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Abstract

Several approaches to the refinement of the dominance relation between
alternatives are proposed in the setting of interval AHP in this paper. The
approaches are divided into two groups: one uses the tolerance of utility
difference and the other uses the reduction of interval priority weights. It
is shown that refined dominance relations are obtained relatively easily by
solving linear programming problems.

1 Introduction

By the conventional Analytic Hierarchy Process (AHP), alternatives are ranked
simply by priority weights estimated from pairwise comparison matrices (PCMs)
under multiple criteria [3]. In estimating priority weights, only the pairwise com-
parison matrices whose consistency degrees are in the acceptable level are treated.
Once a priority weight vectors are estimated, the inconsistencies in given pairwise
comparison matrices are discarded. From the viewpoint that the decision maker
may have vague evaluations, an approach to estimating priority weights by inter-
vals was proposed by Sugihara and Tanaka [5]. Because the intervals estimated
by their proposed method do not reflect well the vagueness of the decision maker’s
evaluations, improved estimation methods have been proposed (see [2]).

Estimating priority weights by intervals is advantageous in making a robust and
safe evaluation considering the ambiguity inherent in given PCMs. However, as
priority weights are specified only by intervals in these methods, we cannot always
rank alternatives clearly. Because the dominance relation between alternatives
becomes only a preorder, we cannot judge surely whether an alternative dominates
the other for some pairs of alternatives.
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In this paper, we propose several approaches to refining the dominance relation.
To rank alternatives clearly under interval priority weights, we introduce two con-
cepts: tolerance in utility difference and reduction of intervals. Tolerance in utility
difference assumes that small utility difference is approved. Reduction of inter-
vals assumes that trimming small portion of interval priority weights is accepted.
Several conceivable approaches to refining the dominance relation based on those
two concepts are proposed. We show that the refined dominance relation can be
obtained by solving linear programming problems.

This paper is organized as follows. In the next section, we review the interval
AHP and describe a few methods for estimating an interval priority weight vector
from a given pairwise comparison matrix. The dominance relation between alter-
natives is reviewed. In Section 3, approaches to refining the dominance relation
are proposed and exemplified. Some concluding remarks are given in Section 4.

2 Interval AHP

We briefly introduce the interval AHP [2, 5] and describe the problem setting of
this paper. For the sake of simplicity, we define N = {1, 2, . . . , n} and N\j =
N\{j} = {1, 2, . . . , j − 1, j + 1, . . . , n} for j ∈ N .

As in the conventional AHP [3, 4], we try to estimate the priority weights from
a given pairwise comparison matrix A, i.e.,

A =

 1 · · · a1n

... aij
...

an1 · · · 1

 , (1)

where we assume the reciprocity, i.e., aij = 1/aji, i, j ∈ N . Because the (i, j)th

component aij of A shows the relative importance of the ith item over the jth item.
Theoretically, we have aij = wi/wj , i, j ∈ N for priority weights wi and wj of ith

and jth items. However, because of the vagueness of human judgement, we assume
only aij ≈ wi/wj , i, j ∈ N , where ≈ stands for “approximately equals to”. Then,
in the conventional AHP, wi, i ∈ N are estimated so as to minimize the errors in
A.

In the interval AHP [5], we assume that the decision maker may have a vague
priority weight vector whose range can be expressed by an interval priority weight
vector W = (W1,W2, . . . ,Wn)T rather than a crisp priority weight vector w, where
Wi = [wL

i , w
R
i ], i ∈ N and wL

i ≤ wR
i , i ∈ N . The inconsistency is assumed to

be caused by this vagueness in evaluation of priority weights. Accordingly, we
assume that aij is obtained as wi/wj with randomly chosen wi ∈Wi and wj ∈Wj .
Therefore, W should satisfy aij ∈ [wL

i /w
R
j , w

R
i /w

L
j ], i, j ∈ N, i < j. Let W(A)

be the set of all interval weight vectors W satisfying this condition. Moreover,
corresponding to the normality condition of w in the conventional AHP, we require
the interval weight vector W to satisfy the normality condition, i.e.,

