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Abstract

Iterative Scaling is a widely used method to solve maximum entropy prob-
lems. Depending on the application they are used for, there are many different
versions of Iterative Scaling algorithms. This paper compares and reconnects
two popular algorithms, which share a name, but are not equal and even
converge to different limit points.
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1 Introduction

Beginning with the Iterative Scaling algorithm described by Csiszár in [6], there
now exist many different types of Iterative Scaling algorithms depending on the
respective application. There are two frequently used algorithms, which converge
to different limit points but are both called Generalized Iterative Scaling (GIS)
algorithm. These algorithms are the one presented by Darroch and Ratcliff in [8]
and the algorithm used for example by Goodman in [10] or Huang et al. in [11].
To prevent confusion we will call the last one Conditional Generalized Iterative
Scaling (CGIS) algorithm.

In order to emphasize their similarities and differences we present both algo-
rithms and categorize them according to two different properties. At first we take
a look at the instance they are operating on. In the case of the GIS algorithm it is
the full probability distribution, in contrast to the CGIS algorithm that operates on
parameters λ. We introduce an intermediate algorithm, the Joint GIS algorithm
to analyse this difference.



Secondly, the form of the probability distribution is different in both algorithms.
The GIS and Joint GIS algorithm use joint distributions while the CGIS algorithm
computes conditional distributions. This transformation is the reason for the differ-
ent limit points. GIS and Joint GIS converge to the maximum entropy estimation,
in contrast to CGIS which converges to the conditional maximum entropy estima-
tion. Our tool to study this difference is the conditional GIS algorithm, a new
algorithm which works on the whole probability distribution but with the condi-
tional maximum entropy principle. The categorization of these four algorithms is
shown in Figure 1.

iteration on
distribution

joint conditional

full distribution GIS [8], [5] conditional GIS
Section 3 Section 5

parameter Joint GIS CGIS [10], [11]
Section 4 Section 6

Figure 1: Categorization of the four different algorithms, namely GIS, conditional GIS,
Joint GIS and CGIS according to the used distribution and the component over which
they iterate.

2 Iterative Scaling

This section gives a brief introduction to Iterative Scaling. The probability distri-
butions discussed here are discrete distributions on a finite set X and the set of
these distributions will be denoted by P.

Iterative Scaling algorithms are a method to solve maximum entropy problems.
In this setting, the algorithms determine a probability distribution on X with pre-
determined properties. The properties are fixed by introducing constraints which
describe the expected value of a feature and are defined for i P t1, . . . ,mu as:

ÿ

xPX

P pxqfipxq “ ki, ki ě 0,
ÿ

i

ki “ 1. (1)

The constraints are called consistent, if the set of positive probability distri-
butions on X, which fulfil these, is not empty. An important result for Iterative
Scaling is the duality in Lemma 1. We will need the following sets:

Lpf, kq “ tP P P |
ÿ

xPX

P pxqfipxq “ ki, i P t1, . . . ,muu

Qpf, P p0qq “

"

P P P | P pxq “
1

ZP p0q pλ ¨ fq
e

ř

i
λifipxq

P p0qpxq, λi P R, x P X

*

.



Lemma 1. Suppose that the distribution pP satisfies the constraints and that
Dp pP ‖ P p0qq ă 8 for a probability distribution P p0q. Then any of the following
properties determine P ‹ uniquely and the following statements are equivalent:

(1) P ‹ “ argmin
pQPQpf,P p0qq

Dp pP ‖ pQq

(2) P ‹ “ argmin
PPLpf,kq

DpP ‖ P p0qq

(3) P ‹ P Lpf, kq X Qpf, P p0qq

Proof. The proof is given by Ay et al. in Section 2.8.3 Theorem 2.8 in [1].

