks in a research of
sociological topics such as SWB. To the knowledge of the authors the Bayesian
network approach has not yet been adopted in the way described in this paper.
However, as such, it should be understood as a first step of a longer journey.

For the analysis, the EQLS data of four Central European countries collected
in 2011 are used with the argument of the similarity of these countries from several
points of view. The model hence reflects the situation in these post-communist
countries and a care should be taken when using it in different context. Recently,
newer data were made available4, there is hence a room for updating and a further
exploration.

Expert model, as well as the other two models, are able to predict SWB based on
material living conditions and deprivation considering that these factors constitute
only a small part of the whole picture. Immense number of studies is available on
SWB and how it is associated with the factors related to demography, aspirations,
expectations, personality, social relations and wider environment, where personality
traits seems to matter in long term, while life events play the role rather in short
term. Most of the factors we examined falls into the latter category, whereas
the subjective opinion of material living standards and deprivation are certainly
impacted by the personality too. Other than material factors are not reflected in
the suggested network as they are too tangled to be described in their complexity.
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Abstract

Human sleep is traditionally classified into five (or six) stages. The manual
classification is time consuming since it requires knowledge of an extensive
set of rules from manuals and experienced experts. Therefore automatic
classification methods appear useful for this task. In this paper we extend
the approach based on Hidden Markov Models by relating certain features not
only to the current time slice but also to the previous one. Dynamic Bayesian
Networks that results from this generalization are thus capable of modeling
features related to state transitions. Experiments on real data revealed that
in this way we are able to increase the prediction accuracy.

1 Introduction

Human sleep occurs in cycles. Each cycle lasts approximately 90 minutes. Typi-
cally, there are four or five cycles per night. Traditionally, sleep stages are scored
into the following five stages of sleep: (W) Wakefulness, (REM) the stage named
after ”rapid eye movement” that occurs during this stage, and three Non-REM
stages named (N1), (N2), and (N3). In Figure 1 we present an example of a real
hypnogram from the dataset we used in our experiments.

Traditionally, a set of rules from a manual is used for sleep scoring. The rules
for sleep scoring were standardized by [5]. An up-to-date manual is provided by the
American Academy of Sleep Medicine, see [3]. However, it should be beneficent if
the scoring system is based on probabilistic principles rather than on a predefined
set of rules. Hidden Markov models (HMMs) can play this role.

In [4] the authors verify on synthetic data that Gaussian Observation HMMs
(GOHMMs) can detect the state transitions and are thus a model well-suited for
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Figure 1: An example of a hypnogram.

the EEG analysis.In [2] a probabilistic continuous sleep stager based on Hidden
Markov models is developed using only a single EEG signal. In the work of [1] an
automatic diagnosis system based on HMMs is proposed to help clinicians in the
diagnosis of sleep apnea syndrome.

In our paper we build on these works and use a generalization of HMMs –
Dynamic Bayesian networks. This allows us to properly include features related to
hidden states of two consecutive stages into the model. We used one such feature
from our dataset – Arousal, which appears typically when a transition between
sleep stages occurs. We will see that already treating a single feature properly (in
a DBN model) helps us to significantly increase the prediction accuracy.

In this paper, first, we discuss probabilistic models suitable for the sleep clas-
sification task. We start with two versions of the Naive Bayes (NB) model in
Section 2. In Section 3 we extend the NB model in two steps. First, the time fac-
tor is included into the model by considering the transition probabilities between
sleep stages – in this way we get Hidden Markov Models (HMMs). Second, the
HMMs are generalized by relaxing the Markov property. HMMs are generalized to
Dynamic Bayesian Networks (DBNs) by including features related to transitions
between two consecutive stages. We conclude the paper by experimental evaluation
of the considered probabilistic models (in Section 4), by a summarizing our results,
and by a discussion of possible future work (in Section 5).

2 Naive Bayes models

Probabilistic models offer an advantage of being objective by not relying on human
scorers and being based on solid probabilistic principles rather than a predefined
set of rules. A Naive Bayes (NB) model is an example of a simple probabilistic
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model. It is a Bayesian network model that builds on the assumption of conditional
independence of observed features given the state (class) variable. In the context of
sleep analysis, it means that the observed attributes are assumed to be independent
given the sleep stage. The model is static in the sense that features observed in
time t are relevant for the classification of the sleep at time t only.