∑
j∈N\i w

R
j +



wL
i ≥ 1, i ∈ N and

∑
j∈N\i w

L
j + wR

i ≤ 1, i ∈ N . This condition ensures that for

any w◦i ∈ Wi, there exist wj ∈ Wj , j ∈ N\i such that
∑
j∈N\i wj + w◦i = 1. Let

WN be the set of all interval weight vectors W satisfying the normality condition.
In the conventional interval AHP [5], interval priority weights Wi, i ∈ N are

estimated by solving the following linear programming problem:

minimize
W

{d(W ) |W ∈ W(A) ∩WN, ε ≤ wL
i ≤ wR

i , i ∈ N}, (2)

where ε is a sufficiently small positive number and d :WN → [0,+∞) is defined by

d(W ) =
∑
i∈N

(wR
i − wL

i ). (3)

d(W ) shows the sum of widths of interval priority weights Wi, i ∈ N and it has

been considered that the smaller d(W ) the better estimation. Let d̂ be the optimal
value to Problem (2).

It is shown that the estimated interval priority weights by (2) do not express well
the vagueness of decision maker’s evaluation. Therefore, several estimation meth-
ods [2] improving the quality of estimated intervals have been proposed. Among
them, we consider the maximizing minimum range method which estimates the
interval priority weights by the following procedure.

〈1〉 Solve the following linear programming problem for each k ∈ N :

minimize
W

{dk̄(W ) |W ∈ W(A) ∩WN, ε ≤ wL
i ≤ wR

i , i ∈ N}, (4)

where dk :WN → [0,+∞) is defined by

dk(W ) =
∑
i∈N\k

(wR
i − wL

i ). (5)

Let d̂k̄ be the optimal value to Problem (4).

〈2〉 Solve the following two linear programming problems for each k ∈ N :

maximize
W

{wR
k | W ∈ W(A) ∩WN, dk̄(W ) = d̂k̄, ε ≤ wL

i ≤ wR
i , i ∈ N}, (6)

minimize
W

{wL
k | W ∈ W(A) ∩WN, dk̄(W ) = d̂k̄, ε ≤ wL

i ≤ wR
i , i ∈ N}. (7)

Let ŵL
i (k) and ŵR

i (k), i ∈ N be values of wL
i and wR

i , i ∈ N , respectively, at
the obtained optimal solution.

〈3〉 The interval weights W̌j = [w̌L
j , w̌

R
j ], j ∈ N are estimated by the following

equations:

w̌R
j = max

{
ŵR
j (k) | k ∈ N

}
, w̌L

j = min
{
ŵL
j (k) | k ∈ N

}
. (8)

Because we have ([ŵL
1 (k), ŵR

1 (k)], [ŵL
2 (k), ŵR

2 (k)], . . . , [ŵL
n(k), ŵR

n (k)]) ∈ WN,
k ∈ N , we obtain ([w̌L

1 , w̌
R
1 ], [w̌L

2 , w̌
R
2 ], . . . , [w̌L

n, w̌
R
n ]) ∈ WN.



Once an interval weight vector W is obtained, we define a dominance relation
between alternatives under the assumption that utility values ui(op) of alternatives
op in view of each criterion are given. We use dominance relation defined by

op %O oq ⇔ ∀w ∈W , eTw = 1;
∑
i∈N

(ui(op)− ui(oq))wi ≥ 0, (9)

where e = (1, 1, . . . , 1) ∈ Rn. op %O oq implies that op certainly dominates oq.
This dominance relation is only a preorder (reflexive and transitive) because of
interval weights. From %O, we obtain a strong dominance relation �O by op �
oq ⇔ op %O oq and oq 6%O op. (9) is rewritten as

op %O oq ⇔ δL
W (op, oq) = min

{∑
i∈N

(ui(op)− ui(oq))wi
∣∣∣∣w ∈W , eTw = 1

}
≥ 0.

