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Abstract

p-Hacking is a bad science practise, when researchers selects statistical
hypothesis ex post such that they omits unsignificant results. From the game-
theoretic point of view, the exchange of scientific information via publications
is a Bayesian game: Each player-experimenter publishes a favourable part of
the result of the experiment, but the ”denominator” of this result (= number
of test and set of negative results) remains his private information. Publishing
and citation practice then demotivates researchers to show full and correct
results, and favors the p-Hacking-biased results. As a step to the solution,
I propose the concept of Compromise Correction. Firstly we adjust the ob-
tained p-values by transforming p → 1

p
Now we model the multiple-testing

problem as a cooperative game: For each S - subset of the tests, value of char-

acteristic function is ν(S)= Max
i∈S

(
1
pi

)
The idea of compromise correction is

to solve the problem of multiple testing, when taking into account the worth
of each coalition = each subset of set of experiments. The solution to this
problem is the Shapley value:

pk →
1

1
kpk
−
∑n

i>k
1

(i(i−1))pi

p1 ≤ p2 ≤ ... ≤ pn

The solution of this problem is tractable, keeps the order of values, is ro-
bust w.r.t. changes in ”tail” (e.g. increasing the number of strongly negative
results) and is piecewise-rational. Robustness w.r.t. tail changes is a prop-
erty that motivates testing and additional questions and publishes results
correctly without fear of relativizing the already achieved significant results.
Bonferoni’s, resp. Šidak’s correction, unlike a compromise correction, limits
the maximum ”safe” number of additional tests



1 Introduction

1.1 Problem: p-hacking & replication crisis

The replication crisis is a crisis of credibility of the published results of scientific
experiments. There is a growing suspicion that many of the results reported as
statistically correct, were in actual fact the fluctuation of the random component
of observing one experiment in one laboratory. We must always take into account
the non-zero frequency of non-replicable and randomly emerged results; part of
them arises necessarily, on the basis of statistical error or professional misconduct.
However, the ratio of studies whose published results had not been repeated even
within the maximum imitation of the original laboratory conditions, significantly
exceeds the degree of what could be explained by statistical error. Extensive re-
search [1] has succeeded in repeating 25 % of 67 articles; all of them were from the
oncology and haematology areas. This replication crisis increases research costs
into amounts spent on fruitless follow-up clinical trials and, in addition, threat-
ens health as well as confidence in science. A study of a similar type [10] has
also shown ”resistance” of non-replicable results to the prestige of the journal :
” The reproducibility of published data did not significantly correlate with journal
impact factors, the number of publications on the respective target or the number
of independent groups that authored the publications. ” [10]

One of the causes is the so-called p-Hacking [15] The idea of p-Hacking is the
hypothesis that non-replicable results arise by the researcher hiding some of the
experiment’s circumstances. Experimenters conceal multiple-testing and publish,
without correction, only those conclusions that have been proven to be significant in
the experiment. The p-Hacking hypothesis is statistically testable on large data (=
p-values from many articles). [2] statistically proved the non-standard behaviour
of the p-value curve around the ”magical” threshold p=0.05

However, the replication crisis is not reducible to a mere p-value crisis. The
problem would not be solved by replacing a p-value by other statistical indicators
in scientific outputs. Cherry-picking can be done based on any statistical indicator.
For instance, [3] proved limited replicability of effect size of published results. The
p-value is advantageous due to its universality and predictable statistical distribu-
tion. For negative results, there is an uniform distribution U(0, 1) and, for all the
results, a mix of uniform and β-distribution [8]

1.2 Cooperative Game Theory: Basic Definitions

The main of this article is to look to replication crisis and p-hacking from the game-
theoretic point of view. So, this chapter contains basic definitions and concepts of
the cooperative game theory.

Definition: The pair (Ω, v) is a cooperative game (in characteristic function
form) if Ω is a finite set of players and ν : 2Ω → R is a characeristic function that
assigns to every coalition S ⊆ Ω an attainable profit v(S) such that v(∅) = 0.

A cooperative game is caled



• aditive, if for all S, T ∈ 2Ω with S ∩ T = ∅, v(S ∪ T ) = v(S) + v(T ).

• monotone, if for all T,R ∈ 2Ω with S ⊂ T , ν(S) ≤ ν(T )

• superaditive, if for all S, T ∈ 2Ω with S ∩ T = ∅, v(S ∪ T ) ≥ v(S) + v(T ).

• subaditive, if for all S, T ∈ 2Ω with S ∩ T = ∅, v(S ∪ T ) ≤ v(S) + v(T ).

Superadditivity implies monotonity, but but monotonity does not imply super-
additivity. The game class maxV alueGame[] examined in the following section is
the set of monotones, but generically subaditive games.

