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Abstract

The sets of balanced, totally balanced, exact and supermodular games
play an important role in cooperative game theory. These sets of games are
known to be polyhedral cones. The (unique) non-redundant description of
these cones by means of the so-called facet-defining inequalities is known in
cases of balanced games and supermodular games, respectively. The facet
description of the cones of exact games and totally balanced games are not
known and we present conjectures about what are the facet-defining inequal-
ities for these cones.

We introduce the concept of an irreducible min-balanced set system and
conjecture that the facet-defining inequalities for the cone of totally balanced
games correspond to these set systems. The conjecture concerning exact
games is that the facet-defining inequalities for this cone are those which
correspond to irreducible min-balanced systems on strict subsets of the set
of players and their conjugate inequalities. A consequence of the validity of
the conjectures would be a novel result saying that a game m is exact if and
only if m and its reflection are totally balanced.

1 Introduction: former results overview

Important classes of set functions used as mathematical models in the coalition
game theory are: the class of balanced games B(N), the class of totally balanced
games T (N), the class of exact games E(N) and the class of supermodular games
S(N), named traditionally convex in game-theoretical community. One has

B(N) ⊇ T (N) ⊇ E(N) ⊇ S(N)

and it is well-known that all these sets are polyhedral cones in the space RP(N),
where P(N) = {A : A ⊆ N} is the power set of the set of players N . That means



that each of the cones can be specified by finitely many linear inequalities.

These set functions occur in other contexts, for example, in the context of impre-
cise probabilities. More specifically, supermodular games correspond to 2-monotone
lower probabilities, exact games to coherent lower probabilities and balanced games
to lower probabilities avoiding sure loss [9].

Recall that every full-dimensional polyhedral cone K in an Euclidean space
has uniquely determined set of the so-called facet-defining inequalities, where the
uniqueness of each inequality is up to a positive multiple. Specifically, these in-
equalities determine proper faces of K of maximal dimension, called facets. The
complete list of facet-defining inequalities then provides the least possible inequality
description of K, unique up to positive multiples.

The above cones B(N), . . . ,S(N) are not full-dimensional in RP(N) but adding
a one-dimensional linear space C(N) of constant functions turns them into full-
dimensional cones B(N), . . . , S(N). The facet-defining inequalities of these ex-
tended cones then induce a non-redundant inequality description of the original
cones of games. The non-redundant inequality description of these cones is known
in cases of supermodular and balanced games only.

The facets of the supermodular cone S(N) are defined by inequalities of the
form m({i, j} ∪ L) + m(L) −m({i} ∪ L) −m({j} ∪ L) ≥ 0 for m ∈ S(N), where
L ⊂ N and i, j ∈ N \L are distinct [6]; these inequalities were known to correspond
to elementary conditional independence statements [13].

The non-redundant inequalities for the cone B(N) of balanced games were char-
acterized by Shapley [12] on basis of former results by Bondareva [1]. These inequal-
ities correspond to “minimal balanced collections” of subsets of N whose union is
N ; in this paper we call such collections min-balanced systems on N .

The consequence of the fact that B(N) is a polyhedral cone is the observation
that the set of totally balanced games T (N) is a polyhedral cone. Nonetheless, as
far as we know, the facet-defining inequalities for the cone T (N) have not been
described/discussed in the literature.

Recently, the fact that set of exact games E(N) forms a convex cone has been
derived [3]. Shortly after that Lohman et al. [8] even showed that the set of exact
games is a polyhedral cone. Specifically, the exact games were characterized by
means of finitely many linear inequalities that correspond to the so-called “min-
imal exact balanced” collections of subsets of N . Although finitely many linear
inequalities specifying E(N) were classified in [8], many of these inequalities are
already known to be redundant.

In this paper we mainly deal with the question of what are the facet-defining
inequalities for the exact cone. On basis of our own computations as well as com-
putations made by Quaeghebeur in connection with his thesis [11] we found and
classified these inequalities in case |N | ≤ 5. We analyzed the results and revealed
certain symmetry in the problem. More specifically, the facet-defining inequalities
for E(N) come in pairs: every such inequality is accompanied with a conjugate
one. We have shown that this is a consequence of the fact that the cone E(N) is
closed under a special reflection transformation.