(10)

3 Refining the Dominance Relation

As described above, the dominance relation %O is usually only a preorder because
the dominance relation holds only when an alternative is better than the other for
all possible priority weight vectors. The dominance relation indicated by %O is
the result of careful consideration. Therefore, %O is useful in knowing the robust
dominance relation. However, because we may neither rank alternatives nor find
the best alternative by using %O, %O is weak in giving some guidance or instruction
for good evaluation and decision. In this section, we investigate the ways to provide
some guidance for ranking alternatives. To this end, we propose several methods for
ranking alternatives in the presence of interval priority weights. Two approaches
are conceivable: one is based on the tolerance of utility differences and the other
is based on the reduction of interval priority weights.

3.1 Tolerance approach

3.1.1 By the minimum utility difference

The first approach uses minimum utility differences between alternatives. The
objective function of the optimization problem appears in (10) shows the mini-
mum utility difference of alternative op from alternative oq. By exchanging op and
oq, we obtain the minimum utility difference of alternative oq from alternative op
which shows also minus 1 times of the maximum utility difference of alternative
op from alternative oq. Therefore, by solving the optimization problem which is a
linear programming problem appears in (10) twice, we obtain the range of utility
difference of alternative op from alternative oq as [δL

W (op, oq), δ
R
W (op, oq)], where

δR
W (op, oq) = −δL

W (oq, op).



In (10), if the minimum utility difference is non-negative, i.e., δL
W (op, oq) ≥ 0,

we are sure that op is not worse than oq, i.e., op %O oq. From this definition, we
may relax the condition δL

W (op, oq) ≥ 0 to δL
W (op, oq) ≥ −α, α > 0 is a small

number. By this way, we define a relaxed dominance relation as follows:

%L
α= {(op, oq) | δL

W (op, oq) ≥ −α}. (11)

Namely, we have op %L
α oq if and only if δL

W (op, oq) ≥ −α, where op %L
α oq implies

that we are sure that op is not very much worse than oq.
As α increases, δL

W (op, oq) ≥ −α holds for more ordered pairs (op, oq). When
α exceeds a certain value, we may obtain δL

W (op, oq) ≥ −α and δL
W (oq, op) ≥ −α.

Namely, we have op %L
α oq and oq %L

α op, i.e., op and oq are indifferent by discarding
utility difference α. However, this is not always good if |δL

W (op, oq)− δL
W (oq, op)| is

sufficiently large comparing to max(−δL
W (op, oq),−δL

W (oq, op)). To avoid this, we
modify the definition of %L

α as

%L
α= {(op, oq) | δL

W (op, oq) ≥ −α and δL
W (op, oq) > δL

W (oq, op)}. (12)

Moreover, although this modification is applied with a sufficient large α, %L
α cannot

always satisfy the transitivity. In other words, the transitive closure Trcl(%L
α)

includes indifferences among many alternatives. When all values of δL
W (op, oq) are

different, we modify again %L
α by

%L
α={(op, oq) | δL

W (op, oq) ≥ −α and (∀ζ < α, ∀(or, os) ∈ Trcl(%L
ζ ∪{(op, oq)}),

δL
W (or, os) ≥ −α or (os, or) 6∈ Trcl(%L

ζ ))},
(13)

where Trcl(·) stands for the transitive closure. When k pairs (op, oq) take a same
value ᾱ, we introduce some ranking among the k pairs and modify δL

W (op, oq) with
δL
W (op, oq) + (l − 1)ε, where l shows that pair (op, oq) is ranked as the l-th among

the k pairs and ε is a very small number. As an example of such an extra ranking,
we may order the k pairs in increasing order of δL

W (oq, op). As the result, we obtain
a weak order Trcl(%L

α) with a sufficient large number α. We select basically the
minimum α such that Trcl(%L

α) with %L
α of (13) becomes a weak order.