Let Γ = Γ(Ω) the set of all cooperative games on Ω and by Γ1 = Γ1(Ω) the
subset of all aditive cooperative games on Ω

Definition: A value of games is an operator Ψ : Γ→ Γ1 s.t. Ψ ◦Ψ = Ψ
In particular, we define Ψi(v) := Ψ◦v({i}). Clearly, Ψ◦v is uniquelly determined

by the numbers Ψi(v).
A special case of the value is the Shapley value:
Definition (formula): The Shapley value is a value φ defined by the formula

φi ◦ v =
∑

R⊇{i}

∆v(R)

|R|

where ∆R(v) ∈ R is a Harsanyi dividend of the coalition R ⊆ Ω defined by

∆R(v) =
∑
T⊆R

(−1)|R|−|T |v(T )

An alternative, but equivalent definition of the Shaplye value is axiomatic.
Shapley theorem [13] proves the existence of a unique game-value operator ϕ as-
suming it satisfies the following four axioms:

1. Linearity: ϕ(αv + βv′) = αϕ(v) + βϕ(v′) for all (Ω, v), (Ω, v′) ∈ Γ and
α, β ∈ R

2. Efficiency: For all games (Ω, v):
∑

i ϕi(v) = v(Ω)

3. Null-player property: if i ∈ Ω is a null-player, i.e. ∀R ⊆ Ω v(R ∪ {i}) =
v(R), then ϕi(v) = 0

4. Symmetry (sometimes called anonymity): ϕ(ρ(i))(ρ · v) = ϕi(v) for every
permutation ρ ∈ SΩ (the function ρ · v is defined by ρ · v(ρ(R)) := v(R)) for
any R ⊆ Ω)

Axioms 1-4 are independent; in [5] and in [12] are examples of values satisfying
any 3 of them and not the 4th.

From the geometric point of view, cooperative game is a point of R2Ω

and set
of all cooperative games Ω is a 2|Ω| − 1 dimensional subspace of the vector space
R2Ω



From the game-theoretic point of view, cooperative game illustrates an economic
situation where a coalition profit or cost depends in general on the involved players
in a non-aditive way.

Values of games provide a tool how to evaluate the contibutions of the players.
In particular, the Shapley value describes a way how to do it in a fair way. Linearity
means that fair value should be linear. In other words, if the same plaers play two
games (v1, v2) independently, value of every player should be in sum the same as
a value of ”join” game v1 + v2 The second axiom is equivalent to the requirement
”The maximum coalition will be formed and its profit will be exactly divided”.
Null player is a player without any benefit of any coalition; null player property
means that value of null player should be 0

The axiom of symmetry is an expression of equality of all the participating
players. This means that the game-value assigned to them is calculated only from
their contributions to the coalitions and does not depend on the particular identity
of the player.

Once again from the geometric point of view, a value is an operator Ψ : Γ→ Γ1.
First axiom required that Ψ should be linear, i.e. matrix-representable. Harsanyi
dividents (∆R(v))R⊆Ω are coefficients in the unanimity basis (uS)∅6=S⊆Ω

uS(R) =

{
1 S ⊆ R
0 otherwise

(∆R(v))R⊆Ω evaluate a net contribution of coallition R to the total profit v(Ω)
Shapley value of uS is 1

|S| for a members of coalllition S and 0 for non-members.

The Shapley value divides the net benefit of each coalition, may be negative, among
its members.

2 Compromise correction

2.1 Multiple-testing problem

The research design one experiment - one atomic result (one null hypothesis OR
one estimeted parameter OR one comparison...) is highly inefficient. So, analysis
of experimental data usually tests several hypotheses and estimates several param-
eters. There are many statistical methods for error-controlling of the experiments
with multiple testing: Common known Bonfferoni correction p → Np and similar
Šidak’s correction p→ 1− (1− p)N [14], where p is the number of tests. Complex
procedures as a [4], [7], [6]. However, there is no incentive mechanism to actually
use these procedures, to publish full resut including unsuccessful tests. And simul-
taneously, each of these procedures rapidly aggravate the score of the basic result
when giving more tests. Scientist who only publishes positive results (and con-
ceals negative) is more successful in publishing. And the set of published scientific
information is biased. In the sense of [11], the market of scientific informations
exchange is poorly designed.



