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Abstract

We consider decisions on generalized Anscombe-Aumann acts, mapping states
of the world to belief functions over a set of consequences. Preference rela-
tions on these acts are given by a decision maker under different scenarios
(conditioning events). Then, we provide a system of axioms which are neces-
sary and sufficient for the representability of these “conditional preferences”
through a conditional functional CEUP,u, parametrized by a unique full con-
ditional probability P on the algebra of events and a cardinal utility function
u on consequences. The model is able to manage also “unexpected” (i.e.,
“null”) conditioning events. We finally provide an elicitation procedure that
reduces to a Quadratically Constrained Linear Problem (QCLP).

1 Introduction

In many decision problems under uncertainty in economics, we need to choose
between uncertain consequences in a set X that are contingent on the states of the
world in S. So, we distinguish between an “objective” uncertainty related to X
(i.e., exogenously quantified and given to the decision maker, in the spirit of von
Neumann-Mergenstern) and a “subjective” uncertainty related to S (i.e., encoded
in the decision maker’s preferences, in the spirit of Savage). This configures a two-
stage process where first the state of the world is chosen by Nature, and then the
consequence is chosen through “objective” uncertainty, in the spirit of [1].



Very often, due to partial knowledge, uncertainty cannot be encoded in a single
probability measure, but we rather have a class of probability measures.

We refer to situations where ambiguity is related to the “objective” probabilistic
assessment as that due to a partially known randomizing device (like an urn or a
roulette wheel) that results in a class of probability measures whose lower envelope
is a belief function [10, 27], like in the well-known Ellsberg’s urn paradox [12].
Following [28], in these cases we will speak of “objective” ambiguity. Hence, the
above objects of decisions can be modelled as generalized Anscombe-Aumann acts
[1] mapping S to the set B(X) of belief functions over X, forming the set F =
B(X)S .

A crucial aspect of making decisions under uncertainty is the possibility of
reasoning under hypotheses. Unexpected situations such as earthquakes, terror
attacks or financial crises are normally identified with “null” events and are often
ignored in decision problems. Nevertheless, “unexpected” scenarios can deeply
impact on the analysis of a decision problem [19] and should not be discarded.

Here we consider a conditional decision model involving the above generalization
of Anscombe-Aumann acts, assuming that the decision maker is able to provide a
family of preference relations {-H}H∈℘(S)0 on F indexed by the set ℘(S)0 = ℘(S)\
{∅} of non-impossible events. Every preference relation -H can be interpreted as
comparing acts under the hypothesis H.

In the model we propose, “objective” ambiguity is expressed by referring to
the class of belief functions over X (as in the models [4, 17]). On the other hand,
“subjective” uncertainty is assumed to be probabilistic, so, we model it with a full
conditional probability in the sense of [8, 11, 23], that allows for conditioning to
“null” events, but possible.

Here, we search for a representation in terms of a conditional functional CEUP,u

parametrized by a full conditional probability P (·|·) on ℘(S)× ℘(S)0 and a utility
function u : X → R. The above conditional functional consists in a mixture with
respect to a full conditional probability of Choquet expected utilities [4] contingent
on the states of the world. In particular, due to the properties of the Choquet
integral [25], every state-contingent Choquet expected utility is actually a lower
expected utility with respect to the probabilities in core(f(s)). The present model
generalizes the conditional version of the Anscombe-Aumann model given in [21]
by introducing “objective” ambiguity.

We provide a set of axioms for the family {-H}H∈℘(S)0 that is proved to be nec-
essary and sufficient for the existence of a unique full conditional probability P (·|·)
and a cardinal utility function u such that the corresponding CEUP,u functional
represents the preferences, i.e., for every f, g ∈ F and every H ∈ ℘(S)0,

f -H g ⇐⇒ CEUP,u(f |H) ≤ CEUP,u(g|H).

It turns out that a rational agent in this model behaves as a CEUP,u maximizer, so,
as a maximizer of a conditional expected value of state-contingent lower expected
utilities. Hence, the present model encodes a form of “objective” ambiguity aver-
sion. The model can be easily extended in a way to cope with different attitudes



towards “objective” ambiguity: this will be the subject of future research.
A similar decision setting, limited to the unconditional case, has been considered

by [28], where the author takes acts mapping states of the world to non-empty
compact convex polyhedral sets of probability measures over consequences. In the
same paper the author considers a representation functional different from ours,
but still relying on a mixture with respect to a “subjective” probability measure.