Example 1. Consider a multiple criteria decision making problem with five cri-
teria C1,. . . ,C5 and five alternatives o1,. . . ,o5. We assume the evaluations in view
of each criterion is given as in Table 1. Let U be the matrix shown in Table 1. To
obtain priority weights of criteria, we asked the decision maker to give a pairwise
comparison matrix (PCM). The obtained PCM is shown in Table 2. The consis-
tency index (C.I.) of the PCM is obtained as 0.05209. Because C.I. is smaller than
0.1, we may regard the given PCM is meaningful (see [3]). Applying the maxi-
mum eigenvalue method and the geometric mean method used often in the con-
ventional AHP, we obtain the following priority weight vectors, respectively: wE =
(0.3558, 0.2394, 0.1578, 0.1349, 0.1121)T and wG = (0.3468, 0.2424, 0.1599, 0.1392,
0.1117)T. The total scores of alternatives are obtained as UwE = (0.2192, 0.2087,



Table 1: Scores of alternatives

C1 C2 C3 C4 C5

o1 0.25 0.3 0.1 0.15 0.2
o2 0.2 0.25 0.3 0.1 0.15
o3 0.15 0.2 0.25 0.3 0.1
o4 0.1 0.15 0.2 0.25 0.3
o5 0.3 0.1 0.15 0.2 0.25

Table 2: Pairwise comparison matrix

C1 C2 C3 C4 C5

C1 1 1 2 2 6
C2 1 1 1 2 2
C3 1/2 1 1 1 1
C4 1/2 1/2 1 1 1
C5 1/6 1/2 1 1 1

Table 3: δL
W (op, oq)

o1 o2 o3 o4 o5

o1 – −0.018182 −0.031031 0.008553 −0.003947
o2 −0.01875 – −0.033333 −0.010197 −0.022697
o3 −0.0375 −0.01875 – 0.004546 −0.041447
o4 −0.077083 −0.058333 −0.039583 – −0.057143
o5 −0.028947 −0.045833 −0.027083 0.0125 –

0.1924, 0.1704, 0.2094)T and UwG = (0.2186, 0.2086, 0.1934, 0.1713, 0.2080)T. Then,
we obtain o1 �E o5 �E o2 �E o3 �E o4 and o1 �G o2 �G o3 �G o5 �E o4, re-
spectively. We note that the orders are different between the maximum eigenvalue
method and the geometric mean method although C.I. is small enough.

Now we apply the interval AHP. Estimating the interval priority weights by the
maximizing minimum range method, we obtain W = ([0.25, 0.4286], [0.1842, 0.3158],
[0.125, 0.2727], [0.125, 0.3333], [0.04167, 0.1818])T. δL

W (op, oq) are obtained as shown
in Table 3. Then we obtain only o1 �O o4, o3 �O o4 and o5 �O o4 when α = 0.
Setting α = 0.031031 or larger, we obtain a weak order defined by Trcl(%L

α). When
α = 0.031031, we have

%L
α= {(o1, o4), (o3, o4), (o5, o4), (o1, o5), (o2, o4), (o1, o2), (o3, o2), (o2, o5), (o1, o3)}.

(14)

By the transitive closure of this relation, we obtain o1 %̂L
α o3 %̂L

α o2 %̂L
α o5 %̂L

α o4,

where %̂L
α = Trcl(%L

α). �

We note that in the obtained refinement of dominance relation we understand
op %L

α oq is accepted more easily if δL
W (op, oq) is larger.

3.1.2 By the center value of the utility difference

In the previous subsection, we refined the dominance relation by the minimum
value of the utility difference. However, the minimum value can be considerably
small if the width of the interval of utility difference is large even if the location
of the interval is around zero. For example, in Example 1, the location of the
utility difference between o1 and o2 is around zero because the difference between



δL
W (o1, o2) and δL

W (o2, o1) is very small. The location can be seen by the center
value of the interval. Then, in this subsection, we consider a refinement by using
the center values of utility difference intervals. Because the range of the utility dif-
ference of alternative op from alternative oq is obtained as [δL

W (op, oq), δ
R
W (op, oq)].

