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Abstract

Since the classical definitions of correlation give rise to counterintuitive find-
ings for extreme probability events, we build upon the concept of coherent
conditional probability to introduce enhanced notions of correlation. Our new
notions allow handling extreme events in a principled way by accommodat-
ing the different levels of strength of the zero probabilities involved. Where
the detection of correlations by means of these levels is computationally chal-
lenging, we provide a full characterisation of the correlations between extreme
probability events without reference to the complex structure of probability.

1 Introduction

The importance of handling extreme probability events in a principled way has been
stressed in a range of papers (see for example, [3, 5, 7]); by an extreme probability
event we mean a highly unexpected event, that is, an event of zero probability,
or a nearly sure event, of probability 1. Zero probabilities necessarily arise in un-
countable algebras and, hence, in real-world applications involving infinite settings,
where the lack of expressive power of the real numbers often forces possible events
to be assigned zero probability. Yet, also in finite settings do extreme probabilities
arise. When extracting (conditional) probabilities from real-world data, for exam-
ple, unexpected events and events occurring with negligible frequency will receive
zero probabilities. To forestall the inclusion of zero probabilities in probabilistic
models, various more or less “ad hoc” solutions are in use, such as the well-known
Laplace correction and the use of pseudocounts in a Bayesian setting. Forcing all



distinguished events to have positive probability however, drastically restricts the
class of admissible distributions and, hence, the possibilities of extending partial
assessments to complete probabilities.

In applications of probability theory, stochastic independence and the concepts
of positive and negative correlation play an important role. While in the context of
extreme probabilities stochastic independence has been well studied (see for exam-
ple [3, 5, 7]), and has led to an enhanced definition of independence, the concept of
correlation has received little to no attention. In this paper, we demonstrate that
in the presence of extreme probability events, the classical definition of correlation
can give counterintuitive results, such as an event E being uncorrelated with an
event H logically implying it. Based on these observations, we introduce enhanced
notions of correlation which accommodate the different levels of strength of the
zero probabilities involved. We develop the notions of positive and negative corre-
lation in a coherent setting, referring to full conditional probabilities represented
by their complete agreeing classes which in turn define the zero layers of the events
of interest. Although the framework of coherent setting constitutes the principle on
which our enhanced notion of correlation is founded, referring to zero layers does
not provide for practicable application in real-world settings, as a consequence of
the computational challenges involved. We therefore provide also a full character-
isation of the correlations involving extreme probability events without reference
to the complex structure of probability.

The paper is organised as follows. Section 2 presents some preliminaries on
coherent conditional probability and thereby introduces our notational conventions.
In Section 3, we present our concepts of positive and negative correlation in a
coherent setting and introduce some of their properties. Section 4 then provides
the characterisation of all correlations involving extreme probability events. Section
5 concludes the paper with our plans for further research.

2 Preliminaries

We consider an event to be any fact described by a Boolean sentence, indicating
by Ω the sure event and using ∅ for the impossible event; for any event E, we will
use E∗ to indicate either E itself or its contrary Ec. A conditional event E |H
is an ordered pair of events E,H with H 6= ∅; in the pair, the two events E and
H have the same type, both being Boolean sentences, yet have different roles in
the sense that H has the role of hypothesis. We recall that an additive class of
events is a set of events closed under disjunction ∨; a Boolean algebra of events is
an additive class which is further closed under taking the contrary (·)c, and hence
under conjunction ∧. For any Boolean algebra A, we use A0 to denote A\{∅}. For
an arbitrary family of events E , we use algebra(E) to denote the minimal Boolean
algebra of events containing E and additive(E) to denote the minimal additive class
of events containing E ; by atoms(E) we indicate the finest partition of Ω contained
in algebra(E). We will restrict our further discussion to finite Boolean algebras.



In this paper, we build on the following axiomatic definition of conditional
probability which dates back to de Finetti [8], and has been explicitly formulated,
with minor differences, by Dubins [9] and Krauss [10].

Definition 1. Let A be a Boolean algebra of events and let H be an additive class
with H ⊆ A0. A conditional probability on A×H is a function P : A×H → [0, 1]
that satisfies the following conditions:

(i) P (E |H) = P (E ∧H |H), for every E ∈ A and H ∈ H;

(ii) P (· |H) is a finitely additive probability on A, for every H ∈ H;

(iii) P (E∧F |H) = P (E |H)·P (F |E∧H), for every H,E∧H ∈ H and E,F ∈ A.