We even came to sensible conjectures about what are the facet-defining in-
equalities for the cones T (N) and E(N). The basis of them is the concept of a
min-balanced system on M ⊆ N , where |M | ≥ 2, which is a certain collection of
subsets of M . Special irreducible min-balanced systems seem to play the crucial
role. The conjecture concerning the totally balanced cone is that these irreducible
systems correspond to facets of T (N). The conjecture concerning the exact cone
is that every facet-defining inequality for E(N) is either given by an irreducible
min-balanced system on some strict subset M ⊂ N , |M | ≥ 2, or it a conjugate
inequality to such an inequality.

We also briefly report on our effort to develop a computer programme for gen-
erating all (permutational types of) min-balanced systems and irreducible min-
balanced systems. We employed the algorithm by Peleg [10] and reformulated the
problem in terms special bipartite graphs using the BLISS algorithm by Junttila
and Kaski [5].

2 Basic concepts and facts

Throughout the text N is a finite set of players such that |N | ≥ 2. Given S ⊆ N ,
the symbol χS will denote zero-one incidence vector of S (in RN ); that is, χS(i) = 1
if i ∈ S and χS(j) = 0 if j ∈ N \ S.

A game is a set function m : P(N) → R such that m(∅) = 0. The core of a
game m is a polytope (= bounded polyhedron) in RN given by

C(m) := { [xi]i∈N :
∑
i∈N

xi = m(N) & ∀S ⊆ N
∑
i∈S

xi ≥ m(S) } .

A game m is balanced if it has a non-empty core: C(m) 6= ∅; it is called totally
balanced if, for each M ⊆ N , |M | ≥ 2, the restriction of m to P(M) is balanced.
A balanced game is called exact if every lower bound is tight:

∀S ⊆ N ∃x ∈ C(m)
∑
i∈S

xi = m(S) ;

an equivalent definition is that m can be reconstructed from its core by minimiza-
tion: m(S) = min {

∑
i∈S xi : x ∈ C(m)} for any S ⊆ N . Well-known facts are

that every exact game is totally balanced and that every supermodular game is
exact [4].

Definition 1 A system B ⊆ P(N) is min-balanced on a non-empty set M ⊆ N if
it is a minimal set system such that χM is in the conic hull of {χS : S ∈ B}.

Of course, the minimality is meant in sense of inclusion of set systems.

Lemma 2 A set system B ⊆ P(N) is min-balanced on ∅ 6= M ⊆ N if and only if
the following two conditions hold:



(i) there exist strictly positive coefficients λS > 0 for S ∈ B such that

χM =
∑
S∈B

λS · χS where M =
⋃
B, and

(ii) the incidence vectors {χS ∈ RN : S ∈ B} are linearly independent.

Hence, B ⊆ P(N) is min-balanced iff it is a minimal set system satisfying (i).

The condition (i) is the balancedness condition from [12]; (ii) is equivalent to
minimality and implies the uniqueness of the coefficients λS in (i).

Proof. To show the necessity of (i) write χM =
∑
S∈B λS · χS with λS ≥ 0. If λS

vanishes for some S then we take B′ = {T ∈ B : λT > 0} to get a contradictory
conclusion that B′ is a strict subsystem of B satisfying the requirement. The
necessity of (ii) can then be shown by a contradiction: otherwise a non-vanishing
system of coefficients {γS : S ∈ B} exists such that

∑
S∈B γS · χS = 0 ∈ RN . For

any ε ≥ 0 put λεS := λS + ε · γS and consider χM =
∑
S∈B λ

ε
S · χS . Since all λS

are strictly positive, maximal ε > 0 exists such that λεS are all non-negative. Put
B′ = {T ∈ B : λεT > 0} and derive the contradiction analogously.

Conversely, if both (i) and (ii) holds then χM =
∑
S∈B λS · χS with λS > 0.

Assume for a contradiction that C ⊂ B exists such that χM =
∑
S∈C νS · χS with

νS ≥ 0, S ∈ C. Put νS = 0 for S ∈ B \ C. Then 0 =
∑
S∈B(λS − νS) · χS , which

contradicts (ii). The last claim is easy to derive from the former one. �

We intentionally restrict our attention to non-trivial min-balanced systems B
with |B| ≥ 2; each such a system is ascribed the following inequality

m(
⋃
B)−

∑
S∈B

λS ·m(S) ≥ 0 (1)

in which variables are represented by m(S), S ⊆ N . We have shown in [7, Obser-
vation 4] that any non-trivial min-balanced system B on M satisfies the following
conditions:

• the intersection
⋂
B is empty, one has ∅,M 6∈ B, |M | ≥ 2, and

• there are at most |M | sets in B.