Important efforts have been addressed in the decision theory literature to model
“subjective” ambiguity, that is to ambiguity in “subjective” uncertainty evaluations
(see, e.g., the survey papers [13] and [15]). For instance, in the seminal papers [26]
and [16], the classical Anscombe-Aumann setting is considered but there ambiguity
is “subjective”, since the mixture of state-contingent expected utilities is done
through the Choquet integral with respect to a capacity over S in the first model,
while a class of “subjective” probabilities is considered in the second model. Still
working in the classical Anscombe-Aumann setting, we find the models [2, 3, 20].
Other lines of research take care of “subjective” ambiguity in a Savage’s setting,
through acts that map states of the world to non-empty sets of consequences [14,
22]. All the quoted decision models essentially focus on unconditional decisions.

The conditional functional CEUP,u is completely specified once the full condi-
tional probability P (·|·) and the utility function u have been elicited by the decision
maker. In general, an agent is only able to provide few comparisons for few condi-
tioning events. In this case, the first issue is to check the consistency of the given
comparisons with the model of reference. When consistency holds, it is easily seen
that an elicitation procedure relying on a finite number of arbitrary comparisons
cannot guarantee the uniqueness of P and the cardinality of u in general.

We provide an elicitation procedure that reduces to a Quadratically Constrained
Linear Problem (QCLP). Unfortunately, the quadratic constraints in the problem
are generally not positive definite, so, the problem is generally not convex: interior
points algorithms are not suitable. The problem can be solved with a branch and
bound algorithm coping with global optimization of non-linear problems, such as
the Couenne optimizer [7].

2 Model description

Consider the following decision-theoretic setting:

• X = {x1, . . . , xm}, a finite set of consequences;

• ℘(X)0 = ℘(X) \ {∅}, the set of multi-consequences, i.e., non-empty sets of
consequences;

• B(X) = {Bel : ℘(X)→ [0, 1]}, the set of all belief functions on ℘(X);

• S = {s1, . . . , sn}, a finite set of states of the world;

• ℘(S), the set of events;



• ℘(S)0 = ℘(S) \ {∅}, the set of scenarios, i.e., non-impossible events;

• F = B(X)S = {f : S → B(X)}, the set of all acts;

• {-H}H∈℘(S)0 , a family of preference relation on F , indexed by the set of
non-impossible events H ∈ ℘(S)0.

For every H ∈ ℘(S)0, we denote with ≺H and ∼H the asymmetric and symmet-
ric parts of -H . Moreover, for every f, g ∈ F , f -H g means “f is not preferred to
g under the hypothesis H”, f ≺H g means “g is preferred to f under the hypothesis
H”, and f ∼H g means “f is indifferent to g under the hypothesis H”.

Notice that the set B(X) contains the set

B0(X) = {δB : B ∈ ℘(X)0},

of vacuous belief functions, where δB is the belief function whose Möbius inversion
is such that mδB (B) = 1 and 0 otherwise. Let us notice that B(X) is closed with
respect to the convex combination operation defined, for every Bel1, Bel2 ∈ B(X)
and every α ∈ [0, 1], pointiwise, for every A ∈ ℘(X), as

(αBel1 + (1− α)Bel2)(A) = αBel1(A) + (1− α)Bel2(A),

and it holds
mαBel1+(1−α)Bel2 = αmBel1 + (1− α)mBel2 .

The set of acts F contains, in particular, the set of constant acts Fc whose
elements are defined, for every Bel ∈ B(X), as

Bel(s) = Bel, ∀s ∈ S.

The set F is closed with respect to the following operation of convex combina-
tion: for every f, g ∈ F and every α ∈ [0, 1], αf + (1−α)g is defined pointwise, for
every s ∈ S, as

(αf + (1− α)g)(s) = αf(s) + (1− α)g(s).

For every H ∈ ℘(S)0, the relation -H determines a relation EH on B(X)
through constant acts defined, for every Bel1, Bel2 ∈ B(X), as

Bel1 EH Bel2 ⇐⇒ Bel1 -H Bel2.

In turn, the relation EH determines a relation ≤•H on ℘(X)0 defined, for every
A,B ∈ ℘(X)0, as

A ≤•H B ⇐⇒ δA EH δB .

