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Abstract

We present an interdisciplinary approach to study systematic relations
between logical form and attacks between claims in an argumentative frame-
work. We propose to generalize qualitative attack principles by quantitative
ones. Specifically, we use coherent conditional probabilities to evaluate the
rationality of principles which govern the strength of argumentative attacks.
Finally, we present an experiment which explores the psychological plausibil-
ity of selected attack principles.

1 Introduction

Various disciplines study argumentation, including computer science (e.g., [6, 1]),
philosophy (e.g., [21]), and psychology (e.g., [11, 13]). Our approach is an inter-
disciplinary one, as we combine elements of Dung-style abstract argumentation
[6], logical argument forms, coherent conditional probability, and also present an
experimental assessing the descriptive validity of selected formal principles.

We investigate systematic relations between logical form and attacks between
claims in an argumentative framework. Argumentation is a highly complex and
dynamic process. Usually, arguments are conceived as premise (“support”) and
conclusion (“claim”) pairs. We focus on static argumentation and are only inter-
ested in claims formalized by classical propositional formulæ.

The outline of the paper is as follows: Section 2 gives a brief survey of qualita-
tive attack principles which were investigated in a modal logical framework [3]. We
argue, that the modal logical framework appears to be too coarse, especially for

∗We thank Gernot Salzer for making the experiment possible during his class: thanks also to
his students for their participation. Niki Pfeifer is supported by his DFG project PF 740/2-2
(part of the SPP1516).



modelling the quantitative dimension of attack principles. We therefore propose
to generalize these principles by adopting a probabilistic framework. Specifically,
we use coherent conditional probabilities to evaluate systematically the rationality
of attack principles: coherence provides a criterion for selecting attach principles
(i.e., “good” principles should be coherent). In Section 3 we show how to model the
qualitative attack principles in probabilistic terms. Section 4 presents our prob-
abilistic analysis of the quantitative attack principles and their semantics. Sec-
tion 5 presents an experiment which aims to explore the psychological plausibility
of selected quantitative attack principles. Section 6 concludes the paper by some
remarks on future research.

2 Qualitative attack principles

In what follows we write “A−→B” to denote that there is an argument claiming A
that attacks an argument with claim B. Thus, strictly speaking, attack relations
are between arguments. However, we simply say “A attacks B”.

It seems intuitively obvious that given attacks on claims implicitly entail attacks
on further claims which logically imply the original, explicitly attacked claims. A
corresponding ‘general attack principle’ has been formulated in [3]:

(A.gen) If F−→A and B |= A then F−→B.

While it may be problematic to consider all classical logical implicants as inducing
implicit attacks in this manner, at least the following instances of (A.gen) seem
reasonable, since they are immediate and hold even if the consequence relation (|=)
is constrained to minimal logic [12].

(A.∧) If F−→A or F−→B then F−→A ∧B.

(A.∨) If F−→A ∨B then F−→A and F−→B.

(A.⊃) If F−→A ⊃ B then F−→B.

Actually, (A.⊃) may raise concerns, since A ⊃ B does not relevantly follow from B,
cf. [7]. Hence, one may prefer the following weaker rationality postulate, instead.

(B.⊃) If F−→B and F 6−→A1 then F−→A ⊃ B.

Concerning negation, the following principle is intuitively plausible.

(A.¬) If F−→A then F 6−→¬A.

On the other hand, one can formulate inverse forms of the above principles:

(C.∧) If F−→A ∧B then F−→A or F−→B.

(C.∨) If F−→A and F−→B then F−→A ∨B.

1F 6−→A denotes that A is not attacked by F .



(C.⊃) If F−→A ⊃ B then F−→B and F 6−→A.

(C.¬) If F 6−→A then F−→¬A.

These last mentioned principles seem, at least partly, to be intuitively much more
demanding than those following from (A.gen). Indeed, the results of [3] imply
that imposing all of the above (connective specific) attack principles amounts to
an alternative characterization of classical logic, while proper subsets of the full
set of these principles lead to weaker logics that result from discarding some of the
logical inference rules of Gentzen’s classical sequent calculus LK.