Whenever Ω ∈ H, we write P (E) = P (E |Ω), for every E ∈ A. Following Dubins,
we say that a conditional probability P (· | ·) is full on A if it is defined on A×A0,
that is, if H = A0. Dubins has shown that every conditional probability on A×H
with H ⊂ A0 can be extended to a full conditional probability on A×A0 [9].

For any Boolean algebra of events A, every full conditional probability P (· | ·)
on A has a one-to-one correspondence with a linearly ordered class {P0, . . . , Pk}
of (unconditional) probabilities on A, called its complete agreeing class, whose
supports form a partition of Ω. For a given full conditional probability P (· | ·), its
class {P0, . . . , Pk} is obtained by setting

• P0(·) = P (· |H0
0 ), with H0

0 = Ω;

• for each successive α, Pα(·) = P (· |Hα
0 ), withHα

0 =
∨
H⊆Hα−1

0 ,Pα−1(H)=0H 6=∅;

with the iterative construction halting when Hk+1
0 = ∅. We note that for every

event H ∈ A0, there is an index α ∈ {0, . . . , k} with Pα(H) > 0. Moreover, for
every conditional event E | H ∈ A × A0 and αH being the minimum index in
{0, . . . , k} with PαH (H) > 0, we have that

P (E |H) =
PαH (E ∧H)

PαH (H)
.

Having so far addressed full conditional probabilities on an algebra A, we now
consider arbitrary, possibly partially specified, conditional probabilities.

Definition 2. Let G = {Ej |Hj}j∈J , with J a finite index set, be an arbitrary fam-
ily of conditional events. A coherent conditional probability on G is a function
P : G → [0, 1] for which there exists a conditional probability P ′: A × H → [0, 1],
with A = algebra({Ej , Hj}j∈J) and H = additive({Hj}j∈J), such that P ′|G = P .

We note that, since every conditional probability P ′ on A×H can be extended to a
full conditional probability on A, Definition 2 can also be formulated by requiring
the existence of a full conditional probability on A extending the original function
P . In the sequel, we will use the phrase assessment to denote a function P for



which coherence has yet to be established. The following theorem now specifies sev-
eral characterisations of coherence for such an assessment, relevant to our current
context; for proofs of the equivalences stated in the theorem, we refer to [1, 2, 4].

Theorem 1. Let G = {Ej | Hj}j∈J , with J a finite index set, be an arbitrary
family of conditional events. Then, for any function P : G → [0, 1], the following
statements are equivalent:

(i) P is a coherent conditional probability;

(ii) There exists a complete agreeing class {P0, . . . , Pk}, k ≥ 0, of probabilities
Pα on algebra({Ej , Hj}j∈J) such that, for every j ∈ J , if αj is the minimum
index in {0, . . . , k} with Pαj (Hj) > 0, then

P (Ej |Hj) =
Pαj (Ej ∧Hj)

Pαj (Hj)
;

(iii) With the atom sets C0 = atoms({Ej , Hj}j∈J) and, for α = 1, . . . , k, Cα =
{Cr ∈ Cα−1 | Pα−1(Cr) = 0}, all systems of equations Sα in the sequence of
systems {S0, . . . ,Sk}, k ≥ 0, with non-negative unknowns xαr = Pα(Cr) for
all Cr ∈ Cα, are compatible:

Sα :


∑

Cr∈Cα,Cr⊆Ej∧Hj
xαr = P (Ej |Hj) ·

∑
Cr∈Cα,Cr⊆Hj

xαr , for all j∈JwithPα−1(Hj)=0∑
Cr∈Cα

xαr = 1.

Of the sequence of systems S0, . . . ,Sk introduced in Theorem 1(iii), every sequence
of solutions {x0, . . . ,xk} defines a complete agreeing class {P0, . . . , Pk} on the
algebra algebra({Ej , Hj}j∈J) by setting P0(Cr) = x0r for all Cr ∈ C0, and for each
successive α = 1, . . . , k, setting

Pα(Cr) = 0 for every Cr ∈ C0 \ Cα, and Pα(Cr) = xαr for every Cr ∈ Cα,

and then extending each probability Pα by additivity. In turn, the complete agree-
ing class {P0, . . . , Pk} described in Theorem 1(ii) has a one-to-one correspondence
with a full conditional probability P ′(· | ·) on algebra({Ej , Hj}j∈J) extending P .

To conclude our preliminaries, we recall the concept of zero layer [6], which nat-
urally arises from the structure of conditional probability described in Theorem 1.