Then the center value of the utility difference of alternative op from alternative oq
can be obtained by

δC
W (op, oq) =

1

2
(δL

W (op, oq) + δR
W (op, oq)). (15)

As we have δR
W (op, oq) = −δL

W (oq, op), we obtain δC
W (op, oq) = −δC

W (oq, op). Be-
cause of this special relation, each ordered pair (op, oq) such that δC

W (op, oq) ≥ 0
is a candidate of the refined dominance relation op %C oq. We note that op %O oq
is always a candidate of op %C oq. However, unfortunately, the dominance relation
composed of the candidates does not always become a weak order. To overcome
this inadequacy, we apply the same idea as %L

α. Namely, for η ≥ 0, we define

%C
η ={(op, oq) | δC

W (op, oq) ≥ −η and (∀ζ < η, ∀(or, os) ∈ Trcl(%C
ζ ∪{(op, oq)}),

δC
W (or, os) ≥ −η or (os, or) 6∈ Trcl(%C

ζ ))}.
(16)

We select η by the minimum value such that Trcl(%C
η ) becomes a weak order.

Applying the approach of %C
η in Example 1, we obtain the same refined weak

order o1 %̂C
η o3 %̂C

η o2 %̂C
η o5 %̂C

η o4 with η = 0.0032345, where %̂C
η = Trcl(%C

η ). How-

ever, %C
η is different from %L

α in (14), i.e., we have

%C
η = {(o1, o4), (o5, o4), (o2, o4), (o3, o4), (o1, o5), (o2, o5), (o3, o2), (o1, o3)}. (17)

As is shown in (17), (o1, o2) does not appear in %C
η of (17) while it appears in %L

α

of (14). This exemplifies the case where δL
W (o1, o2) is rather large but δR

W (o1, o2)−
δL
W (o1, o2) is small.

When we use the center values, a simpler approach is conceivable. It utilizes
the average degree of dominance

avdd(op) =
1

n− 1

∑
q∈N\p

δC
W (op, oq). (18)

The larger the average degree of dominance is, the larger we consider its utility is.
Therefore, we may rank alternatives by avdd(op). This order is denoted by %̄C.
We note that

∑
p∈N avdd(op) = 0. Therefore, we may regard op as a preferable

alternative if avdd(op) > 0.
Applying this approach to Example 1, we obtain avdd(o1) = 0.058837, avdd(o2)

= 0.028061, avdd(o3) = 0.018940, avdd(o4) = −0.123772 and avdd(o5) = 0.017936.
Then the refined dominance relations is obtained as o1%̄Co2%̄Co3%̄Co5%̄Co4. We
note that avdd(o1) and avdd(o2) are sufficiently different although δC

W (o1, o2) is
very small.



Table 4: prt(op, oq)

o1 o2 o3 o4 o5

o1 – 0.507690 0.547198 1 0.880009
o2 0.492310 – 0.360002 0.851204 0.668802
o3 0.452802 0.639998 – 1 0.395199
o4 0 0.148796 0 – 0
o5 0.119991 0.331198 0.604801 1 –

3.2 By the positive ratio of the interval utility difference

In the approach using the center value of interval utility difference, the width of
interval utility difference is not taken care at all. Third approach is to take care of
the location and the width of interval utility difference. We consider the positive
ratio of the interval utility difference. Namely, we calculate the ratio of positive
region to the whole range of possible utility differences, i.e.,

prt(op, oq) =
max(δR

W (op, oq), 0)−max(δL
W (op, oq), 0)

δR
W (op, oq)− δL

W (op, oq)
(19)

We note that we have prt(op, oq) = 1 if and only if δL
W (op, oq) > 0, and we have

prt(op, oq) > 0.5 if and only if δC
W (op, oq) > 0.