The indicated situation calls for a robust interpretation of the attack relation
that is capable of formally supporting (or questioning, as appropriate) informal
intuitions about the varying strength of the attack principles. To this aim the
authors of [3] suggest to translate F−→A into the modal formula �(F ∧ ¬G),
where in the underlying Kripke frame 〈W,R〉, W models the set of possible states
of affairs and wRv is read as “v is a possible alternative from the viewpoint of w”.
In other words, this setup suggests that a given attack refers to all possible states
of affairs in which the attacking claim holds and asserts that the attacked claim
does not hold in any of those states. If one stipulates that R is reflexive (or
at least serial) than this interpretation of F−→A renders the principles (A.∧),
(A.∨), (C.∨), (C.⊃), and (A.¬) formally sound while one may construct counter
examples for the translations of the principles (C.∧), (C.¬), (B.⊃), and therefore
also of (A.⊃). Since this result is unsatisfying, in particular with respect to the
arguably counter-intuitive classification of attack principles for implication, three
alternative modal interpretations where briefly discussed in [3] as well. However,
each of the suggested translations of F−→A into modal logic is too coarse, since
there seems be no principled way to disentangle strong and weak attack principles.
Moreover, modal logic does not support quantitative refinements of the qualitative
attack principles.

3 Probabilistic semantics

In light of the results of [3], as sketched in Section 2, the challenge to come up with
an intuitively convincing and formally sound interpretation of the attack relation
between claims of arguments remains open. This motivates us to explore to which
extent one may employ coherence-based conditional probability (see, e.g., [2, 9]) for
this purpose. Concretely, we suggest to read “F attacks A” as the assertion that
it is likely that A does not hold, given that F holds. More precisely, we interpret
F−→A by p(¬A|F ) ≥ t for some threshold 0.5 < t ≤ 1. Throughout the paper, we
assume that F is not a logical contradiction (i.e., F is not equivalent to ⊥), since
otherwise the corresponding conditional probability is undefined.

Translating the attack principles that refer to conjunction, disjunction, and
negation according to the suggested interpretation is straightforward. The following
claims correspond to the ‘weak’ principles (A.∧), (A.∨), and (A.¬):



(A.∧)p If p(¬A|F ) ≥ t or p(¬B|F ) ≥ t , then p(¬(A ∧B)|F ) ≥ t.

(A.∨)p If p(¬(A ∨B)|F ) ≥ t, then p(¬A|F ) ≥ t and p(¬B|F ) ≥ t.

(B.¬)p If p(¬A|F ) ≥ t, then p(¬¬A|F ) = p(A|F ) < t.

Analogously, the inverse (‘strong’) principles translate as follows:

(C.∧)p If p(¬(A ∧B)|F ) ≥ t then p(¬A|F ) ≥ t or p(¬B|F ) ≥ t.

(C.∨)p If p(¬A|F ) ≥ t and p(¬B|F ) ≥ t then p(¬(A ∨B)|F ) ≥ t.

(C.¬)p If p(¬A|F ) < t then p(¬¬A|F ) = p(A|F ) ≥ t.

It is straightforward to check the following.

Proposition 1. (A.∧)p, (A.∨)p, (B.¬)p, and (C.¬)p hold in the sense of coherence-
based probability logic. However, (C.∧)p and (C.∨)p do not hold in this sense.

Note that our probabilistic interpretation of the attack relation, justifies not
only (A.¬), but also the intuitively more demanding principle (C.¬)p. This is a
consequence of the fact that we insist on classical negation here and hence have
p(¬¬A) = p(A) = 1 − p(A). It might be worth mentioning that actually both
(B.¬)p and (C.¬)p cease to hold if one admits .5 as a threshold value. Another
interesting observation is that for t = 1 (C.∨) is justified, since: if p(¬A|F ) = 1
and p(¬B|F ) = 1, then p(¬(A ∨ B)|F ) = p(¬A ∧ ¬B|F ) = 1 is coherent (cf. the
probabilistic version of the And rule of System P, [9]).

Interpreting attack principles involving the implication connective is more del-
icate, since it is widely agreed that the natural language conditional (‘if . . . then
. . . ’) should not be identified with classical (truth-functional) implication. Ac-
tually, as argued, e.g., in [10, 15], coherence-based conditional probability itself
provides a sound and robust semantics for the conditional. Following this insight
would force us to use degrees of beliefs in nested conditionals (e.g., in terms of pre-
visions in conditional random quantities; see, e.g., [19, 20]) to interpret principles
like (A.⊃). While this is an interesting topic for future research, here we only want
to check how our probability-based interpretation of the attack relation classifies
(B.⊃), (A.⊃), and (C.⊃), if we replace A ⊃ B by ¬A ∨ B. The corresponding
translations are as follows:

(A.⊃)p If p(¬B|F ) ≥ t then p(¬(A ⊃ B)|F ) ≥ t.