Definition 3. Let A be a Boolean algebra of events and let P (· | ·) be a full condi-
tional probability on A represented by the complete agreeing class {P0, . . . , Pk} of
probabilities on A. For every event H ∈ A0, the zero layer of H with respect to
{P0, . . . , Pk} is the non-negative number

o(H) = min{α ∈ {0, . . . , k} : Pα(H) > 0},



with the zero layer of the impossible event equal to o(∅) = +∞. For every condi-
tional event E |H ∈ A ×A0, the zero layer of E |H with respect to {P0, . . . , Pk}
is the non-negative number

o(E |H) = o(E ∧H)− o(H).

We note that, for any event E with P (E) = P (E |Ω) > 0, we have that o(E) = 0.
We further note that P (E |H) > 0 iff o(E ∧H) = o(H) and hence o(E |H) = 0.

3 Positive and negative correlation

Before defining our enhanced concept of corrrelation, we review the classical defi-
nition of correlation between two events, stated in terms of coherence.

Definition 4. Let P be a coherent conditional probability defined on an arbitrary
family of events G with E,E |H ∈ G. Then,

• E is positively correlated with H iff P (E |H) > P (E);

• E is negatively correlated with H iff P (E |H) < P (E);

• E and H are not correlated iff P (E |H) = P (E).

Various properties of correlation having been formulated for the classical setting, we
review in the following proposition some properties through which we will demon-
strate the inadequacy of the classical definitions for describing correlation in the
presence of extreme probability events.

Proposition 1. Let G be an arbitrary family of conditional events including E∗, H∗,
E∗ |H∗. Let P be a coherent conditional probability on G such that P (E), P (H) ∈
]0, 1[. Then, the following properties hold:

(i) if E is positively (or, alternatively: negatively) correlated with H, then Ec is
positively (negatively) correlated with Hc;

(ii) – if either E∧H=∅ or Ec∧Hc=∅, then E is negatively correlated with H;

– if either Ec∧H=∅ or E∧Hc=∅, then E is positively correlated with H;

(iii) E is positively (negatively) correlated with H iff P (E |H) > (<)P (E |Hc).

Proof. The properties (i) and (iii) follow directly from Definition 1. The first part
of property (ii) follows from the observation that E ∧H = ∅ implies P (E |H) =
0 < P (E). As Ec∧Hc = ∅ implies P (Ec |Hc) = 0 < P (Ec), we have by property
(i) that P (E |H) < P (E). In both cases, therefore, E is negatively correlated with
H. The second part of property (ii) follows analogously.

We note that property (i) of Proposition 1 strictly depends on the premise that the
probabilities of E and H are different from 0 and 1. For property (iii), moreover,



the implication P (E | H) > P (E) ⇒ P (E | H) > P (E | Hc) holds only when
P (E), P (H) ∈ ]0, 1[, while the reversed implication is universally valid.

To illustrate the inadequacy of the classical definition above for describing cor-
relation in the presence of extreme probability events, we consider an event H with
P (H) = 1. By Definition 4, this event is not correlated with any other event, as
for any event E 6= H we would find that P (E |H) = P (E). We would find the
exact same result, in fact, also for an event E which logically contradicts H, as we
would then have P (E |H) = P (∅ |H) = P (E) = 0. Yet, E could clearly not be
considered uncorrelated with H. Similarly counterintuitive conclusions are found
for an event E which is logically implied by H and for an event E with P (E) = 0.

Not all researchers accept Definition 4 as the basic definition of correlation, how-
ever, and may argue that the above observations are due to using an inappropriate
definition. They may use property (iii) of Proposition 1 for the basic definition of
correlation instead, that is, use Definition 5 below.

Definition 5. Let P be a coherent conditional probability defined on an arbitrary
family of events G with E |H,E |Hc ∈ G. Then,

• E is positively correlated with H iff P (E |H) > P (E |Hc);

• E is negatively correlated with H iff P (E |H) < P (E |Hc);

• E and H are not correlated iff P (E |H) = P (E |Hc).

We note that Definitions 4 and 5 are not equivalent: while Definition 4 implies
Definition 5, the reverse does not hold. In fact, by Definition 5, a conditioning
event H with P (H) = 1 is not necessarily uncorrelated with an event E. Since
P (Hc) = 0, there is an index αH > 0 such that PαH (H) > 0 and

P (E |Hc) =
PαH (E ∧Hc)

PαH (Hc)
,

which, without any further information, can assume any value in [0, 1] and hence
also values larger, or smaller, than P (E). Yet, also Definition 5 does not capture
the full impact of the hypothesis H on the degree of belief in E when P (E |H) =
P (E |Hc) = 0 or P (E |H) = P (E |Hc) = 1.