3 The GIS algorithm

In order to prove the convergence of the algorithm Darroch and Ratcliff apply in
[8] the following restrictions to the features:

ÿ

x

fipxq “ 1 and fipxq ě 0. (2)

It is possible to define less strict restrictions as for example Curran and Clark point
out in [7], but at this point it is sufficient to use the original ones.

Theorem 3.1 (The GIS algorithm, [8]). Let P p0q be the uniform distribution, fi
as in (2), n P N and

P pnqpxq “ P pn´1qpxq

m
ź

i“1

¨

˝

ki
ř

x1PX

P pn´1qpx1qfipx1q

˛

‚

fipxq

.

The P pnq converges to a positive and unique solution P ‹ P Qpf, P p0qq fulfilling the
constraints (1) and the properties described in Lemma 1.

Additionally, it is possible to prove that P ‹ P Lpf, kq X Qpf, P p0qq under the
condition that the constraints are consistent.

Proof. This was proven by Csiszár in [5].

4 The Joint GIS algorithm

The parameters λi and the features fi determine the density of a Gibbs distri-
bution uniquely. Therefore, we do not have to compute P pnq in each step of the
algorithm in order to find P ‹. That is why it is sufficient to find an iteration for
the parameters. In each step, the parameters λi will be altered by δi, so that

λ
pn`1q

i “ λ
pnq

i ` δi.



Although it is easy to check that the iteration below and the one described in
Theorem 3.1 are related, we are not able to conclude immediately that this new
algorithm converges. Darroch and Ratcliff state in [8] at the end of Section 2
without a proof that the parameters can be compiled in an easy way. In [2] Brown
et al. are able to give this proof for some cases, but not for the general case.

In conclusion, we will prove the convergence of the algorithm based on the
framework Pietra et al. use in [13] to prove the convergence of another form of
iterative scaling algorithm, their Improved Iterative Scaling algorithm. Denote by

Pδpxq “
1

Zpλ ` δ, fq
¨ e

m
ř

i“1
pλi`δiqfipxq

, Zpλ ` δ, fq “
ÿ

xPX

e

m
ř

i“1
pλi`δiqfipxq

. (3)

The goal is to maximize MpQ,Pδq :“ ´DpQ ‖ Pδq with a fixed Q P P that satisfies
the constraints and to use Lemma 1. Therefore we need to find a lower bound of
the steps of the iteration which is easy to maximize respecting δ. The following
Definition 1 and Theorem 4.1 are the ones Pietra et al. use in [13] in Section 4.B.

Definition 1. A function B : Rm ˆ P Ñ R is an auxiliary function for MpQ,Pδq

if it holds the following properties:

(1) For all P P P and δ P Rm we have: MpQ,Pδq ě MpQ,P q ` Bpδ, P q.

(2) Bpδ, P q is continuous in P P P and C 1 in δ P Rm.

(3) Let t P R. Then Bp0, P q “ 0 and:

d

dt

ˇ

ˇ

ˇ

ˇ

t“0

Bpt ¨ δ, P q “
d

dt

ˇ

ˇ

ˇ

ˇ

t“0

MpQ,Pt¨δq.

It is possible to define the following sequence:

P pn`1q “ P
pnq

δpnq , with δpnq “ argmax
δPRm

Bpδ, P pnqq.

Property p1q of Definition 1 makes sure that MpQ,Pδpnq q increases with every step.
With this we can get to the next result:

Theorem 4.1. Let P pnq P P be a sequence where the support of P p0q is X and
the properties

P pn`1q “ P
pnq

δpnq , δpnq P Rpmq, Bpδpnq, P pnqq “ sup
δPRm

Bpδ, P pnqq.

Then MpQ,Pδpnq q increases monotonically, it converges to

max
pQPQ̄pf,P p0qq

MpQ, pQq and lim
nÑ8

P pnq “ P ‹ “ argmax
pQPQpf,P p0qq

MpQ, pQq.

Proof. This is proven in [13] Section 4.B.