(B.⊃)p If p(¬B|F ) ≥ t and p(¬A|F ) < t, then p(¬(A ⊃ B)|F ) ≥ t.

(C.⊃)p If p(¬(A ⊃ B)|F ) ≥ t then p(¬B|F ) ≥ t.

A ⊃ B = ¬A∨B turns (A.⊃)p and (C.⊃)p into instances of (A.∨)p and (C.∨)p,
respectively. Moreover, (B.⊃)p follows from (A.⊃)p. Consequently we obtain:

Proposition 2. (A.⊃)p and (B.⊃)p both hold in the sense of coherence-based
probability logic, but (C.⊃)p does not hold in this sense.



In [3] also logically contradictory claims are considered by formulating the fol-
lowing corresponding attack principle:

(A.⊥) For every F : F−→⊥.

In other words, it is stipulated that every argument (implicitly or explicitly) attacks
contradictory claims. We may observe that this assumption is in line with our
interpretation of the attack relation, since p(¬⊥|F ) = 1. However, note that
we cannot interpret any principles that involve contradictory claims of attacking
arguments, since the corresponding conditional probability must remain undefined.

4 Quantitative attack principles & their semantics

So far, we have only discussed qualitative attack principles, i.e., principles that
only care for the presence or absence of an attack between (claims of) given ar-
guments. However it is natural to refine such an analysis by considering weights
or varying strength of attacks. Various suggestions regarding so-called weighted
argumentation frames can be found in the literature on argumentation in AI, see,
e.g., [8, 5]. But, similarly to the qualitative scenario, there is as yet hardly any
analysis of rationality postulates that systematically relates weights of explicit and
implicit attacks to the logical form of involved claims of arguments. A first step in
that direction has been attempted in [4], where the principles introduced in [3] are
generalized to the context of weighted argumentation frames. The aim of [4] is to
explore under which assumptions one can characterize various t-norm based fuzzy
logics in terms of ‘weighted attack principles’. As expected, it turns out that some
of the principles that are needed to recover a truth-functional (fuzzy) semantics are
implausible from an intuitive, argumentation based point of view. In any case, the
situation, once more, calls for a systematic interpretation of the relevant principles,
that enables one to formally judge their respective plausibility.

Rather than just distinguishing between F−→A and F 6−→A (“F attacks / does

not attack A”), we will use F
w−→A to denote that F attacks A with weight (or

degree) w. The corresponding weights are understood to be normalized, with 1

being the maximal weight of any attack, whereas F
0−→A means that F in fact does

not attack the claim A at all. Note that this stipulation entails that the qualitative
scenario discussed in sections 2 and 3 amounts to an instance of the weighted case,
where the only possible weights are 0 and 1.

An attractive feature of the probabilistic approach taken here is the fact that it
immediately leads to a quantitative refinement of the qualitative case: interpreting
attacks in terms of coherent conditional probabilities suggests to directly attach
weights, instead of using thresholds to judge whether a given statement attacks
another one. As pointed out in [4], there are several non-equivalent ways in which
the the qualitative attack principles reviewed in Section 2 can be generalized to
‘weighted attack principles’. The most straightforward generalization of principle
(A.∧) to weighted attacks is arguably the following:



(Aw.∧) If F
x−→A and F

y−→B, then F
z−→A ∧B, where z ≥ max(x, y).

Actually, since we also consider attacks of weight 0 (interpreted as ‘no attack’), we
may assume without loss of generality that there is a weighted attack between any
pair of formulæ. This means that (Aw.∧) can be reformulated as a constraint on
the corresponding weights, s.t.:

(Gw
≥.∧) If F

x−→A, F
y−→B, and F

z−→A ∧B, then z ≥ max(x, y).

Alternative weighted attack principles for conjunction, formulated in the same
manner, are:

( Lw
≥.∧) If F

x−→A, F
y−→B, and F

z−→A ∧B, then z ≥ min(1, x + y).