Finally, the relation ≤•H induces a relation ≤∗H on X defined, for every x, y ∈ X,
as

x ≤∗H y ⇐⇒ {x} ≤•H {y}.

Let ≤∗ be a weak order on X with asymmetric and symmetric parts <∗ and
=∗, respectively, and assume xσ(1) ≤∗ . . . ≤∗ xσ(m), where σ is a permutation



of {1, . . . ,m}. Then, denote X∗ = X/=∗ = {[xi1 ], . . . , [xit ]} for which <∗ is a
strict order, and we can assume [xi1 ] <∗ · · · <∗ [xit ]. The ≤∗-aggregated Möbius

inversion associated to Bel ∈ B(X) is the function M≤
∗

Bel : X∗ → [0, 1] defined, for
every [xij ] ∈ X∗, as

M≤
∗

Bel([xij ]) =
∑

xi∈[xij ]

∑
xi∈B⊆Eσi

mBel(B), (1)

where Eσi = {xσ(i), . . . , xσ(m)} for i = 1, . . . ,m. Note that M≤
∗

Bel([xij ]) ≥ 0 for

every [xij ] ∈ X∗ and
∑t
j=1M

≤∗

Bel([xij ]) = 1, thus M≤
∗

Bel determines a probability
distribution on X∗. It is easily seen that, if u : X → R then defining x ≤∗ y if and
only if u(x) ≤ u(y), for every Bel ∈ B(X), it holds

C

∫
udBel =

∑
[xij ]∈X∗

u(xij )M
≤∗

Bel([xij ]).

Let us stress that M≤
∗

Bel encodes a pessimistic aggregation of the uncertainty ex-
pressed by mBel [4]. Indeed, it holds∑

[xij ]∈X∗

u(xij )M
≤∗

Bel([xij ]) =
∑

B∈℘(X)0

(
min
x∈B

u(x)

)
mBel(B).

We are searching for a representation of {-H}H∈℘(S)0 in the form of a condi-
tional mixture of Choquet integrals, i.e., for every f ∈ F and H ∈ ℘(S)0,

CEUP,u(f |H) =
∑
s∈S

P ({s}|H)

(
C

∫
udf(s)

)
, (2)

where P (·|·) is a full conditional probability on ℘(S) × ℘(S)0 and u : X → R is a
cardinal utility function.

Consider the following axioms.

(AA1C) Weak order: ∀H ∈ ℘(S)0, -H is a weak order on F ;

(AA2C) Continuity: ∀H ∈ ℘(S)0, ∀f, g, h ∈ F , if f ≺H g ≺H h, ∃α, β ∈ (0, 1)
such that

αf + (1− α)h ≺H g ≺H βf + (1− β)h;

(AA3C) Independence: ∀H ∈ ℘(S)0, ∀f, g, h ∈ F and ∀α ∈ (0, 1)

f -H g ⇐⇒ αf + (1− α)h -H αg + (1− α)h;

(AA4C) Monotonicity: ∀H ∈ ℘(S)0, ∀f, g ∈ F , if f(s) EH g(s), ∀s ∈ S then
f -H g;



(AA5C) Non-triviality: ∀H ∈ ℘(S)0, ∃f, g ∈ F such that f ≺H g;

(AA6C) Relevance: ∀H ∈ ℘(S)0, ∀f, g ∈ F with f(s) = g(s), ∀s ∈ H then
f ∼H g;

(AA7C) Uncertainty independence: ∀f, g ∈ F and ∀H,K ∈ ℘(S)
0
, if f -H

g, f -K g, and H ∩K = ∅ then f -H∪K g;

(AA8C) State neutrality: ∀s, t ∈ S, if f(s) = f(t), g(s) = g(t), and f -{s} g
then f -{t} g.

