Continuous SSB Representation of Preferences

M. Pištěk

ÚTIA, Czech Academy of Sciences, Pod Vodárenskou věží 4, 182 08, Prague 8, Czech Republic, pistek@utia.cas.cz

The theory of skew-symmetric bilinear (SSB) representation of preferences is a concise mathematical model of non-transitive decision making that has been developed in a purely algebraic setting [4, 3, 6]. Thus, the existence of a maximal preferred element in infinite-dimensional case is in jeopardy. We resolve this issue by assuming (topological) continuity of preferences.

Let P be a non-empty convex subset of a topological vector space, \succ be a binary relation on P, and \sim and \succeq be indifference and preference-orindifference relations defined in the standard way. The closure of $Q \subset P$ is denoted \overline{Q} . The *inverse* relation to \succ is defined as $\{(p,q) \in P \times P : q \succ p\}$. Relation \succ is *coherent* (with topology of P) if $\overline{\{q \in P : q \succ p\}} = \{q \in P : q \succeq p\}$ $p\}$ for all $p \in P$ such that $\{q \in P : q \succ p\} \neq \emptyset$. A coherent relation \succ is *upper semi-Fishburn* if $\{q \in P : q \succ p\}$ is convex for all $p \in P$.

Theorem 1. If P is, moreover, compact, and \succ is an upper semi-Fishburn relation on P, then there exists a maximal element of P w.r.t. \succ .

A binary relation is *lower semi-Fishburn* if its inverse is upper semi-Fishburn; a *Fishburn* relation is lower and upper semi-Fishburn. A binary relation \succ is *balanced* if for all $p, q, r \in P$ and $0 < \lambda < 1$, it holds that $q \sim \frac{1}{2}p + \frac{1}{2}r$ and $\lambda p + (1 - \lambda)r \sim \frac{1}{2}p + \frac{1}{2}q$ implies $\lambda r + (1 - \lambda)p \sim \frac{1}{2}r + \frac{1}{2}q$.

Theorem 2. A binary relation \succ on P is a balanced Fishburn relation iff there exists a continuous SSB functional Φ on $P \times P$ such that for all $p, q \in P, p \succ q \Leftrightarrow \Phi(p,q) > 0.$

Denote by $\mathscr{P}(X)$ the set of all (regular Borel) probabilistic measures on X, equipped with weak topology¹. The following result stems from Theorem 1 and Theorem 2.

¹Or, more precisely, weak^{*} topology in the sense of functional analysis, see [1].

Theorem 3. For a balanced Fishburn relation \succ defined on a compact Hausdorff space X, and a continuous SSB representation ϕ of \succ , we define relation > on $\mathscr{P}(X)$ by

$$p > q$$
 iff $\int_{X \times X} \phi(x, y) dp(x) dq(y) > 0.$

Then, for a closed and convex set $K \subset \mathscr{P}(X)$ there exists $p \in K$ such that $p \ge q$ for all $q \in K$.

By stating the above theorem for $P = \mathscr{P}(X)$, the assumptions about relation > on $P \setminus \mathscr{P}(X)$ may be omitted, c.f. [2, Theorem 5]². Moreover, we have shown the existence of a maximally preferred measure for any closed and convex subset of $\mathscr{P}(X)$. Thus we have generalized [2, Theorem 5] in these two aspects.

Acknowledgement

This research has been supported by grant GA17-08182S of the Czech Science Foundation. The author is grateful to F. Brandl and T. Kroupa for valuable discussions of this topic.

References

- N. Dunford and J. Schwartz. *Linear Operators: General theory*. Pure and applied mathematics. Interscience Publishers, 1958.
- [2] P. C. Fishburn. Dominance in SSB utility theory. Journal of Economic Theory, 34(1):130–148, 1984.
- [3] P. C. Fishburn. Nonlinear Preference and Utility Theory. The Johns Hopkins University Press, 1988.
- [4] G. Kreweras. Sur une possibilite de rationaliser les intransitivites. La Decision, Colloques Internationaux du CNRS, Paris, page 2732, 1961.
- [5] H. Nikaido. On von neumann's minimax theorem. Pacific J. Math., 4:65–72, 1954.
- [6] A. Tversky. Intransitivity of preferences. Psychological Review, 76(1):31–48, 1969.

²This theorem has been stated for a locally compact set of outcomes X, referring to a minimax theorem from [5]. There, the compactness of X is required, and so we believe that the word "locally" was most likely used unintentionally in [2]. Indeed, local compactness of X is not sufficient; consider $X = \mathbb{R}$, $P = \mathscr{P}(X)$ and $\phi \equiv 1$.