(Pw
≥.∧) If F

x−→A, F
y−→B, and F

z−→A ∧B, then z ≥ x + y − xy.

As the labels indicate, these principles are essential for obtaining an argumenta-
tion based semantics for Gödel logic G,  Lukasiewicz logic  L and Product logic P,
respectively. Moreover the subscript ‘≥’ attached to these letters indicate that
upper bounds for the weight of attacks of conjunctive claims (in terms of weights
of attacks on conjuncts) are formulated here. In fact, also principles expressing
matching lower bounds are needed to characterize the three mentioned t-norm
based fuzzy logics. Correspondingly, we use (Gw

≤.∧), ( Lw
≤.∧), and (Pw

≤.∧) to refer
to the principles that arise by just replacing ‘≥’ by ‘≤’ in the respective constraint.

As already indicated, in contrast to the qualitative case of Section 3, we do
not have to involve threshold values in interpreting a weighted attack relation, but
simply identify the weight with which F attacks A with the conditional probability
that A does not hold, given that F holds. More formally, our probabilistic semantics
interprets F

w−→A by p(¬A|F ) = w. (Remember that this is only viable if we
exclude the possibility that F is a logical contradiction.) Accordingly, the above
versions of weighted attack principles translate into the following statements.

(Gw
≥.∧)p If p(¬A|F ) = x and p(¬B|F ) = y then p(¬(A ∧B)|F ) ≥ max(x, y).

( Lw
≥.∧)p If p(¬A|F ) = x and p(¬B|F ) = y then p(¬(A ∧B)|F ) ≥ min(1, x + y).

(Pw
≥.∧)p If p(¬A|F ) = x and p(¬B|F ) = y then p(¬(A ∧B)|F ) ≥ x + y − xy.

(Gw
≤.∧)p If p(¬A|F ) = x and p(¬B|F ) = y then p(¬(A ∧B)|F ) ≤ max(x, y).

( Lw
≤.∧)p If p(¬A|F ) = x and p(¬B|F ) = y then p(¬(A ∧B)|F ) ≤ min(1, x + y).

(Pw
≤.∧)p If p(¬A|F ) = x and p(¬B|F ) = y then p(¬(A ∧B)|F ) ≤ x + y − xy.

According to our probability based interpretation we obtain the following classifi-
cation of these principles.

Proposition 3. The principles (Gw
≥.∧)p and ( Lw

≤.∧)p hold in the sense of coherence-
based probability logic. However, ( Lw

≥.∧)p, (Pw
≥.∧)p, (Gw

≤.∧)p, and (Pw
≤.∧)p do

not hold for all coherent probability assessments.



Proof. Remember that we assume that all involved propositions are classical. There-
fore ¬(A∧B) is equivalent to ¬A∨¬B, and hence the well known Fréchet inequal-
ities (generalized to conditional probabilities) for logical disjunction yield (Gw

≥.∧)p
and ( Lw

≤.∧)p.
The four other principles can all be violated:

( Lw
≥.∧)p, (Pw

≥.∧)p: Let A = B and p(¬A|F ) = p(¬B|F ) = 0.5. Then p(¬(A ∧
B)|F ) = p(¬(A ∧ A)|F ) = p(¬A|F ) = 0.5, which is strictly smaller than
min(1, 0.5 + 0.5) = 1, but also strictly smaller than 0.5 + 0.5− 0.52 = 0.75.

(Gw
≤.∧)p, (Pw

≤.∧)p: Let A = ¬B and p(¬A|F ) = p(¬B|F ) = 0.5. Then p(¬(A ∧
B)|F ) = p(¬(A ∧ ¬A)|F ) = p(¬⊥|F ) = p(>|F ) = 1, which is strictly larger
than max(0.5, 0.5) = 0.5 and strictly larger than 0.5 + 0.5− 0.52 = 0.75.

Note that (Gw
≥.∧)p and ( Lw

≤.∧)p define the best possible coherent lower and
upper bounds, respectively. The principles ( Lw

≥.∧)p, (Pw
≥.∧)p, (Gw

≤.∧)p, and
(Pw

≤.∧)p, which do not hold under coherence, are not simply unjustifiable from
a probabilistic point of view. They rather apply only to specific cases. The follow-
ing corresponding propositions are straightforward.