In Figure 2 we present an example of a Naive Bayes model. Variable Y rep-
resents the sleep stage at a given time t and variables X1, . . . , X5 are features.
Examples of features used in the sleep analysis are:

• the spectral density at given frequency ranges of the Electro Encephalogram
(EEG) signal,

• Electro Oculogram (EOG), which identifies eye movements,

• Electro Myogram (EMG), which identifies muscle activity,

• Central Sleep Apnea,

• Snoring, etc.

Most of these features are continuous variables (in figures displayed as double
circles) and some of them are discrete – often binary (in figures displayed as single
circles).

X5X4X3X2X1

Y

Figure 2: The structure of the Naive Bayes Model for clock time t.

For continuous features X a natural model for the conditional density P (X =
x|Y = y) seems to be the Conditional Gaussian distribution N (µy, σy) where µy

and σy are the mean and the standard deviation of feature X given the value y of
parent variable Y . At the top of Figure 3 we can see the Gaussian density estimates
for the delta power spectral density learned from real data.

In the experiments (reported in Section 4) it appeared that the CGDs did not
lead to a good prediction accuracy. A better option appeared to be the Kernel
Density Functions (KDFs) that can better fit the actual shape of the conditional
density functions. At the bottom of Figure 3 we can see the KDFs for the delta
power spectral density learned from real data. The density shape for the sleep
class N3 seems surprising complex (two maxima) but KDFs lead to a significant
improvement of accuracy on testing data (i.e. it does not seem to be an overfitting
effect).
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Figure 3: Gaussian density estimates (top) and Kernel Density Functions (bottom)
for the delta power spectral density.

3 From Hidden Markov Models to Dynamic Bayesian
Networks

At each clock time t, a Hidden Markov Model (HMM) consists of:

• an unobserved state variable Yt taking a finite number of states. In the sleep
analysis the unobserved variable will be the sleep stage and it will take states
Y = {Wake,N1, N2, N3, REM} and

• a set of observed variables Xi,t, i = 1, . . . , k (e.g., the spectral density at a
given frequency range of the EEG signal).

A new state yt+1 is entered based upon a transition probability distribution P (Yt+1 =
y′|Yt = y) for y, y′ ∈ Y which depends on the previous state Yt (this is called the
Markovian property). This allows to exploit the probabilistic dependence of suc-
cessive sleep stages. Transitions between some of the sleep stages are much more
likely than between others. For example, a transition from stage “wake” (W) di-
rectly to stage “deep sleep” (N3) is quite unlikely. After each transition is made,
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an observation x is produced according to a conditional probability distribution
P (Xi,t+1 = x|Yt+1 = y) which depends on the current state y of Yt+1 only. In
Figure 4 we present and example of a structure of the two consecutive stages of a
Hidden Markov Model.

X5X4X3X2X1

Y Y_1

X5_1X4_1X3_1X2_1X1_1

Figure 4: The structure of two consecutive stages of a Hidden Markov Model.

The conditional probability distributions P (Xt+1 = x|Yt+1 = y) are assumed to
be stationary (i.e., they do not depend on time t) and can be defined (and learned)
in the same way as the conditional probability distributions of the NB model as
discussed in Section 2. We used the CDFs due to their better performance in the
experiments on real data. The transition probability distribution P (Yt+1 = y′|Yt =
y) is discrete and it is also assumed to be stationary. It is easily estimated from
training data by normalizing the corresponding contingency table.

As we will see in the Section 4 the HMMs perform better than NB models.
However, we conjectured that there is still a room for additional improvement since
some of the features should not be treated as dependent on the current state only
but also on the previous state. This is because some features are witnesses of state
transitions. Therefore we include the model binary variables Zj,t+1 that depend
on state variables Yt+1 and Yt. These distributions are again assumed to be sta-
tionary. They are estimated from training data by normalizing the corresponding
contingency table.

naive-bayes

Thu May 03 11:31:26 CEST 2018

Y_1

X1_1 X2_1 X3_1 X4_1 X5_1X5X4X3X2X1

Y

Z1_1 Z2_1

Figure 5: The structure of two consecutive stages of a Dynamic Bayesian Network.

In Figure 5 we present an example of a structure of the two consecutive stages
of a Dynamic Bayesian Network. There are two state transition witness features –
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denoted Z1 and Z2 in the figure. We will refer to them as transition features. Note
that the Markovian property does not hold any more since the values of features
Xi,t+1 are not independent of the past given the current state of Yt+1. We can see
that if a transition feature Zj,t+1 is known a path from the past gets open.