From the above considerations, we conclude that, with both definitions, we
need to distinguish between different zeroes, depending on their strengths, before
concluding that two extreme probability events are uncorrelated. We provide an
example to illustrate our conclusion.

Example 1. Let Ω be the unit square [0, 1]2. Let the event E be the Boolean
sentence E = P ∨ Q ∨ R where P,Q,R are the points P =

(
3
4 ,

3
4

)
, Q =

(
1
2 ,

1
2

)
,

R =
(
3
4 ,

1
4

)
in Ω; let the event H = {(x, y) | x = y, x, y ∈ [0, 1]2} be the diagonal of

the unit square. In this setting, we consider the following assessment for a family
of four conditional events:

P (E |H) = P (E |Hc) = P (H |Ec) = 0, P (H |E) =
2

3



For proving coherence, we consider the set atoms({E,H}) = {C1, C2, C3, C4} with

C1 = E ∧H = P ∨Q, C2 = E ∧Hc = R, C3 = Ec ∧H, C4 = Ec ∧Hc,

and build the sequence of systems Sα with non-negative unknowns xαi = Pα(Ci), as
described in Theorem 3. The first system equals

S0 :



x01 = 0 · (x01 + x03)

x02 = 0 · (x02 + x04)

x03 = 0 · (x03 + x04)

x01 = 2
3 · (x

0
1 + x02)

x01 + x02 + x03 + x04 = 1

which has x01 = x02 = x03 = 0, x04 = 1, for its solution. Then, focusing on the
zero-probability atoms and writing x1i for x0i , the second system is found to be

S1 :


x11 = 0 · (x11 + x13)

x11 = 2
3 · (x

1
1 + x12)

x11 + x12 + x13 = 1

which has x11 = x12 = 0, x13 = 1, for its unique solution. The third system equals

S2 :

{
x21 = 2

3 · (x
2
1 + x22)

x21 + x22 = 1

and has x21 = 2
3 , x22 = 1

3 for its sole solution. Since every constructed system of the
sequence has a unique solution, the assessment P has a unique complete agreeing
class {P0, P1, P2}. This class implies that

o(E |H) = o(E ∧H)− o(H) = 2− 1 < 2− 0 = o(E ∧Hc)− o(Hc) = o(E |Hc).

The zero layer of taking the event H for the hypothesis thus is smaller than that
of taking Hc for the hypothesis. As the conditional event E | Hc still has zero
probability in the structure when E | H does not, this finding may be naturally
construed as a positive correlation of E and H.

We further consider the incompatible events R and H. Analogously to the above
example, we find for the conditional events R |H and R |Hc that

o(R |H) = o(R ∧H)− o(H) = +∞− 1 > 2− 0 = o(R ∧Hc)− o(Hc) = o(R |Hc),

which demonstrates that the logical impossibility of R under the hypothesis H results
in a zero layer which is infinitely larger than that of R under the hypothesis Hc. The
zero probability resulting from a logical impossibility will thus always be deeper in
the complex structure of probability than the zero probability of any possible event.



Based on the considerations in the above example, we now introduce our defi-
nition of correlation of extreme probability events in a coherent setting.

Definition 6. Let P be a coherent conditional probability defined on an arbitrary
family of conditional events G containing E∗ |H∗, H∗ |E∗. We say that:

• E is positively correlated in a coherent setting with H, denoted as
E ⊥+

cs H, if one of the following conditions holds:

– P (E |H) > P (E |Hc);

– P (E |H) = P (E |Hc) = 0, and every complete agreeing class {Pα} on
algebra({E,H}) that agrees with P on D, has

o(E |H) < o(E |Hc);

– P (E |H) = P (E |Hc) = 1, and every complete agreeing class {Pα} on
algebra({E,H}) that agrees with P on D, has

o(Ec |H) > o(Ec |Hc);

• E is negatively correlated in a coherent setting with H, denoted as
E ⊥−cs H, if one of the following conditions holds:

– P (E |H) < P (E |Hc);

– P (E |H) = P (E |Hc) = 0, and every complete agreeing class {Pα} on
algebra({E,H}) that agrees with P on D, has

o(E |H) > o(E |Hc),

– P (E |H) = P (E |Hc) = 1, and every complete agreeing class {Pα} on
algebra({E,H}) that agrees with P on D, has

o(Ec|H) < o(Ec|Hc);

• E is not correlated in a coherent setting with H, denoted as E 6⊥cs H,
if it is not positively nor negatively correlated in a coherent setting with H.