Proposition 4. Under the assumption that p(A|F ) and p(B|F ) are independent,
(Pw

≥.∧)p and (Pw
≤.∧)p hold.

Proposition 5. Under the assumption that A |= B or B |= A (Gw
≤.∧)p holds.

Proposition 6. Under the assumption that A |= ¬B or B |= ¬A ( Lw
≤.∧)p holds.

The picture obtained for attack principles involving disjunction is, of course,
dual to that just outlined for conjunction. The Fréchet inequalities justify the
following two principles:

(Gw
≤.∨)p If p(¬A|F ) = x and p(¬B|F ) = y then p(¬(A ∨B)|F ) ≤ min(x, y).

( Lw
≥.∨)p If p(¬A|F ) = x and p(¬B|F ) = y then p(¬(A∨B)|F ) ≥ max(0, x+y−1).

Other principles are justified according to the probabilistic semantics of argument
attack only under additional assumptions about the (in)dependence of involved
propositions.

For negation the probability semantics directly justifies the following attack
principle, that combines and generalizes the qualitative principles (A.¬) and (C.¬).

(ACw.¬) F
x−→A if and only F

1−x−→¬A.

Regarding implication, one may of course extract corresponding principles from
the above mentioned ones, under the stipulation that A ⊃ B is understood, clas-
sically, as equivalent to ¬A ∨ B. But, once more, let us emphasize that it were
actually more adequate to model (informal) implication as a conditional. This
leads to the tricky and, as yet, only partially explored terrain of iterated condi-
tional probabilities; thus providing a challenging topic for future research.



Draft names Task/argument form Task

(A.∧) if A
x−→B, then A

[x,1]−→(B ∧ C) B2,C4

(C.∧) if A
x−→(B ∧ C), then A

[0,x]−→B A1,C1

(A.∨) if A
x−→(B ∨ C), then A

[x,1]−→B A2,C3

(C.∨) if A
x−→B, then A

[0,x]−→(B ∨ C) B3,C6

Irrelevant premise if A
x−→B and C |= B then A

x−→B A3,C5

(B.¬’) if A
x−→B, then A

1−x−→¬B B1,C2

Complement if A
x−→¬B, then A

1−x−→B A4,C7
(B.¬) “if A−→B, then ¬(A−→¬B)” is true B11,C18
(B.¬”) “if A−→¬B, then ¬(A−→B)” is true B12,C19

Narrow negation if A
x−→B, then A

1−x−→¬B A7, B5,C11

(A.⊥) A
1−→(B ∧ ¬B) B4,C9

(A.>) A
0−→(B ∨ ¬B) B8,C15

Aristotle’s thesis 1 ¬(¬A−→A) is false B6,C12
Aristotle’s thesis 2 ¬(A−→¬A) is false A5,C8
Abelard’s thesis ¬((A−→B) ∧ (A−→¬B)) is true B7,C14

Reflexivity A
0−→A A6,C10

Contingent attack A
[0,1]−→B A8,C13

ProbToAttack if P (B|A) = x, then A
x−→¬B A10,B9,C17

AttackToProb if A
x−→B, then P (¬B|A) = x A9,B10

AttackToProb’ if A
x−→B, then P (B|A) = 1− x C16

ProbToAttack’ if P (B|A) = x, then A
1−x−→B C17

Table 1: Task names/argument forms of the task sets with closed (i.e., conditions

A and B) and open (i.e., C) response format. “A
x−→B” denotes “A attacks by

strength x the assertion B”, where x can be point- or interval-valued.

5 Experiment

In this section we explore the psychological plausibility of the proposed approach.
Coherence-based probability logic received empirical support in recent years (e.g.,
[14, 16, 17, 18]). However, principles governing the strength of attacks have not yet
been investigated empirically (neither within nor outside the coherence framework).

Participants The sample consists of 139 students of the Technical University of
Vienna (18 females, 116 males, and 5 who chose not to reveal their gender) with a
mean age of 21.1 years (SD = 3.2). Only German native speakers were included
in the data analysis. Seven participants were excluded from the analysis because
of missing data in the target tasks. Most students were in their second semester
and did not receive a thorough training in logic yet.