2.2 Compromise correction: idea

The purpose of each correction of p-values is conrolling of probabilities of type I
errors (false positives)

The idea of compromise correction is to evaluate net contributtion in the sense
of cooperative game theory of any test result pi to the best result Mini[pi]:

Firstly, we adjust the obtained p-values by transforming them such that the
higher value formally means the more convincing results (instead of original order-
ing lower value = better results) p→ 1/p. We assume that an individually rational
experimenter without interest in credibility, whose primary motivation is to show
the outcome as significant as possible, published the most significant result only,
without any correction. On the other hand, the rule of multiple testing requires
the Bonferoni or another correction. The compromise correction is based on the
question of which of the values contributes to the most significant result Max[ 1

pi
]

Let us interpret the problem of the best result as a game over partial results.
If the experimenter would only execute a subset S of experiment, his best value
vould be Maxi∈S [ 1

pi
] . The idea of compromise correction is to solve the problem

of multiple testing, when taking into account the worth of each coalition = each
subset of set of experiments.The solution to this problem is the Shapley value. So
we calculate the Shapley value for the cooperative maxV alueGame

maxValueGame: v(S) = Max

[
Xi =

1

pi
: i ∈ S

]
2.3 Compromise correction: solution

The solution of this problem is tractable: Let p1 ≤ p2 ≤ ... ≤ pn, X =
(

1
pi

)n
i=1

Then Shapley value in the coordinate k is

Shapley[maxValueGame[X]]k =
Xk

k
−

n∑
i>k

Xi

i(i− 1)

and compromise correction operator asigns to the k-th best value a corrected
value

pk →
1

1
kpk
−
∑n

i>k
1

i(i−1))pi

Proof: Let X1 ≥ X2 ≥ ... ≥ Xn ≥ Xn+1

maxV alueGame[X1...Xn+1] =

= maxV alueGame[X1−Xn+1, X2−Xn+1, ...Xn−Xn+1, 0]+constantGame[Xn+1]

where constantGame[y][S] = y for any nonempty coallition S
By linearity, Shapley value of the maxV alueGame[X1...Xn+1] = is the sum

of Shapley values of two games defined above. For the first game, value 0 is the



nullplayer in the sense of Shapley 3rth axiom: Xi − Xn+1 ≥ 0 and Max[S] =
Max[S ∪ {0}] for S ⊆ {X1 − Xn+1, X2 − Xn+1, ...Xn − Xn+1}. For the second

game, Shapley value is (Xn+1

n+1 )i=1...n according to the symmetry of Shapley value.
So

Shapley[maxValueGame[[(X)n1 ∪ {Xn+1}]]k =
Xk

k
−

n+1∑
i>k

Xi

i(i− 1)

and after inverse transform

pk →
1

1
kpk
−
∑n+1

i>k
1

i(i−1)pi

♦

3 Properties of compromise correction

3.1 Mathematical & computational

• Compromise correction keeps the order of values. The k-th best value
remains the k-th best value after correction

• Piecewise linearity of the operator (Xi)
n
i=1 → Shapley[maxValueGame[X]]i

We reassess the data with a more sensitive test, and we assume that only the
first result will improve,

p′1 < p1 ≤ p2 = p′2 ≤ p3... ≤ pn = p′n

Then the compromise correction of all the improvements also gives the best
result,

p̂′1 < p̂1 ≤ p̂2 = p̂′2 ≤ p̂3... ≤ p̂n = p̂′n

where

ˆ(pi)
n
i=1 = CompromiseCorrection[((pi)

n
i=1]

3.2 Game-theoretic, Reverse-game-theoretic & motivational

• Robustness against tail changes: Let’s assume that the experimenter
has achieved a significant result, but there is still material left to test addi-
tional questions with a low likelihood of becoming significant. When honestly
applying Bonferoni’s correction, it is preferable not to carry out further an-
alyzes. The reason is the risk of destroying existing and confirmed results



- the Bonferoni correction coefficient increase after each new test. Compro-
mise corrections cause only small bounded fluctuations of the first results.
Intuitively, we consider the test and publishing of additional results to be
collectively rational. Compromise correction is not in contradiction with in-
dividual rationality.

• Copromise correction is a centralized mechanism. It needs to collect all
the data for the calculation. However, for the above reasons, it motivates the
publication of a whole set of p-values better than Bonferoni’s correction.

• Bonferoni’s correction defines the upper limit of Compromise correction.

4 Limitations and future work

Unfortunately, compromise correction is a decentralized mechanism. From the
reverse-game-theoretic point of view, compromise correction is a half-solution only.
Compromise correction eliminates the fears and some disadvantages of complying
with the rules of good science, but it does not remove the temptation to do so.
Compromise correction works as a lifeline for researchers willing to publish cor-
rectly, but does not work well as a sticks on those who do not care about the
replicability of their published results. However, I hope that in the second plane
higher number of published full-set results will help to improve of power of detec-
tion of inaccuracies. Construction of decentralized mechanism is the next plan of
the research.

The second weak point of compromise correction is its implausible behavior in
situation with two or more very similar tests, i.e. with tests with a high a-priori
conditional probability P (T2 is significant|T1 is significant). For instance Kaplan-
Meier test and Cox-regression for the same data. The compromise-correction coef-
ficient for both is implausible close to maximal (but still smaller than Bonferroni!).
The usual motivation in this case is not to increase the number of tests, but to find
out more of the model parameters.

Further research will focus on the ability to replace the Shapley value with value
associated with a pre-defined network structure: Myerson value [9]
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