(AA9C) Aggregate indifference: ∀H ∈ ℘(S)0, ∀A ∈ ℘(S) and ∀f, g ∈ F with

f(s) = g(s) ∀s ∈ A, if M
≤∗
H

f(s) = M
≤∗
H

g(s) ∀s ∈ A
c then f ∼H g;

Axioms (AA1C)–(AA5C) are the usual Anscombe-Aumann axioms in the
formulation of [26], stated for generalized Anscombe-Aumann acts and every pref-
erence relation in {-H}H∈℘(S)0 . Axioms (AA6C)–(AA8C) cope with condition-
ing. In particular, axiom (AA6C) expresses a focusing conditioning rule, i.e., it
states that in conditioning to H, only the part of acts inside of H counts. Axiom
(AA7C) copes with relating different conditioning events, while axiom (AA8C)
encodes a form of consistency between different states. Finally, axiom (AA9C)
is responsible for the CEUP,u representation: it says that if two possibly distinct
acts have the same ≤∗H -aggregated Möbius inversion (i.e., the same pessimistic ag-
gregation of “objective” uncertainty) then, they should be judged indifferent given
H.

The following theorem, whose proof is omitted due to a lack of space, shows
that axioms (AA1C)–(AA9C) are necessary and sufficient to get a CEUP,u rep-
resentation.

Theorem 1. The following statements are equivalent:

(i) the family of relations {-H}H∈℘(S)0 satisfies (AA1C)–(AA9C);

(ii) there exist a full conditional probability P : ℘(S) × ℘(S)0 → [0, 1] and a non-
constant utility function u : ℘(X)0 → R such that, for every f, g ∈ F and
every H ∈ ℘(S)0, f -H g ⇐⇒ CEUP,u(f |H) ≤ CEUP,u(g|H).

Moreover, P is unique and u is unique up to positive linear transformations.

Let us stress that a CEUP,v functional allows to take “null” (possible) con-
ditioning events as hypotheses and, even more, it allows to order events in ℘(S)0

according to their “unexpectation”. For that, we define, for every H,K ∈ ℘(S)0,

H v K ⇐⇒ 1∅ ≺H∪K 1H ,

with the meaning “H is no more unexpected than K”, where the act 1E , for
E ∈ ℘(S), is defined as in the proof of Theorem 1. The statement H v K expresses
the uncertainty evaluation P (H|H ∪K) > 0, i.e., it considers the probability of the



events H under the hypothesis that either H or K is true. In particular, H @ K
means P (H|H ∪ K) > 0 and P (K|H ∪ K) = 0, whereas H =� K stands for
P (H|H ∪K) > 0 and P (K|H ∪K) > 0. The relation v reveals to be a weak order
on ℘(S)0 and has been originally introduced by [9, 18, 24].

Every full conditional probability P (·|·) on ℘(S) is in bijection with a linearly
ordered class of probability measure {P0, . . . , Pk} on ℘(S), said complete agreeing
class, whose supports form a partition of S [5, 6].

Events with probability 0 essentially determine the structure of a full conditional
probability P (·|·) on ℘(S) and actually the relation v is intimately related to
{P0, . . . , Pk}.

Given P (·|·), the corresponding complete agreeing class {P0, . . . , Pk} represent-
ing it can be built through the events

Hα
0 = {s ∈ Hα−1

0 : P ({s}|Hα−1
0 ) = 0} for α = 1, . . . , k,

with H0
0 = S, by setting Pα(·) = P (·|Hα

0 ) with Hα
0 6= ∅. On the other hand,

given {P0, . . . , Pk}, for every E|H ∈ ℘(S)×℘(S)0 there is a minimum index αH ∈
{0, . . . , k} such that PαH (H) > 0 and it holds

P (E|H) =
PαH (E ∩H)

PαH (H)
.

The class of events {H0
0 , . . . ,H

k
0 } determines a decreasing class {I0, . . . , Ik} of

ideals of ℘(S), singled out by the relation v, defined as

Iα = {A ∈ ℘(S)0 : Hα
0 v A} ∪ {∅} = {A ∈ ℘(S) : A ⊆ Hα

0 }.

The class of events {H0
0 , . . . ,H

k
0 } also gives rise to a partition E = {E0, . . . , Ek} of

S obtained by setting

Eα = Hα
0 \Hα−1

0 for α = 0, . . . , k − 1,

with Ek = Hk
0 , where Eα = supp(Pα) = {s ∈ S : Pα({s}) > 0} in the complete

agreeing class representing P (·|·).

3 Model elicitation

The conditional functional CEUP,u is completely specified once the full conditional
probability P (·|·) and the utility function u have been elicited by the decision
maker (DM). In general, the DM is only able to provide few comparisons for few
conditioning events. In this case, the first issue is to check the consistency of
the given comparisons with the model of reference. When consistency holds, it
is easily seen that an elicitation procedure relying on a finite number of arbitrary
comparisons cannot guarantee the uniqueness of P and u in general.