The result from [12] is as follows.

Proposition 3 The facet-defining inequalities for the cone B(N) are just the in-
equalities (1) for non-trivial min-balanced systems B on N .



3 Conjugate inequalities

To reveal some important symmetry in the problem, it is suitable to consider
the space RP(N) and extend all considered cones B(N), . . . ,S(N) to this space.
Formally, for m ∈ RP(N), a shifted function m̃ given by m̃(S) := m(S)−m(∅) for
S ⊆ N is a game and one can define:

B(N) := {m ∈ RP(N) : m̃ is a balanced game },
T (N) := {m ∈ RP(N) : m̃ is a totally balanced game },
E(N) := {m ∈ RP(N) : m̃ is an exact game },
S(N) := {m ∈ RP(N) : m̃ is a supermodular game }.

All these cones are full-dimensional in RP(N) and their shared linearity space ap-
pears to be the linear space of modular functions

L(N) := {m ∈ RP(N) : m(C ∪D) +m(C ∩D) = m(C) +m(D) for C,D ⊆ N},

which has the dimension 1 + |N |; see [7, § 1.1].
The task to find/characterize facets of the original cones B(N), . . . ,S(N) of

games appears to be equivalent to finding facets of the above extended cones. Some
geometric considerations lead to the conclusion that every facet-defining inequality
for such a full-dimensional cone K in RP(N) has the form∑

S⊆N

α(S) ·m(S) ≥ 0 for m ∈ RP(N), (2)

where
∑
S⊆N α(S) = 0,

∑
S⊆N :i∈S α(S) = 0 for any i ∈ N ,

and the coefficients α(S), S ⊆ N , are rational numbers. Thus, without loss of gen-
erality, we can multiply (2) by a positive factor to obtain relatively prime integers
as coefficients. This is a standardized form of the inequality (2).

An inequality of the form (2) for m ∈ B(N), . . . , S(N) can be identified with
the inequality

∑
∅6=S⊆N α(S) · m̃(S) ≥ 0 for m̃ ∈ B(N), . . . ,S(N): for the inverse

relation put α(∅) := −
∑
∅6=S⊆N α(S); for details see [7, § 1.1]. In particular, the

inequality (1) has an extended version

m(
⋃
B)−

∑
S∈B

λS ·m(S) + (−1 +
∑
S∈B

λS) ·m(∅) ≥ 0 .

The point is that the considered cones, except for T (N), are closed under the
following linear self-transformation of RP(N). By a reflection of m ∈ RP(N) we
mean m∗ ∈ RP(N) given by

m∗(T ) := m(N \ T ) for any T ⊆ N .

It is nothing but inner composition with the “complement” mapping.



The inequality (2) can be ascribed a conjugate inequality of the form∑
T⊆N

α∗(T ) ·m(T ) ≥ 0 where α∗(T ) := α(N \ T ) for any T ⊆ N, (3)

required for m ∈ RP(N). An important observation appears to be the equality∑
T⊆N

α∗(T ) ·m(T ) =
∑
T⊆N

α(N \ T ) ·m∗(N \ T ) =
∑
S⊆N

α(S) ·m∗(S) ,

which easily implies that, whenever (2) is valid for vectors in a cone K which is
closed under reflection, then (3) is valid for vector in K, and, of course, vice versa.
In fact, one of our theoretical results is that (2) is facet-defining for K closed under
reflection iff (3) is facet-defining for K [7, Lemma 26].

Every inequality of the form (2) defines a set system

Bα := {S ⊆ N : α(S) < 0} . (4)

Our analysis of facet-defining inequalities for E(N) in case |N | ≤ 5 written in the
form (2) revealed that every system Bα is either min-balanced on M ⊂ N or it is
conjugate to such a system B, which means it is of the form

B∗ := {N \ S : S ∈ B} .

We explain now that any min-balanced system B defines a unique standardized
inequality (2) with α ∈ ZP(N) such that B = Bα.

3.1 How to assign an inequality to a min-balanced system

Given a min-balanced system B, unique coefficients λS > 0, S ∈ B, exist with

χM =
∑
S∈B

λS · χS where M =
⋃
B.