We apply the same idea as %L
α and %C

η . Then, for ρ ≥ 0.5, we define

%P
ρ={(op, oq) | prt(op, oq) ≥ ρ and (∀ζ < ρ, ∀(or, os) ∈ Trcl(%P

ζ ∪{(op, oq)}),
prt(or, os) ≥ ρ or (os, or) 6∈ Trcl(%P

ζ ))}.
(20)

As we decrease ρ, we obtain a weak order Trcl(%P
ρ ). We select ρ basically with the

minimum value such that Trcl(%P
ρ ) becomes a weak order.

Example 2. Consider the same pairwise comparison matrix and normalized
interval weight vector W as in Example 1. Based on δL

W (op, oq) values shown
in Table 3, we obtain prt(op, oq) as shown in Table 4. Applying the approach of

%P
ρ , from Table 4, we obtain a refined weak order, o1 %̂P

ρ o3 %̂P
ρ o2 %̂P

ρ o5 %̂P
ρ o4 with

ρ = 0.547198 or larger. When ρ = 0.547198,

%P
ρ= {(o1, o4), (o3, o4), (o5, o4), (o1, o5), (o2, o4), (o2, o5), (o3, o2), (o1, o3)}. (21)

Pair (o1, o2) appear neither in %P
ρ .

3.3 Reduction approach

Several approaches to refining dominance relation %O based on utility difference
have proposed in the previous subsection. As another approach, a method based on



interval weight reduction is conceivable (see [1]). In this subsection, the approach
based on the reduction of interval weights is described.

Let V = (V1, V2, . . . , Vn)T be a reduced interval priority weight vector of a
given interval weight vector W such that wL

i ≤ vL
i ≤ vR

i ≤ wR
i , i ∈ N , where

Vi = [vL
i , v

R
i ], i ∈ N . For op to dominate oq, the reduced interval weight vector

V ⊆W should satisfy

min

{∑
i∈N

(ui(op)− ui(oq))vi
∣∣∣ vL

i ≤ vi ≤ vR
i , i ∈ N,

∑
i∈N

vi = 1

}
≥ 0. (22)

Let us define the following three index sets of N :

I+(op, oq) = {i ∈ N | ui(op)− ui(oq) > 0}, (23)

I−(op, oq) = {i ∈ N | ui(op)− ui(oq) < 0}, (24)

I0(op, oq) = {i ∈ N | ui(op)− ui(oq) = 0}. (25)

vL
i for i ∈ I+(op, oq) and vR

i for i ∈ I−(op, oq) tend to minimize the objective
function of the minimization problem in (22). Indeed, if we drop the constraint∑
i∈N vi = 1 from the minimization problem in (22), vL

i for i ∈ I+(op, oq) and
vR
i for i ∈ I−(op, oq) attain the minimum. From this fact, we take care of the

changes of the lower bounds of interval priority weights when ui(op) > ui(oq) and
the changes of the upper bounds of interval priority weights when ui(op) < ui(oq).

Then we define the ambiguity reduction rates of V ⊆W in the following two
ways:

individual ambiguity reduction rate:

ir(op, oq) = min

(
min

i∈I−(op,oq)

wR
i − vR

i

wR
i − wL

i

, min
i∈I+(op,oq)

vL
i − wL

i

wR
i − wL

i

)
,

total ambiguity reduction rate:

tr(op, oq) =

∑
i∈I−(op,oq)

(wR
i − vR

i ) +
∑

i∈I+(op,oq)

(vL
i − wL

i )∑
i∈I−(op,oq)∪I+(op,oq)

(wR
i − wL

i )
.

(26)

In this paper, we will find, for each ordered pair (op, oq) of alternatives, the reduced
interval priority weight vector V (op, oq) which maximizes an ambiguity reduction
rate rd(op, oq) such that ∀V ′ ⊇ V (op, oq) satisfying V ′ ⊆ W , V ′ ∈ WN and
δL
V ′ ≥ 0. In other words, we maximize an ambiguity reduction rate rd(op, oq)

such that ∃v = (v1, . . . , vn)T ∈ V (op, oq) satisfying eTv = 1 and
∑
i∈N (ui(op) −

ui(oq))vi ≤ 0. For rd(op, oq), we consider ir(op, oq) and tr(op, oq).