Fixed X and S, we propose an elicitation procedure based on three different
cognitive tasks.



We ask the DM to determine a subset L = {H1, . . . ,HN} ⊆ ℘(S) that corre-
spond to those events considered as “scenarios of interest” and then to order them
according to their unexpectation, by providing a weak order v on L.

We ask the DM to provide a weak order ≤∗ on X, i.e., on consequences obtained
with certainty.

For every H ∈ L, we ask the DM to provide a finite number of strict {fl ≺H
gl}l∈LH and weak comparisons {fw -H gw}w∈WH

, with LH 6= ∅ while WH is
allowed to be empty. This assures non-triviality.

The issue is to find a complete agreeing class {P0, . . . , Pk} on ℘(S) (and, so,
a full conditional probability P (·|·)) compatible with the relation v on L (that is
such that Hi v Hj ⇐⇒ P (Hi|Hi ∪ Hj) > 0) and a utility function u : X → R
increasing with respect to ≤∗, such that the corresponding CEUP,u conditional
functional preserves all the strict and weak preference comparisons.

At this aim, let L/=� = {[Hi1 ], . . . , [HiM ]} and assume [Hi1 ] @ . . . @ [HiM ].

Now, define BM+1
0 = ∅ and for α = 0, . . . ,M , Bα0 =

⋃M
β=α

⋃
H∈[Hiβ ]

H and Eα0 =

Bα0 \Bα+1
0 .

Every linearly ordered class of probability measures {P ∗0 , . . . , P ∗M} on ℘(S)
where supp(P ∗α) ⊆ Eα0 , for α = 0, . . . ,M , is said minimal agreeing class and
determines a conditional probability P ∗(·|·) on ℘(S) × add(L), where add(L) is
the set of events obtained closing L with respect to unions. The conditional prob-
ability P ∗(·|·) can be further extended (generally not in a unique way) to a full
conditional probability P (·|·) on ℘(S) compatible with v on L. One of the possible
extensions is determined by the complete agreeing class {P ∗0 , . . . , P ∗M , P ∗M+1} where
P ∗M+1 is an arbitrary probability measure on ℘(S) such that supp(P ∗M+1) = S \⋃M
α=0 supp(P ∗α). The adjunct of P ∗M+1 is necessary only if S \

⋃M
α=0 supp(P ∗α) 6= ∅.

With such an input, the elicitation procedure consists in solving the following
optimization problem with unknowns the minimal agreeing class {P ∗0 , . . . , P ∗M},
the utility function u and the dummy variable δ:

maximize δ subject to:

∑
s∈Eα0

P ∗α({s})

 ∑
[xij ]∈X∗

u(xij )
(
M≤

∗

fl(s)
([xij ])−M

≤∗

gl(s)
([xij ])

)+ δ ≤ 0,

∑
s∈Eα0

P ∗α({s})

 ∑
[xij ]∈X∗

u(xij )
(
M≤

∗

fw(s)([xij ])−M
≤∗

gw(s)([xij ])
) ≤ 0,

∑
s∈Eα0

P ∗α({s}) = 1,

P ∗α({s}) ≥ 0, ∀s ∈ Eα0 ,
u(xi1) = 0, u(xit) = 1, u(xij )− u(xij+1) + δ ≤ 0, for j = 1, . . . , t− 1,

−1 ≤ δ ≤ 1,



for α = 1, . . . ,M and all H ∈ [Hiα ], for all l ∈ LH , for all w ∈ WH . The above
optimization problem is a Quadratically Constrained Linear Problem (QCLP) that
is a particular case of a Quadratically Constrained Quadratic Problem (QCQP).
Unfortunately, the quadratic constraints in the problem are generally not positive
definite, so, the problem is generally not convex: interior points algorithms are not
suitable. The problem can be solved with a branch and bound algorithm coping
with global optimization of non-linear problems, such as the Couenne optimizer
[7].

Solving the above optimization problem allows to check both the consistency of
the given preference statements and, if consistency holds, to find a full conditional
probability P (·|·) and a utility function u determining the conditional functional
CEUP,u. Indeed, the preference statements are consistent with the model if and
only if δ > 0 and in this case the solution of the system determines P (·|·) and u,
up to the possible arbitrary choice of the probability measure P ∗M+1.