In order to resemble the CGIS algorithm, we will now make use of new restric-
tions towards the features:

f c :“ max
xPX

m
ÿ

i“1

fipxq 0 ď fipxq ď 1, i “ 1, . . . ,m.

Additionally, we assume that f c ě 1. Note that we no longer need the fi to sum
up to 1 or any fixed constant. In [7] Curran and Clark proved the convergence of
the algorithm without a correction feature

fm`1 :“ 1 ´

m
ÿ

i“1

fipxq

f c

by fixing its value with λm`1 ” 0 to zero. In order to apply the Jensen’s inequality
we will use the same trick in the next lemma.

Lemma 2. Let Q,P P P and δ P Rm. Then the function

Bpδ, P q “ 1 `
ÿ

xPX

Qpxq

m
ÿ

i“1

δifipxq ´
ÿ

xPX

P pxq

m`1
ÿ

i“1

fipxq

f c
eδif

c

is an auxiliary function for MpQ,P q with δm`1 “ 0 fixed.

Proof of Lemma 2. We will prove the properties listed in Definition 1. To prove
the first property we use logpxq ď x ´ 1, for all x ą 0 and the Jensen’s inequality.

(1) MpQ,Pδq ´ MpQ,P q ě
ÿ

xPX

Qpxq

m
ÿ

i“1

δifipxq ´
ÿ

xPX

Qpxq

˜

ÿ

x1PX

e

m
ř

i“1
δifipx1

q

P px1q ´ 1

¸

ě Bpδ, P q.

(2) The definition of f c assures that f c ą 0. As a sum of continuous functions
Bpδ, P q is continuous in P and

d

dδ
Bpδ, P q “

˜

ÿ

xPX

Qpxqf1pxq ´ P pxqf1pxqeδ1f
c

. . .
ÿ

xPX

Qpxqfmpxq ´ P pxqfmpxqeδmfc

¸

.

Every entry of the Jacobian matrix is continuous in δi and we gain property (2).

(3) For δ “ 0pmq we get: Bp0, P q “ 1´
ř

xPX

P pxq
m`1
ř

i“1

fipxq

f c
“ 1´1 “ 0. With t P R

the differentiation leads to:

d

dt

ˇ

ˇ

ˇ

ˇ

t“0

MpQ,Pt¨δq “
d

dt

ˇ

ˇ

ˇ

ˇ

t“0

ÿ

xPX

ln

˜

1

ZP pt ¨ σ, fq
e

m
ř

i“1
t¨δifipxq

P pxq

¸

´
ÿ

xPX

QpxqlnpQpxqq

“
ÿ

xPX

Qpxq

m
ÿ

i“1

δifipxq ´
ÿ

xPX

P pxq

m
ÿ

i“1

δifipxq “
d

dt

ˇ

ˇ

ˇ

ˇ

t“0

Bpt ¨ δ, P q.



It remains to show that BpQ,P q and Theorem 4.1 result in the desired iteration:

Lemma 3 (The Joint GIS algorithm). Let λ
p0q

i “ 0 and

λ
pn`1q

i “ λ
pnq

i `
1

f c
ln

¨

˝

ki
ř

xPX

P pnqpxqfipxq

˛

‚ . (4)

This converges to λ‹
i “ lim

nÑ8
λ

pnq

i . Additionally we have

P pxq “
1

Zpλ‹, fq
e

m
ř

i“1
λ‹
i fipxq

“ P ‹pxq

for all x and P ‹ is the same limit point as the one of GIS in Theorem 3.1.

Proof of Lemma 3. Theorem 4.1 provides us with an iteration that convergences

to argmax
pQPQpf,P p0qq

MpQ, pQq. Choosing λ
p0q

i to be zero leads to P p0q as the uniform

distribution. That means that the initial points of both algorithms are the same.
Now we will take a look at δpnq defined in Theorem 4.1 and maximize Bpδ, P pnqq

in respect to δ. For every i P t1, . . . ,mu we get:

δi “
1

f c
ln

¨

˝

ki
ř

xPX

P pnqpxqfipxq

˛

‚ .