In fact, one can even show that λS ∈ Q. Indeed, one has χM =
∑
S∈B λS ·χS means

that the coefficient vector λ ∈ RB is a solution of a matrix equality λ · C = χM
with a zero-one matrix C ∈ RB×N . Since a unique solution exists, a regular column
B×T -submatrix of C, where T ⊆ N , |T | = |B|, exists such that λ ·CB×T = χM∩T .
Since C has zero columns for i ∈ N \M one has T ⊆M . Nevertheless, the inverse
of this regular zero-one submatrix is a rational matrix, which implies that the
components of λ are in Q. Thus, a unique integer k ≥ 1 exists such that k ·λS ∈ Z,
S ∈ B, are relatively prime. One can put

αB(M) := k,

αB(S) := −k · λS for S ∈ B,
αB(∅) := −αB(M)−

∑
S∈B

αB(S) = −k + k ·
∑
S∈B

λS ,

αB(R) := 0 for remaining R ⊆ N .



It is shown in [7, § 3.1] that these coefficients define a standardized form of the
inequality (2) and one has Bα = B with α = αB. This yields mutually inverse
transformation between min-balanced systems and the coefficient vectors of as-
cribed inequalities.

4 Irreducible min-balanced systems

The next concept is related to the conjectures below.

Definition 4 We say that a min-balanced system B ⊆ P(N) is reducible if there
exists X ⊂M ≡

⋃
B and Y ∈ BX := {S ∈ B : S ⊂ X} such that

• χX is in the conic hull of {χS : S ∈ BX},

• χM is in the conic hull of {χT : T ∈ {X} ∪ B \ {Y } }.
A min-balanced system B ⊆ P(N) which is not reducible is called irreducible.

We say that a min-balanced system B ⊆ P(N) is weakly irreducible if no set
X ⊂

⋃
B exists such that both BX and {

⋃
BX} ∪ (B \ BX) are min-balanced.

Note that, without loss of generality, one can only require X =
⋃
BX 6∈ B in

the above definitions and the irreducibility implies the weak irreducibility; see [7,
Observation 8]. The intended meaning of the irreducibility condition is that the
inequality ascribed to B is not derivable from other inequalities for min-balanced
systems B′ where

⋃
B′ ⊆

⋃
B.

Here is an example of a reducible system.

Example Put N = {a, b, c, d} and consider the set system B = { {a}, {b}, {c} },
whose corresponding inequality is

m(abc)−m(a)−m(b)−m(c) + 2 ·m(∅) ≥ 0 . (5)

Take X = {a, b} and observe that BX = { {a}, {b} } is min-balanced; the same
holds for C = {X} ∪ (B \ BX) = { {a, b}, {c} } . Thus, B is not weakly irreducible,
and therefore, not irreducible. The respective inequalities are

m(ab)−m(a)−m(b) +m(∅) ≥ 0, (6)

m(abc)−m(ab)−m(c) +m(∅) ≥ 0,

both facet-defining for E(N). Clearly, (5) is the sum of the inequalities in (6).

An analogous procedure is possible for every reducible min-balanced system.
The following result is shown in [7, Corollary 9].

Observation 5 Given a reducible min-balanced system B, the corresponding in-
equality is a conic combination of inequalities which correspond to other min-
balanced systems B′ with

⋃
B′ ⊆

⋃
B.

In particular, the inequalities ascribed to reducible systems are never facet-
defining for T (N) or E(N).



5 Conjectures

The first conjecture concerns the totally balanced cone.

Conjecture 1 The facet-defining inequalities for T (N) are just those ascribed to
non-trivial irreducible min-balanced systems B on M ⊆ N , |M | ≥ 2.

Note that T (N) is not closed under reflection; therefore, one cannot expect that
a conjugate inequality to a facet-defining inequality is also facet-defining.

Conjecture 2 The facet-defining inequalities for E(N) are just those ascribed to
non-trivial irreducible min-balanced systems B on M ⊂ N , |M | ≥ 2, and the
conjugate inequalities to these.

Conjecture 2 is in line with the fact that E(N) is closed under reflection. Note
that the inequalities in Conjecture 2 imply inequalities ascribed to min-balanced
systems on N . Moreover, if both conjectures are true, then one can derive easily
that m ∈ E(N) iff m,m∗ ∈ T (N). That would imply that a game m is exact iff
both m and m̃∗ are totally balanced.