The probabilistic inference in these DBN is very similar to the standard in-
ference in the HMMs, where the Viterbi algorithm [6] is used. The difference is
that in each time step we modify the transition matrix representing transition
probability distribution P (Yt+1|Yt) by multiplying it by a probability potential
P (Zj,t+1 = zj,t+1|Yt+1, Yt) where zj,t+1 is the state of the transition feature ob-
served at time t + 1. We do this multiplication for each transition feature. The
computational process in time slice t is completed (as it is also done in the standard
Viterbi algorithm) by selecting the most probable state yt for each state yt+1 and
by normalizing the distribution over the states of Yt+1. Then a backward pass is
performed to find a most probable configuration of state variables. See Algorithm 1.

Input: A DBN defined by the conditional probability distributions
P (Yt+1|Yt), P (Zj,t+1|Yt+1, Yt), P (Xi,t+1|Yt+1), and P (Y1),
feature evidence:
- xi,t for features Xi,t, i = 1, . . . , nX , t = 1, . . . , N , and
- zj,t for transition features Zj,t, j = 1, . . . , nZ , t = 2, . . . , N .

Output: The most probable state values yt for t = 1, . . . , N
S1 ← P (Y1) ·∏i P (Xi,1 = xi,1|Y1) ;
for t← 2 to N do

for y ∈ Y do
R← St−1 · P (Zj,t = zj,t|Yt = y, Yt−1) · P (Yt = y|Yt−1)
·P (Xi,t = xi,t|Yt = y);
Tt(y)← arg maxy′∈Y R(y′);
St(y)← maxy′∈Y R(y′);

end

St ←
St∑

y′ St(y′)
;

end
yN ← arg maxy∈Y SN (y);
for t← N to 2 do

yt−1 ← Tt(yt);
end

Algorithm 1: The inference algorithm for solving the sleep analysis DBN

4 Experiments

We learned our models on a training dataset that consisted of 37 hypnograms.
The models were tested on a (testing) dataset that also consisted of 37 (different)
hypnograms. Altogether we used 46 features. In the DBN model we used the
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Arousal feature as the transition feature while in all other models it was treated
as a standard feature related to the current state only. The results of experiments
are summarized in Table 1 where the methods are presented in the ascending order
given by their accuracy.

Table 1: The average accuracy of the tested methods on testing data.

Method Accuracy
No Information Rate 41.57%
Naive Bayes with CGDs 49.13%
Philips Respironics 57.43%
Naive Bayes with KDFs 65.06%
Hidden Markov Model 65.71%
Dynamic Bayesian Network 67.02%

In Figure 6 we compare the accuracy of the proposed methods on the testing
dataset. Each point in the plot corresponds to one hypnogram from the testing
dataset. To see whether the methods differ significantly we performed the Wilcoxon
signed rank test for the pairs of methods results presented in Figure 6. We can
conclude that:

• The NB model with Kernel Density Functions achieved significantly better
accuracy than the NB model with Conditional Gaussian Distributions with
the p-value = 5.093e-10

• Hidden Markov Models achieved significantly better accuracy than the NB
model with Kernel Density Functions with the p-value = 7.577e-05.

• DBNs achieved significantly better accuracy than HMMs with the p-value =
1.533e-05.

• DBNs achieved significantly better accuracy than Philips Respironics with
the p-value = 0.001416

See Figure 7 for the comparisons of the hypnograms predicted by tested methods
with the expert for a selected hypnogram of one person. Though, the predicted
hypnograms may look very similar, at a closer look, we can see differences that
imply different accuracy on the testing dataset. For example, if we have a look at
the first two hours of the patient’s sleep we can see that the HMM and DBN leads to
less oscillations than NB. The DBN further improves the fit by widening the third
period of the N2 sleep stage. The DBN also further reduces some oscillations in the
latter periods of the sleep. The accuracy for this patient hypnogram was: 77.13%
(for NB), 77.53% (for HMM), and 79.98% (for DBN). The Philips Respitronics has
the accuracy of 52.50% for this patient.
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Figure 6: Comparisons of the methods’ accuracy on real data.
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Figure 7: Comparisons of the predicted hypnograms with the expert hypnogram
for one selected patient.
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5 Conclusions and Future Work

In the problem of the classification of sleep stages Hidden Markov models and
Dynamic Bayesian networks have achieved a better accuracy. They also better
filter oscillations in hypnograms than Naive Bayes models. It is because they take
into their consideration the sleep stage in the previous time step which is closely
related to the sleep stage in the current time step. Using the Arousal feature
we have demonstrated that the implementation of transition-related features in
a Dynamic Bayesian Network helps to further improve the predictions accuracy.
Other candidate features of this type are spindles, K-complexes, etc. These were
not available in our dataset.