This is in fact a maximum of Bpδ, P pnqq because of the negativity of the Hessian
matrix. We are now able to iterate over the λi separately, because of the following
equality:

sup
δPRm

Bpδ, P pnqq “ 1 `

m
ÿ

i“1

sup
δiPR

˜

ÿ

xPX

Qpxqδifipxq ´
ÿ

xPX

P pxq
fipxq

f c
eδif

c

¸

.

Together with (3) this leads to the iteration stated in this Lemma. This proves
the convergence of the algorithm. Lemma 1 additionally yields the equality of the
limit of this algorithm and the one of the algorithm described in Theorem 3.1.

5 The conditional GIS algorithm

In this section we will perform the second step towards the implemented CGIS
algorithm. This approach was also described in [14] in Section 4.5 and in [3] in
Section 3. We will switch from joint distributions to conditional distributions. The
GIS algorithm can be very expensive regarding the needed time for each step in
the iteration. In each step the algorithm iterates over every x P X. Consider an



experiment as an application for the algorithm with a huge space X of possible
outcomes. It is likely to assume that there are applications in which the space
of actually occurring x is a rather small subset X 1 Ă X. By substituting the
joint probabilities with a special form of probability, we are able to iterate only
over the x that actually appear in the data. First, we will introduce this new
form of probability distributions regarding a target distribution Pt satisfying the
constraints in general. This approach allows us to introduce the next step without
assuming the existence of data.

In contrast to the parameter estimation this step actually changes the limit of
the convergence. By using a different form of probability distributions the maxi-
mum entropy principle turns into the conditional maximum entropy principle.

To do so, we have to be able to write X as X “ X1 ˆ X2 by defining two
disjoint subsets A1, A2 of t1, . . . , ru with A1 Y A2 “ t1, . . . , ru and the alphabets
Aβ , β P t1, . . . , ru of xβ P Aβ :

Xi “ txi “ pxβqβPAi
| x P

ą

βPAi

Aβu, i P t1, 2u.

The probability of P P P on X1 is defined by:

P pxA1q “
ÿ

xPXpxAi
q

P pxq, xA1 P X1 with XpxAiq “ ty P

r
ą

β“1

Aβ | yAi “ xAiu.

With the additional restriction that the marginal possibility of the x1 P X1 equals
the empirical distribution pP px1q, x1 P X1 derived from a fixed set of data, we are
able to define an algorithm iterating only over the x1 P X1 occurring in the tests.
Suppose that Pt P P satisfies the constraints (1). Now we are able to change P px1q

to Ptpx1q to create the new constraints:
ÿ

x1PX1

Ptpx1q
ÿ

x2PX2

P px2 | x1qfipx1, x2q “ ki. (5)

This leads to the definition of a new probability distribution on X:

P cpxq “ Ptpx1q ¨ P px2 | x1q, for all x1 P X1, x2 P X2.

Now we take a closer look at the new probability distribution P c. While Pt is fixed
to the target distribution, P px2 | x1q is a conditional Gibbs-distribution:

P px2 | x1q “
1

Zx2
px1q

e

m
ř

i“1
λifipx1,x2q

, Zx2px1q “
ÿ

x2PX2

e

m
ř

i“1
λifipx1,x2q

. (6)

It is possible to define similar sets to the ones in Section 2:

Lcpf, kq “

#

P P P | P px1q “ Ptpx1q, for all x1 P X1 and
ÿ

xPX

P pxqfipxq “ ki

+

Qcpf, P p0qq “

#

P P P | P pxq “ Ptpx1q
1

Zx2
px1q

e

m
ř

i“1
λifipxq

P p0qpxq, λi P R, x P X

+

.