6 Computations and examples

A former version of the conjectures was based on weak irreducibility concept.
Therefore, in case |N | ≤ 8, we have computed the permutational types of min-
balanced and weakly irreducible min-balanced systems, respectively. We listed all
min-balanced systems type representatives in a tree-like catalog with the following
access keys (for example, take B = {a, bd, cd, abc}):

• the number |N | of players (B: |{a, b, c, d}| = 4),

• the number of sets |B| in the system (B: 4),

• ordered players’ multiplicities |{B ∈ B : i ∈ B}|, i ∈ N , (B: (2, 2, 2, 2)),

• ordered cardinalities |B|, B ∈ B, (B: (1, 2, 2, 3)),

• ordered balancing coefficients λS , S ∈ B, (B: ( 1
2 ,

1
2 ,

1
2 ,

1
2 )).

To recognize whether two given min-balanced systems are of the same type, we
transformed the problem to the task of recognizing bipartite graph isomorphism.
Specifically, players and sets are turned into graph nodes of two different parts. If
a player is in a set, then an edge exists between the respective nodes. We have used
BLISS algorithm [5], as implemented in igraph package [2] of R environment. To
check whether a newly found min-balanced system is of a recorded permutational
type (= already stored in the catalog), we searched through the leaves of the respec-
tive branch of the above tree only. Just one representative of each permutational
class is stored in the catalog.



number of players n = 3 n = 4 n = 5 n = 6 n = 7 n = 8

min-balanced types 3 9 40 428 15.309 1.597.581
weakly irreducible types 2 5 16 164 6.188 704.995

Table 1: Permutational types of non-trivial min-balanced systems on N .

To find whether the permutational type of min-balanced system is weakly ir-
reducible, we applied Definition 4 directly. The above mentioned catalog of min-
balanced systems was used to speed-up the computations.

The resulting numbers of permutation types for 3 ≤ n = |N | ≤ 8 are shown in
Table 1. Note that for n ≤ 4 each weakly irreducible system is irreducible. In the
case |N | = 2 only one non-trivial min-balanced system on N exists. It is irreducible
and has the form B = {a, b} (2-partition).

In the case n = |N | = 3 five min-balanced systems exist which break into three
permutational types; two of these types are irreducible:

• B = {a, b, c} represents a reducible type, 3-partition (1 system),

• B = {a, bc} represents an irreducible type, 2-partition (3 systems),

• B = {ab, ac, bc} represents an irreducible type (1 system).

In the case n = |N | = 4 one has 41 min-balanced systems which break into nine
permutational types; five of these types are irreducible.

1. B = {a, b, c, d} represents a reducible type, 4-partition (1 system),

2. B = {a, b, cd} represents a reducible type, 3-partition (6 systems),

3. B = {ab, cd} represents an irreducible type, 2-partition (3 systems),

4. B = {a, bcd} represents an irreducible type, 2-partition (4 systems),

5. B = {a, bc, bd, cd} represents a reducible type (4 systems),

6. B = {ab, acd, bcd} represents an irreducible type (6 systems),

7. B = {a, bd, cd, abc} represents a reducible type (12 systems),

8. B = {ab, ac, ad, bcd} represents an irreducible type (4 systems),

9. B = {abc, abd, acd, bcd} represents an irreducible type (1 system).

Most of the above min-balanced systems are families of sets incomparable with
respect to inclusion. Nonetheless, the min-balanced system in the 7-th item con-
tains comparable sets a and abc.

Our computation also revealed irreducible min-balanced systems containing
at least one pair of comparable sets: in case N = {a, b, c, d, e} the system B =
{ ab, acd, ace, bcde, abde} is an irreducible min-balanced system.



7 Conclusions

Our future effort will be directed to the conjectures formulated in Section 5. The
plan is to utilize the methods of polyhedral geometry either to confirm or to dis-
prove them. The catalogues of irreducible min-balanced systems for |N | = 6, 7, 8
are highly useful in this context, because they determine the lists of inequalities
conjectured to be facet-defining for T (N) and E(N).

In another direction of research related to the cones S(N) and E(N), we found
simple linear criteria to recognize extreme supermodular/exact games and devel-
oped web platforms based on implementation of these criteria [14, 15].
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