4 A paradigmatic example

Take the set of states of the world S = {s1, s2, s3, s4} spanned by events

• K = “North Korea and USA enter into war next year”;

• G = “Italian GDP increases next year”;

with K = {s1, s2} and G = {s1, s3}.
Consider three unitary financial instruments that can result in a loss of e50,

in a null gain or in a gain of e100, implying X = {−50, 0, 100}. From statistics
of previous years we only have partial information on the performances of each
instrument, that are listed below:

Instrument 1: It is only known that it guarantees a gain of e100 in 30% of cases;

Instrument 2: It is only known that it results in a loss of e50 in 20% of cases;

Instrument 3: No information is available.

Hence, instrument i determines a class of probability measures Pi on ℘(X) whose
lower envelope is easily shown to be a belief function Beli = min Pi, with:

P1 = {P : ℘(X)→ [0, 1]|P is a probability measure, γ ∈ [0, 0.7],

P ({−50}) = γ, P ({0}) = 0.7− γ, P ({100}) = 0.3},
P2 = {P : ℘(X)→ [0, 1]|P is a probability measure, γ ∈ [0, 0.8]

P ({−50}) = 0.2, P ({0}) = γ, P ({100}) = 0.8− γ},
P3 = {P : ℘(X)→ [0, 1]|P is a probability measure}.

Consider the following investment strategies in which the adopted financial
instrument is contingent on the state of the world:



s1 s2 s3 s4
f Bel3 Bel1 Bel1 Bel2
g Bel3 Bel3 Bel2 Bel3

The question is: How should a DM decide between f and g conditionally to
events K and Kc?

Suppose that our DM is not able to express directly his preference between f
and g, conditionally to K and Kc. Nevertheless, our DM is a profit maximizer and
believes that a war between North Korea and USA next year is unexpected, while
it is more likely a decrease of Italian GDP next year.

The fact that event K is unexpected, i.e., it is judged as “null” by our DM,
does not rule out its possible realization. In particular, if event K were true then
our DM believes that it would be more likely an increase of Italian GDP, due to a
profit of Italian weapons factories.

Hence, our DM is able to provide the following information: L = {K,Kc} with
Kc @ K; −50 <∗ 0 <∗ 100; the worst and best multi-consequences A = {−50} and
A = {100}. For every E ∈ ℘(S), define the act

1E(s) =

{
δA, if s ∈ E,
δA, if s /∈ E.

In turn, the beliefs of our DM can be translated as follows:

1{s3} ≺Kc 1{s4} and 1{s2} ≺K 1{s1}.

In this case we have that E0
0 = Kc and E1

0 = K. To avoid cumbersome notation,
denote pαi = P ∗α({si}) and u1 = u(−50), u2 = u(0), u3 = u(100). We need to solve
the following optimization problem

maximize δ subject to:

−p03u1 + p03u3 + p04u1 − p04u3 + δ ≤ 0,

p11u1 − p11u3 − p12u1 + p12u3 + δ ≤ 0,

p03 + p04 = 1,
p03, p

0
4 ≥ 0,

p11 + p12 = 1,
p11, p

1
2 ≥ 0,

u1 = 0, u2 = 1, u1 − u2 + δ ≤ 0, u2 − u3 + δ ≤ 0,
−1 ≤ δ ≤ 1,

for which the Couenne optimizer finds the solution p03 = 0.18358, p04 = 0.81642,
p11 = 0.81642, p12 = 0.18358, u1 = 0, u2 = 0.5, u3 = 1, and δ = 0.5. Since δ > 0 the
preference statements are consistent with the model and a full conditional proba-
bility P (·|·) on ℘(S) is that represented by the complete agreeing class {P ∗0 , P ∗1 }
whose distributions are



{s1} {s2} {s3} {s4}
P ∗0 0 0 0.18358 0.81642
P ∗1 0.81642 0.18358 0 0

With such P (·|·) and u we have

CEUP,u(g|K) = 0 < 0.055074 = CEUP,u(f |K),

CEUP,u(g|Kc) = 0.073432 < 0.381642 = CEUP,u(f |Kc),

so, g ≺K f and g ≺Kc f , i.e., under both hypothesis the DM should choose f .
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