On the average, the participants rated the overall task clearness and difficulty
on an intermediate level (M = 4.9 and M = 4.3, respectively, on a rating scale out
of 10). This reflects the fact that since our study aims to explore the interpretation
of attack principles, the participants had first to reason towards how to interpret



the tasks and then, after fixing their interpretation, to draw conclusions based on
their interpretation. This can also explain why the participants were not highly
confident in the correctness of their solutions (M = 4.1 out of 10) even if in general
they tend to like solving mathematical puzzles (M = 7.5 out of 10).

Method and materials Each participant was administered a DIN-A4 page,
containing an introduction on the first page and the target tasks on both pages.
There were three between-participant conditions, two with multiple-choice (A: n1 =
44 and B: n2 = 48) and one with an open choice response format (C: n3 = 47).
After showing how to express the degree of attack from a scale form 0 to 10 and that
claims can also be compounded (like [A and B]), the participants were presented
with those tasks which are described in Table 1. For example, Task A1 presents the
antecedent of a conditional: “If A attacks with exactly the strength 7 the claim
B, then . . . ”. Then seven consequent candidates were presented, which completed
the conditional. Eight consequents were of the form “. . . attacks A with [M] with
the strength [S] the claim B”, where “[M]” indicates a precise value (“exactly”), a
lower (“at least”), or an upper bound (“at most”) on the strength [S]. [S] was either
0, 3, 7, or 10. All possible point and interval options were formulated in ascending
order (see Table 2 for the attack strength options we used). Except for the interval
[0, 10] we used “nothing follows about how strong . . . attacks . . . ”, as the ninth
response option within each task. The participants were asked to tick for each of
nine items whether the according sentence is correct (“richtig”) or false (“falsch”).
In the open response format condition C, the participants were instructed to fill in
“exactly”, “at least”, or “at most”, the value of the strength, and additionally had
to mark the strength of attack (either as a point value or an interval) on a scale
as introduced in the introduction. In all conditions, those tasks which were not
formulated directly in terms of a conditionals, the instruction required to choose
among “true”, “false”, or “undetermined” by ticking one corresponding box (e.g,
A6, B4, B6, or B11 ; see Table 1).

The experiment took place during the last part of the first lecture on “formal
modeling”. The three conditions were administered in a systematically alternated
way to reduce the chance of plagiarized responses.

Results and discussion The main results are presented in tables 2–6. First
we observe that most people are unaware of the best possible coherent bounds
(marked in bold). Responses which are within the optimal coherent bounds are of
course also coherent, like in task A1 where 45% of the participants responded that
“precisely 7” is correct. In this task, 43% responded that the interval “at most 7”
is correct, which corresponds to the coherent interval. Second, we observe that
compared to direct tests of coherence-based probability logic (e.g., [14, 16, 17, 18]),
the agreement between the predictions concerning the quantitative attack principles
and the participant’s responses are modest, especially for the conditions with closed
response formats (A and B). For the condition C, more than half of the participants
responded by at least a coherent lower or a coherent upper bound as predicted (see



Task 0 [0,3] 3 [0,7] [3,10] 7 [7,10] 10 nf
A1 0.00 0.00 0.00 43.18 18.18 45.45 18.18 0.00 31.82
A2 0.00 0.00 0.00 63.64 6.82 25.00 9.09 0.00 34.09
A3 0.00 2.27 0.00 25.00 18.18 93.18 27.27 0.00 4.55
A4 20.45 18.18 18.18 11.36 2.27 2.27 0.00 0.00 59.09
A7 15.91 22.73 20.45 13.64 6.82 9.09 0.00 0.00 52.27
A8 6.82 4.55 4.55 6.82 4.55 4.55 4.55 4.55 88.64
A9 2.27 13.64 22.73 2.27 9.09 13.64 6.82 4.55 56.82

A10 4.55 4.55 13.64 2.27 9.09 11.36 11.36 2.27 63.64

Table 2: Percentages of “correct” responses concerning the point valued/interval
attack strength options in condition A (n1 = 44). The response options of A9 were
normalized to probability values. “nf” denotes “nothing follows”. Best possible
coherent response options are in bold (for predictions see Table 1).