Now we are able to define a conditional equivalent to Lemma 1:

Lemma 4. Suppose that the distribution pP P Lcpf, kq satisfies the constraints and

that Dp pP ,Uq ă 8. If P ‹ P Lcpf, kq X Qcpf, Uq exists, it is unique and holds the
properties:

(1) P ‹ “ argmin
pQPQcpf,Uq

Dp pP pX2 | X1q ‖ pQpX2 | X1qq

(2) P ‹ “ argmin
PPLpf,kq

DpP pX2 | X1q ‖ UpX2 | X1qq

Proof. With the chain rule (9) the proof can be easily derived from the one pre-
sented by Pietra et Al. in Proposition 4 in [13].

All things considered, we are able to maximize the conditional entropy by ad-
justing the parameters λi of (6). Now we define the conditional GIS and it con-
verges to the distribution of the form of P c that maximizes the conditional entropy.

Lemma 5 (The conditional GIS algorithm). Let ki be defined as in (5) and P p0q

be the uniform distribution. If a probability distribution of the form (6) satisfying
the constraints exists, then

P pnqpxq “ P pn´1qpxq

m
ź

i“1

¨

˚

˝

ki
ř

x1PX1

Ptpx1q
ř

x2PX2

P pn´1qpx2 | x1qfipx1, x2q

˛

‹

‚

fipxq

fc

converges to P ‹ of the form (6), satisfying the constraints and maximizing the
conditional entropy.

Proof. The following proof is derived from the one Darroch and Ratcliff presented
in [8] of Theorem 1. At first we will use the inequality between the generalized
arithmetic and geometric means:

m
ź

i“1

˜

ki

k
pn´1q

i

¸

fipxq

f c

ď

m
ÿ

i“1

fipxq

f c
¨

˜

ki

k
pn´1q

i

¸

(7)

with k
pn´1q

i “
ř

x1PX1

Ptpx1q
ř

x2PX2

P pn´1qpx2 | x1qfipx1, x2q. Applying this leads to

ÿ

xPX

P pnqpxq ď
ÿ

xPX

P pn´1qpxq

m
ÿ

i“1

fipxq

f c
¨

¨

˝

ki
ř

xPX

fipxqP pn´1qpxq

˛

‚ “
1

f c

m
ÿ

i“1

ki “
1

f c



and we have
ř

xPX

P pnqpxq ď
1

f c
ď 1, therefore

m
ř

i“1

ř

xPX

P pnqpxqfipxq ď 1
fc ď 1.

For all n, P pnqpxq ą 0 and k
pnq

i “
ř

xPX

P pnqpxqfipxq ą 0. The positivity of the

KL-divergence leads to

Dpki ‖ k
pnq

i q “

m
ÿ

i“1

kilog2

˜

ki

k
pnq

i

¸

ě 0. (8)

Let Q be an arbitrary probability distribution satisfying (1). Then

DpQ ‖ P pn`1qq “
ÿ

xPX

Qpxqlog2

ˆ

Qpxq

P pn`1qpxq

˙

“ DpQ ‖ P pnqq ´
1

f c
Dpk ‖ kpnqq.

Now tDpQ ‖ P pn`1qq, n P Nu is a decreasing bounded sequence. Therefore it has
a limit point and Dpk ‖ kpnqq Ñ 0 as n Ñ 8. The properties of ki and Pinsker’s
inequality

Dpk ‖ kpnqq ě
1

2

m
ÿ

i“1

| ki ´ k
pnq

i |2

lead to k
pnq

i Ñ ki as n Ñ 8. Suppose P1, P2 are different limit points of the
bounded sequence tP pnqu. Because of (5), both satisfy the constraints (1) and are
of the form (6). Additionally P1, P2 are positive probability distributions. Now
we are able to apply Lemma 4 and this yields that P1 “ P2.