The maximum ir(op, oq) and tr(op, oq) as well as their corresponding V (op, oq)



can be obtained by solving the following linear programming problems, respectively:

maximize r,

sub. to
∑
i∈N

(ui(op)− ui(oq))vi ≤ 0,∑
i∈N

vi = 1, vL
i ≤ vi ≤ vR

i , i ∈ N,

vL
i − (wR

i − wL
i )r ≥ wL

i , v
R
i ≤ wR

i , i ∈ I+(op, oq),
vR
i + (wR

i − wL
i )r ≤ wR

i , v
L
i ≥ wL

i , i ∈ I−(op, oq),
vL
i ≥ wL

i , v
R
i ≤ wR

i , i ∈ I0(op, oq),

vL
i +

∑
j∈N\j

vR
i ≥ 1, vR

i +
∑
j∈N\j

vL
i ≤ 1, i ∈ N,

vL
i ≥ ε, i ∈ N, r ≥ 0,

(27)

and

maximize
∑

i∈I+(op,oq)∪I−(op,oq)

ri

/ ∑
i∈I+(op,oq)∪I−(op,oq)

(wR
i − wL

i ),

sub. to
∑
i∈N

(ui(op)− ui(oq))vi ≤ 0,∑
i∈N

vi = 1, vL
i ≤ vi ≤ vR

i , i ∈ N,

vL
i − ri ≥ wL

i , v
R
i ≤ wR

i , i ∈ I+(op, oq),
vR
i + ri ≤ wR

i , v
L
i ≥ wL

i , i ∈ I−(op, oq),
vL
i ≥ wL

i , v
R
i ≤ wR

i , i ∈ I0(op, oq),

vL
i +

∑
j∈N\j

vR
i ≥ 1, vR

i +
∑
j∈N\j

vL
i ≤ 1, i ∈ N,

vL
i ≥ ε, i ∈ N, ri ≥ 0, i ∈ I+(op, oq) ∪ I−(op, oq).

(28)

We obtain ir(op, oq) and tr(op, oq) by optimal values of Problems (27) and (28),
respectively. For each of those problems, the reduced interval priority weight vector
V (op, oq) = (V1(op, oq), . . . , Vn(op, oq))

T are obtained by Vi(op, oq) = [vL
i , v

R
i ], i ∈

N from an optimal solution.
For ir(op, oq) and ir(oq, op), we have ir(op, oq)+ir(oq, op) ≤ 1, and for tr(op, oq)

and tr(oq, op), we have tr(op, oq) + tr(oq, op) ≤ 1. These can be proven as follows:
we show tr(op, oq) + tr(oq, op) ≤ 1. Let r∗ = (r∗1 , . . . , r

∗
n)T, vL∗ = (vL∗

1 , . . . , vL∗
n )T

and vR∗ = (vR∗
1 , . . . , vR∗

n )T compose an optimal solution to Problem (28). We
have tr(op, oq) =

∑
i∈I+(op,oq)∪I−(op,oq) ri, v

L∗
i = wL∗

i + ri, i ∈ I+(op, oq), v
R∗
i =

wR
i + ri, i ∈ I−(op, oq) and ∀v = (v1, . . . , vn)T such that vL ≤ v ≤ vR, we have∑
i∈N (ui(op)− ui(oq))vi ≤ 0. From the last property, we obtain

tr(oq, op) ≤

∑
i∈I+(oq,op)∪I−(oq,op)

(wR
i − vR∗

i )

∑
i∈I+(oq,op)∪I−(oq,op)

(wR
i − wL

i )
. (29)



Because I+(op, oq) = I−(oq, op) holds. Then we obtain wR
i −vR∗

i ≤ (wR
i −wL

i )−ri,
i ∈ I+(op, oq) and vL∗

i −wL
i ≤ (wR

i −wL
i )− ri, i ∈ I−(op, oq). Therefore, we obtain∑

i∈I+(oq,op)∪I−(oq,op)

(wR
i − vR∗

i )

∑
i∈I+(oq,op)∪I−(oq,op)

(wR
i − wL

i )
≤

∑
i∈I+(oq,op)∪I−(oq,op)

(wR
i − wL

i )− ri∑
i∈I+(oq,op)∪I−(oq,op)

(wR
i − wL

i )

= 1− tr(op, oq). (30)

From (29) and (30), we conclude tr(oq, op) + tr(op, oq) ≤ 1. The other can be
proven in the same way.