A model we did not use in our experiments but with which we would also like to
compare in our future work is a Recurrent Neural Network. We also may consider
to include time factors into our models - as are the time spent in a sleep stage and
the total time spent in a sleep.

Another future goal is to use the proposed methods for automatic detection of
sleep related disorders, which is of great interest of medical doctors. Yet another
interesting research direction might be opened by lifting the assumption of five
predefined sleep stages and by considering the variable representing the sleep stages
as a truly hidden variable with an unknown number of states.
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Abstract

A number of stochastic models for modeling time series data can be found
in the literature. Among them models based on Log-normal distribution are
more traditional, while models using Johnson SB or Johnson SU distributions
were introduced recently. We present basic properties of the above-mentioned
distributions and discuss their usability to model economic data. Data con-
cerning the wages of more than two million Czech employees collected for
more than twenty years are used for the comparison.

1 Introduction

Statistical analysis of the development of the wage and income distribution is a
crucial precondition for economic modeling of the labour market processes. One
of the most discussed characteristics of the wage distribution is the average wage.
There is an ongoing debate about the suitability of the average as a measure of
the wage level. There are proposals to replace the average by median, and/or to
consider additional characteristics like variability or percentiles. In our opinion, it
is necessary to work with the entire wage distribution.

If the wage distribution is more or less ”smooth”, it can be adequately modeled
with the aid of a suitable theoretic (continuous) distribution, such as a log-normal
one ([2]). But as shown e.g. in ([3]), as far as wages are concerned, the log-normal
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distribution is not the best-fitting one and this distribution is most often used
mainly because of its convenient theoretical qualities. Following this argument,
we present an empirical comparison of the log-normal distribution and log-logistic
distribution with Johnson SB and Johnson SU distributions.

2 Used distributions

2.1 Log-normal Distribution

Log-normal distribution (sometimes also called Galton distribution) is a continu-
ous probability distribution of a random variable whose logarithm is normally dis-
tributed. The formula (1) represents the density of a three-parameter log-normal
distribution: here µ is the location parameter and σ is the scale parameter (σ > 0)
for the normally distributed logarithm ln(X).

p(x) =
1

(x− γ)σ
√

2π
× exp

[
− (ln(x− γ)− µ)

2

2σ2

]
, x ≥ 0 (1)

If γ = 0 then the three-parameter log-normal distribution changes into two-parameter
one, as shown in formula (2).

p(x) =
1

xσ
√

2π
× exp

[
− (ln(x)− µ)

2

2σ2

]
, x ≥ 0 (2)

2.2 Log-logistic Distribution

Log-logistic distribution is the probability distribution of a random variable whose
logarithm has a logistic distribution. The formula (3) represents the density of
this distribution: here γ is the location parameter (γ = 0 yields a two-parameter
distribution) and α is shape parameter (α > 0) and β is scale parameter (β > 0).

p(x) =
α

β

(
x− γ
β

)α−1(
1 +

(
x− γ
β

)α)−2
(3)

2.3 Johnson Distribution

Johnson distributions [1] are based on a transformation of the standard normal
variable. Given a continuous random variable X whose distribution is unknown
and is to be approximated, Johnson proposed three normalizing transformations
having the general form:

Z = γ + δf

(
X − µ
σ

)
(4)
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where f(.) denotes the transformation function, Z is a standard normal random
variable, γ and δ are shape parameters, σ is a scale parameter and µ is a location
parameter. Without loss of generality, it is assumed that δ > 0 and σ > 0. Johnson
distributions include three forms: log-normal, bounded and unbounded.

The most simple transformation defines the log-normal system of distributions
denoted by SL

Z = γ + δ ln

(
X − µ
σ

)
, X > Θ (5)

The bounded system of distributions SB is defined by

Z = γ + δ ln

(
X − µ

µ+ σ −X

)
, µ < X < µ+ σ (6)

SB curves cover bounded distributions. The distributions can be bounded on the
lower end, the upper end or both ends. This family covers Gamma distributions,
Beta distributions and many others.

The unbounded system of distributions SU is defined by

Z = γ + δ ln





(
X − µ
σ

)
+

[(
X − µ
σ

)2

+ 1

]1/2
 , −∞ < X <∞ (7)

The SU curves are unbounded and cover the t and normal distributions, among
others.