The above definition of positive and negative correlation in a coherent setting
avoids the counterintuitive findings from the classic definitions of correlation which
were illustrated above. In fact, in the presence of extreme probability events,
the definition allows the identification of a correlation between events which are
logically related, as shown in the following theorem.

Theorem 2. Let P be a coherent conditional probability defined on an arbitrary
family of conditional events G containing E∗ | H∗, H∗ | E∗. Then, the following
properties hold:



(i) if either E ∧H = ∅ or Ec ∧Hc = ∅, then E ⊥−cs H;

(ii) if either Ec ∧H = ∅ or E ∧Hc = ∅ then E ⊥+
cs H.

Proof. We prove property (i); the proof of property (ii) is analogous. If E∧H = ∅,
we just have to consider the case where P (E |H) = 0 = P (E |Hc); in this case we
have that o(E |H) = +∞ > o(E |Hc) and the negative correlation follows. Similar-
ly, if Ec ∧Hc = ∅, we address just the case where P (E |H) = 1 = P (E |Hc); since
then o(Ec |H) < +∞ = o(Ec |Hc), the negative correlation equally follows.

We note that the correlations ⊥+
cs and ⊥−cs introduced above generally are not

symmetric, as demonstrated by the following example.

Example 2. We address two events E,H which are logically independent, and
consider the following coherent probability assessment for these events:

P (E |H) =
3

4
, P (E |Hc) =

1

4
, P (E) =

1

4
, P (H) = 0.

By definition, we have that E is positively correlated with H and, hence, E ⊥+
cs H.

We now address the way in which H is correlated with E. Building upon the
set of atoms atoms({E,H}) = {C1, C2, C3, C4} with

C1 = E ∧H, C2 = E ∧Hc, C3 = Ec ∧H, C4 = Ec ∧Hc,

we consider the sequence of systems Sα with non-negative unknowns xαr = Pα(Cr)
as before. The first system of equations equals

S0 :



x01 = 3
4 · (x

0
1 + x03)

x02 = 1
4 · (x

0
2 + x04)

x01 + x02 = 1
4 · (x

0
1 + x02 + x03 + x04)

x01 + x03 = 0 · (x01 + x02 + x03 + x04)

x01 + x02 + x03 + x04 = 1

having x01 = x03 = 0, x02 = 1
4 , x04 = 3

4 for its solution. The second system then is

S1 :

{
x11 = 3

4 · (x
1
1 + x13)

x11 + x13 = 1

whose unique solution is x11 = 3
4 , x13 = 1

4 . These solutions determine the unique
agreeing class {P0, P1} on the algebra algebra({E,H}), which, in turn, has a one-
to-one correspondence with a full conditional probability P ′ on algebra({E,H})
extending P . This probability P ′ has

P ′(H |E) =
P0(H ∧ E)

P0(E)
= 0 =

P0(H ∧ Ec)
P0(Ec)

= P ′(H |Ec),



and, hence,

o(H |E) = o(H ∧ E)− o(E) = 1 = o(H ∧ Ec)− o(Ec) = o(H |Ec),

from which we find that H 6⊥+
cs E. We conclude that, while E is positively correlated

with H, the reverse does not hold.

For symmetric concepts of positive and negative correlation in a coherent setting,
the definitions of ⊥+

cs and ⊥−cs need be further enhanced, by setting

E⊥+
S−csH iff E ⊥+

cs H and H ⊥+
cs E,

E⊥−S−csH iff E ⊥−cs H and H ⊥−cs E.

Because of space limitations, we do not further elaborate on this enhancement.

4 Detecting correlations in a coherent setting

Detecting correlations in the presence of extreme probability events by means of
the definitions introduced in the previous section, involves the construction of a
sequence of systems of equations to determine the zero layers of the conditional
probabilities involved. The next theorem now characterizes the possible corre-
lations between two logically independent events E and H, in terms of just the
probabilities P (H), P (E∗ | H∗) and P (H∗ | E∗). The theorem thereby provides
for detecting all correlations between the two events without the need to explicitly
identify the zero layers for the conditional events involved.