Task 0 [0,3] 3 [0,7] [3,10] 7 [7,10] 10 nf
B1 8.33 31.25 29.17 2.08 4.17 2.08 0.00 0.00 43.75
B2 2.08 4.17 2.08 22.92 18.75 16.67 20.83 0.00 39.58
B3 2.08 4.17 2.08 27.08 18.75 25.00 33.33 4.17 27.08
B5 8.33 31.25 29.17 0.00 4.17 0.00 2.08 4.17 45.83
B9 4.17 14.58 16.67 8.33 0.00 2.08 4.17 0.00 62.50
B10 2.08 12.50 14.58 8.33 4.17 20.83 4.17 0.00 47.92

Table 3: Percentages of “correct” responses in condition B (n2 = 48). The response
options of B10 were normalized to probability values. See also caption of Table 2.

median values in Table 5). Concerning the seven forced choice tasks in condition C,
the most frequent responses were consistent with our coherence-based predictions
in five tasks (see Table 6). In tasks C9 and C15 people chose incoherent responses,
which involve contradictions and tautologies, which appear difficult to interpret
in the context of principles about argument strength. We observed an analogous
effect in the corresponding tasks B4 and B8 in the closed response format condition
(see Table 4).

The Contingent attack tasks serve to check whether people read the tasks care-
fully. The Irrelevant premise task was intended to test (A.gen) but due to a
systematic error in the translation of this argument form into the corresponding
tasks, we use it now as a consistency check. In both tasks almost all participants
responded as expected. The results of those tasks, which serve to explore directly
the connection between probability and strength of attack (i.e., ProbToAttack, At-
tackToProb, and AttackToProb) were disappointing in the closed response format
conditions A and B. In the open response format task C16, which investigates
AttackToProb, the majority of participants responded as predicted. In task C17,
which investigates ProbToAttack, the majority of only the lower bound responses
were coherent. Again, participants scored better in the open response format con-
dition compared to the closed one.



A5 A6 B4 B6 B7 B8 B11 B12
false 43.18 40.91 31.25 47.92 41.67 16.67 31.25 31.25
correct 31.82 22.73 25.00 35.42 31.25 56.25 39.58 35.42
undetermined 25.00 36.36 43.75 16.67 27.08 27.08 29.17 33.33

Table 4: Percentages of responses in conditions A (n1 = 44) and B (n2 = 48). Best
possible coherent response options are in bold (see Table 1).

C1l C1u C2l C2u C3l C3u C4l C4u C5l C5u C6l
0 .70 .30 .30 .70 1 .70 1 .70 .70 0

a .42 .70 .16 .43 .25 .74 .37 .83 .63 .73 .31
b .33 .20 .20 .36 .33 .18 .33 .22 .22 .08 .35
c .70 .70 .00 .30 .00 .70 .30 1.00 .70 .70 .00

C6u C7l C7u C11l C11u C13l C13u C16l C16u C17l C17u
.70 .30 .30 .30 .30 0 1 .30 .30 .30 .30

a .77 .17 .51 .14 .48 .24 .92 .31 .51 .28 .57
b .18 .21 .40 .19 .38 .33 .21 .33 .34 .28 .34
c .70 .00 .30 .00 .30 .00 1.00 .30 .30 .30 .70

Table 5: Mean (a), standard deviations (b), and medians (c) of lower (L) and
upper (U) bound responses in condition C (n3 = 47). Except for the probability
responses to task C16, all values are normalized to the value range [0, 1]. Best
possible coherent response options are in bold (see Table 1).

6 Concluding remarks

We showed how the coherence approach to probability can serve to guide the ra-
tional selection of qualitative and quantitative attack principles. More research is
needed to deepen and to generalize our formal results: e.g., by interpreting implica-
tion by conditional probability (or by previsions in conditional random quantities)
or by generalizations to fuzzy events. We also presented an experiment to explore
the psychological plausibility of the proposed approach. While we are convinced
that our approach is intuitive and plausible, we were surprised by the relatively
heterogeneous results. Open response format tasks turned out the be more appro-
priate to investigate quantitative attack principles. The heterogeneous agreement
between the predictions and the responses could be caused by various factors in-
cluding (i) lower data quality in a lecture hall experiment compared to individ-
ual testing, (ii) different response formats, and (iii) possible confusions caused by
the negations involved in the probabilistic semantics of the attack relations (i.e.,
p(¬B|A) should be high in order that A−→B holds). Future experimental work is
needed to further explore the psychological plausibility of formal attack principles.
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