Using the fact that, after the transformation in (4), Z follows standard normal
distribution, the probability density function p(y) of each of the family in the
Johnson system can be derived. IfX follows the Johnson distribution and Y = X−µ

σ
then, for SL family,

p(y) =
δ√
2π
× 1

y
× exp

[
−1

2
(γ + δ ln (y))

2

]
µ < x <∞ (8)

similarly, for the SB family,

p(y) =
δ√
2π
× 1− y

y
× exp

[
−1

2

(
γ + δ ln

(
y

1− y

))2
]
µ < x < µ+ σ (9)

and for the SU family,

p(y) =
δ√
2π
× 1√

y2 + 1
×exp

[
−1

2

(
γ + δ ln

(
y +

√
y2 + 1

))]
−∞ < x <∞ (10)
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In general, the the probability density function of X is given by

p(x) =
δ√
2π
× f ′

(
x− µ
σ

)
× exp

[
−1

2

(
γ + δf

(
x− µ
σ

))2
]
x ∈ G (11)

where

f ′(y) =





1
y , for the SL family

1
y(1−y) , for the SB family

1√
y2+1

, for the SU family

(12)

and

f(y) =





ln(y), for the SL family

ln
(

y
1−y

)
, for the SB family

ln
(
y +

√
y2 + 1

)
, for the SU family

(13)

The support G of the distribution is:

G =





〈µ;∞) , for the SL family

〈µ;µ+ σ〉 , for the SB family

(−∞;∞), for the SU family

(14)

3 Modeling wage distributions

3.1 Used data

We work with time series of wages in Czech Republic over the years 1995 - 2017. The
annual data are reported in quarterly units; our study observes the average wages
in the second quarter of each year. The scope of the data set on which the analyses
were carried out was gradually increased from more than 300,000 observations in
1995 to more than two million in 2017. This data is structured in a very detailed
way. The wage values are divided into intervals with widths of 500 CZK. Such
a detailed structure enables us to achieve quite accurate results. We have basic
characteristics of wages in the entire period at our disposal. The analysis was aimed
at creating a model for probability distribution of wages (estimating the parameters
of the probability density). We used only the data for the years 2015-2017 in the
experiments. Table 1 shows basic characteristics of the data, all numbers except
the sample size are in Czech crowns (CZK).

3.2 Parameter estimation

We used the SAS system and EasyFit program for computations. Figures (Fig.
1), (Fig. 2), (Fig. 3) and (Fig. 4) show the fit of the distributions on data
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characteristics year 2015 year 2016 year 2017
sample size 2 098 854 2 119 396 2 185 573

average wage 26 369 27 668 29 166
standard deviation 19 903 20 478 20 749

10th percentile 12 978 13 944 14 982
lower quartile 17 290 18 391 19 547

median 22 658 23 757 25 135
upper quartile 29 566 30 963 32 610
90th percentile 40 162 42 026 44 334

modus 8 635 9 275 10 296

Table 1: Basic characteristics of the used data

from the year 2015. We also performed the Kolmogorov-Smirnov test to assess
the quality of the model. We tested the null hypothesis ”H0: the data follow the
specified distribution” against the alternative hypothesis ”H1: the data do not
follow the specified distribution” Table 2 gives the results of this test in terms of
the Kolmogorov-Smirnov statistics and the rank of the model (in both cases, the
lower is the value the better is the model).

distribution year 2015 year 2016 year 2017
statistics rank statistics rank statistics rank

2 par. log-normal 0,03808 3 0,03877 3 0,03949 3
3 par. log-normal 0,03739 2 0,03809 2 0,03886 2

log-logistic 0,01839 1 0,01667 1 0,01732 1
Johnson SB 0,06982 4 0,06605 4 0,0621 4

Table 2: Results of the Kolmogorov-Smirnov test

4 Conclusions

The aim of the analysis was to compare several models of probability distribution
of wags in Czech Republic. The experiments show that the best model is the log-
logistic distribution with three parameters. This confirms the previously achieved
results ([4]). Anyway, as the wage variability grows over the years and empirical
density’s curves became less smooth, mixture models have potential to provide
better models of wage distributions in the future. And good models that are able
to make good predictions of the future wage distributions are necessary for various
socio-economic considerations.
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Figure 1: Two parameters log-normal distribution for wages from the year 2015.
Here µ = 10, 032 and σ = 0, 43343.

Figure 2: Three parameters log-normal distribution for wages from the year 2015.
Here µ = 10, 02, σ = 0, 43841 and γ = 250.
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Figure 3: Log-logisic distribution for wages from the year 2015.

Figure 4: Johnson SB distribution for wages from the year 2015. Here µ = 9818, 9,
σ = 1, 8883E + 5, γ = 3, 1927 and δ = 1, 1751.
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