6 The CGIS algorithm

Applying both changes, the parameter estimation and the conditional distribution,
leads to the desired CGIS algorithm:

Lemma 6 (The CGIS algorithm, [10], [11], [7]). Let λ
p0q

i “ 0, ki be consistent
and as in (5) and P pnq of the form (6) with parameters λpnq. The iteration

λ
pnq

i “ λ
pn´1q

i `
1

f c
ln

¨

˚

˝

ki
ř

x1PX1

Ptpx1q
ř

x2PX2

P pn´1qpx2 | x1qfipxq

˛

‹

‚

converges to the limit λ‹
i with P ‹px2 | x1q “ 1

Zx2
e

m
ř

i“1
λ‹
i fipxq

. Additionally,

P ‹pxq “ Ptpx1qP ‹px2 | x1q is conditional maximum entropy estimation.

Proof. Curran and Clark provide a proof in the Appendix of [7].



7 Comparison

In order to understand the relationship between GIS and CGIS, we will take a look
at the following chain rule for entropy:

HP pX1, X2q “ HP pX1q ` HP pX2 | X1q (9)

with the conditional entropy defined as

HP pX2 | X1q “ ´
ÿ

x1PX1

P px1q
ÿ

x2PX2

P px2 | x1qlog2pP px2 | x1qq.

A proof for this rule is given by [4] in Theorem 2.2.1. Notice that the entropy
equals the conditional entropy in the case of a fixed marginal distribution on X1.
That means that the algorithms GIS and Joint GIS iterate towards the same limit
as the conditional ones under the restriction that the marginal distribution on X1

is fixed in both cases to the same values. This can be easily done by introducing
an additional feature for the desired distribution. However, in the general case
the limits are not equal, as we can observe in Figure 2 (a). This example for
the different limit points of maximum entropy and conditional maximum entropy
estimation was given by Yuret in [15]. We gain the values calculated by Yuret with
an implementation of Joint GIS and CGIS in C++ available at [9].

Figure 2: (a) CGIS vs. Joint GIS (b) AND: Joint GIS, CGIS and SCGIS

Additionally, we are able to compare the performances of the algorithms with
an easy example. Consider X as X “ X1 ˆ X2 ˆ X3, with pX1, X2q as input and
X3 as output. Now, we are trying to predict the value of X3 while only knowing
the input. Our set of data is the logical AND gate listed in Figure 3(a).



At first we assume that X3 depends on X1 and X2, but not their interactions as
illustrated in Figure 3 (a) 2. Computing the data under this assumption leads to an
probability distribution, which we compare to a second probability distribution by
calculating the KL-divergence between them. The second probability distribution
is gained by expecting that X3 depends on X1 and X2 simultaneously and their
interaction as visualized in Figure 3 (b) 2.

X1 X2 X3

0 0 0
0 1 0
1 0 0
1 1 1

X1

1.

X2

X3

X1

2.

X2

X3

Figure 3: (a) AND gate (b) different systems of dependences

As indicated above, we used a third feature in case of the Joint GIS algorithm
in order to gain the same limit point as the CGIS algorithm. Figure 2 (b) shows
the results of this test. We observe that both algorithms now share the limit point
0 and that CGIS converges considerably faster than Joint GIS. The reason for this
difference is in this case not the choice of the set X, but the additional feature we
introduced for the Joint GIS algorithm.

A downside of iterative scaling algorithms is their poor performance compared
to gradient methods shown for example by Huang et al. in [11] or by Minka in [12].
That is why we display a third algorithm in Figure 2 (b). This algorithm is a faster
version of CGIS, the Sequential Conditional Generalized Iterative Scaling (SCGIS)
algorithm presented by Goodman in [10]. Although SCGIS is considerably faster
than the other algorithms presented here, it is still not as good as the gradient
methods it was compared to by Huang et al. in [11]. This leads to the result that
an iterative scaling method may not be the fastest way to calculate a maximum
entropy model, but a reliable one.

In conclusion, we were able to fully explain the connection and highlight the
differences between the considered Generalized Iterative Scaling algorithms.
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