The smaller ir(op, oq) and tr(op, oq) are, the more acceptable op % oq is. Then
we refine %O by accepting op % oq with small ir(op, oq) and/or tr(op, oq) values.
Then we apply the same idea as %L

α to obtain a refined dominance relation using
ir(op, oq) or tr(op, oq). Namely, we obtain

%ir
τ ={(op, oq) | ir(op, oq) ≤ τ and (∀ζ < τ, ∀(or, os) ∈ Trcl(%ir

ζ ∪{(op, oq)}),
ir(or, os) ≤ τ or (os, or) 6∈ Trcl(%ir

ζ ))},
(31)

%tr
υ ={(op, oq) | tr(op, oq) ≤ υ and (∀ζ < υ, ∀(or, os) ∈ Trcl(%tr

ζ ∪{(op, oq)}),
tr(or, os) ≤ υ or (os, or) 6∈ Trcl(%tr

ζ ))}.
(32)

Taking their transitive closures, we obtain weak orders among alternatives. τ and
υ are defined by the minimum values such that their trensitive clusures become
weak orders.

Example 3. Consider the same pairwise comparison matrix and normalized
interval weight vector W as in Example 1. We obtain ir(op, oq) and tr(op, oq) as
shown in Tables 5 and 6. Then, with τ = 0.339898 and υ = 0.463964, we obtain

%ir
τ = {(o1, o4), (o3, o4), (o5, o4), (o2, o4), (o1, o5),

(o1, o3), (o1, o2), (o2, o5), (o2, o3), (o5, o3)}, (33)

%tr
υ = {(o1, o4), (o3, o4), (o5, o4), (o2, o4), (o1, o2),

(o1, o3), (o2, o3), (o5, o2), (o5, o1)}. (34)

Eventually, we obtain refined weak orders for τ ≥ 0.339898 and υ ≥ 0.463964,
o1 %̂ir

τ o2 %̂ir
τ o5 %̂ir

τ o3 %̂ir
τ o4 and o5 %̂tr

υ o1 %̂tr
υ o2 %̂tr

υ o3 %̂tr
υ o4, where %̂ir

τ and %̂tr
υ are

transitive closures of %ir
τ and %tr

υ , respectively.

4 Concluding Remarks

As shown in Example 1, the dominance relation obtained by the conventional
AHP is not always unswerving even when the given pairwise comparison matrix is



Table 5: ir(op, oq)

o1 o2 o3 o4 o5

o1 – 0.302326 0.275643 0 0.119997
o2 0.507693 – 0.332965 0.0890831 0.325053
o3 0.421277 0.360001 – 0 0.339984
o4 1 0.5 1 – 1
o5 0.382839 0.347844 0.339898 0 –

Table 6: tr(op, oq)

o1 o2 o3 o4 o5

o1 – 0.337131 0.409472 0 0.536036
o2 0.662869 – 0.412291 0.193388 0.538855
o3 0.590528 0.587709 – 0 0.466514
o4 1 0.806612 1 – 1
o5 0.463964 0.461145 0.533486 0 –

sufficiently consistent. We showed that various weak orders are obtained depending
on the idea of refinement of dominance relation. In ranking alternatives, those
possible weak orders should be considered and the dominance relations obtained
by the proposed approach should be interpreted in the real world setting. Moreover,
we may combine the proposed tolerance and reduction approaches. These would
be included in future topics.
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