Theorem 3. Let E,H be logically independent events and let P be a coherent con-
ditional probability on a family of conditional events G containing the subset D =
{E∗ |H∗, H∗ |E∗}, with P (E |H) = P (E |Hc). Then, the following properties hold:

(i) E ⊥+
cs H if and only if one of the following conditions holds:

(a) P (E | H) = 0 and all extensions of P to H,H | E meet either of the
following conditions:

1. P (H) = 0 and P (H |E) > 0;

2. 0 < P (H) < 1 and P (H |E) = 1;

(b) P (E |H) = 1 and all extensions of P to H and H|E meet either of the
following conditions:

1. P (H) = 0 and P (H |Ec) > 0;

2. 0 < P (H) < 1 and P (H |Ec) = 1;

(ii) E ⊥−cs H if and only if one of the following conditions holds:

(c) P (E | H) = 0 and all extensions of P to H,H | E meet either of the
following conditions:



1. P (H) > 0 and P (H |E) = 0;

2. P (H) = 1 and 0 < P (H |E) < 1;

(d) P (E | H) = 1 and all extensions of P to H,H | E meet either of the
following conditions:

1. P (H) = 0 and P (H |Ec) > 0;

2. P (H) = 1 and 0 < P (H |Ec) < 1.

Proof. For proving the theorem, we take atoms({E,H}) = {C1, C2, C3, C4} with

C1 = E ∧H, C2 = E ∧Hc, C3 = Ec ∧H, C4 = Ec ∧Hc.

We further consider a complete class {Pα} on algebra({E,H}) agreeing with the
restriction of P to D, obtained by solving a sequence of systems Sα as in Theorem 1.

We first prove that condition (a)1. implies property (i); proofs of the conditions
(a)2. and (b) implying (i) are analogous. We assume that P (E |H) = P (E |Hc) =
0 and, moreover, that P (H) = 0 and P (H |E) > 0; we take P (H |E) = p ∈ ]0, 1].
Under these conditions, every complete agreeing class {Pα} that agrees with P on
D, has P0(C4) = 1, P1(C3) = 1, P2(C1) = p and P2(C2) = 1 − p, which implies
that o(E∧H) = 2 and o(E∧Hc) ≥ 2 while o(H) = 1 and o(Hc) = 0. We conclude
that o(E |H) < o(E |Hc) and, hence, that E ⊥+

cs H.

We now prove that condition (a) suffices for concluding E ⊥+
cs H; the proof in-

volving condition (b) is analogous. We assume P (E |H) = P (E |Hc) = 0, o(E |H)
< o(E |Hc), and take P (H | E) = q ∈ ]0, 1]. We now distinguish between three
cases:

• We suppose that P (H) = δ ∈]0, 1[. The only complete agreeing class sat-
isfying o(E | H) < o(E | Hc) is the class {P0, P1, P2} with P0(C3) = δ,
P0(C4) = 1−δ, P1(C1) = 1 and P2(C2) = 1, which implies that P (H | E) = 1.

• We suppose that P (H) = 0. Every complete agreeing class having P0(C4) = 1,
P1(C1) = 0, we consider the following possibilities for the remaining atoms:

– if P1(C2) = δ ∈ ]0, 1[ and P1(C3) = 1 − δ, we must have that P (H|E)
equals zero and o(E|H) = o(E|Hc), which contradicts our assumption;

– if P1(C3) = 1 and, hence, P2(C1) = P (H |E) = q and P2(C2) = 1 − q,
it follows that o(E |H) = o(E |Hc), which contradicts our assumption;

– if P1(C2) = 1, we must have that P (H |E) = 0 and, as P2(C3) = 1 and
P3(C1) = 1, also o(E |H) = o(E |Hc), contradicting our assumption.

• We cannot have P (H) = 1, as this would contradict o(E |H) < o(E |Hc).



5 Concluding observations

Based on the observation that the classical definitions of correlation can give coun-
terintuitive results in the presence of extreme probability events, we provided an
enhanced definition of correlation in a coherent setting. To allow ready applicabil-
ity of our definition to real-world applications, we gave a full characterisation of
correlations involving extreme probability events without referring to the underly-
ing complex structure of the probability involved. We noted that our definition of
correlation in a coherent setting is not symmetric; as a next step in our research,
we will address this asymmetry by studying the conditions under which it occurs.
In the future, we will investigate how our enhanced definition of correlation can
be embedded in the framework of qualitative probabilistic influence, to render this
framework suitable to real-world applications involving extreme probability events.
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