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Abstract
We illustrate the use of a recently proposed efficient procedure, based on

L1 distance minimization, for correcting inconsistent (i.e. incoherent) proba-
bility assessments for the so named statistical matching problem. Albeit the
statistical matching problem is based on conditional probabilities estimates,
inconsistencies can appear only among assessments given on the same con-
ditioning values, hence a correction instance can be splitted in a finite set
of unconditional correction instances where the L1-based correction can effi-
ciently operate. The statistical matching problem has been recently enriched
with the possibility of a misclassification setting, breaking the aforementioned
segmentation possibility. Anyhow the L1-based procedure can be applied by
a straightforward translation in a MIP problem, albeit the set of consistent
solutions turns out to be not convex and hence potential disconnected solu-
tions can appear.

1 Introduction

In recent contributions [1, 2] it has been proposed an efficient procedure for correct-
ing inconsistent (i.e. incoherent) probability assessments based on L1 distance min-
imization and encoded in mixed integer programming (MIP) problems. The proce-
dure is particular apt to deal with assessments stemming from different sources of
information, and the so named statistical matching problem is one of those cases
(see e.g. [11]). Albeit the statistical matching problem is based on conditional
probabilities estimates, always in [11] it has been proven that inconsistencies can
appear only among assessments given on the same conditioning values, hence a cor-
rection instance can be splitted in a finite set of unconditional correction instances
where the L1-based correction can efficiently operate.



The problem has been recently enriched with the possibility of a misclassifica-
tion setting [8], breaking the aforementioned segmentation possibility. If marginal
assessments on the conditioning variable are taken for good, the only possible cor-
rection are the closest Fréchet-Hoeffding bounds for the misclassification probabil-
ities. On the contrary, if also the marginal probabilities are allowed to be modified
or the assessment is partial, the L1-based procedure can be applied by a straight-
forward translation in a MIP problem, albeit the set of consistent solutions turns
out to be not convex and hence potential disconnected solutions can appear. It
is eventually notable that in the case the L1-based correction would induce some
marginal probability to be null, that could happen whenever the initial assessment
would be based on rare or scarce observations, it will not be needed to proceed to
further corrections on deeper zero layers (see [5]).

In the next sections we will briefly illustrate the general statistical matching
(Sec.2), the merging and correction procedures for general unconditional probabil-
ity assessments (Sec.3) and consequently their specific application to the statistical
matching problem (Sec.4). Finally, in Sec.5 we will give a rough preliminary idea of
the correction of incoherent evaluations when also a missclassification mechanism
is assessed.

2 The statistical matching problem

As already stated, we propose to adopt a correction procedure applied to a merg-
ing operation for a specific practical problem named “statistical matching”. Let
us briefly recall what it means and which are its main peculiarities. A detailed
description of such a problem can be found, e.g., in [9, 10].

Denote by (X1,Y1), . . . , (XnA
,YnA

) and by
(XnA+1,ZnA+1), . . . , (XnA+nB

,ZnA+nB
) two random samples, related to two sources

A and B, of dimensions nA and nB . Samples observe three categorical variables
X ,Y,Z with modalities mxi, i ∈ I, myj , j ∈ J and mzk, k ∈ K, respectively.
Hence in the sequel we will adopt the following notation for the possible observa-
tions:

Xi ≡ (X = mxi) , i ∈ I, Yj ≡ (Y = myj) , j ∈ J, Zk ≡ (Z = mzk) , k ∈ K, (1)

that will constitute our propositional variables (i.e. events).
Let Ss (with s = 1, 2) be the two, possibly different, sampling schemes. From

them, relevant parameters, represented by (conditional) probabilities, can be esti-
mated : from A the probability to observe Yj conditional on Xi (for any i ∈ I)

yj|i = PY|(Xi)(Yj), (2)

and analogously from B the probability to observe Zk conditional on Xi (for any
i ∈ I)

zk|i = PZ|Xi
(Zk). (3)



Moreover, from A we can estimate the probability to observe Xi by following
the first sampling scheme

xS1
i = PX (Xi|S1), (4)

while from file B by following the second one

xS2
i = PX (Xi|S2), (5)

and, by supposing that an observation can be obtained through one single sampling
scheme Ss, with s ∈ {1, 2} and probability P (Ss), we get

xi = PX (xi) = xS1
i P (S1) + xS2

i P (S2). (6)

Under the assumption of a common sampling scheme, estimations are obtained
through partial maximum likelihood method, and the result brings to the frequen-
cies

yj|i =
nijA
ni·A

, zk|i =
nikB
ni·B

, xi =
ni·A + ni·B
nA + nB

, (7)

with ni·A and ni·B cardinalities of elements with Xi in samples A and B, respectively,

while nijA is the cardinality of elements in A with (Xi, Yj) and nikB is the cardinality
of elements in B with (Xi, Zk).

Whenever ni·A (the same for ni·B) is equal to zero (i.e. no observation in A
has Xi) the value yj|i (zk|i) is undefined and this specific parameter has not any
estimation.

If the probabilities P (Ss), s = 1, 2, can be elicited, we get a precise conditional
probability assessment (V, E ,p,C) with

V = {Xi, Yj , Zk} , E = {Xi, Yj |Xi, Zk|Xi} , p = {xi,yj|i, zk|i}, i ∈ I, j ∈ J, k ∈ K,
(8)

while C is a set of logical constraints, in this field named as “structural zeroes”,
among elements of V .

Usually, the first step is to check the coherence of (V, E ,p,C), that should resort
to check the satisfiability of a sequence of linear systems (see, e.g., [5]) but that in
the particular context of the statistical matching can be reduced to the solvability
of a unique linear system (see [11]). Generally, whenever (V, E ,p,C) is coherent
there is more than one solution and the set of all of them forms a so called “credal
set”.

In the trivial case of logical independence, coherence is automatically ensured
(see [11]). In the more worthwhile case of structural zeroes among random vari-
ables Y and Z (for real applications where these are present refer, e.g., to [9]),
coherence of the entire assessment (V, E ,p,C) in (8) is not directly ensured by the
separate coherence of the distinct assessments with numerical parts (2), (3), (6).
The problem is hence to find a coherent assessment that solves inconsistencies.

Anyhow, whenever present, inconsistencies focus on conditional events with the
same conditioning Xi (proofs and examples again in [11]).



This result will permit to split the problem of the merging of the two estimates
into separate subproblems: one for the unconditional values xi, i ∈ I, and one
for each conditioning Xi about the conditional quantities {yj|i, zk|i}, j ∈ J and
k ∈ K. In each of these subproblems the merging and correction procedure can
be applied, even being the statistical matching a conditional problem, by fixing in
each subproblem the conditioning event, that could be the sure event > or Xi, and
dealing with actually unconditional problems. To see how this could be possible,
let us formalize in the next Sections the merging and correction procedure, starting
with the formal definition of the unconditional probability assessments.

3 Correction of probability assessments

A probability assessment on a finite domain is a quadruple π = (V,U, p,C), where
V = {X1, . . . , Xk} is a finite set of propositional variables, representing any poten-
tial event of interest, U is a subset of V that contains the effective events taken
into consideration, p : U → [0, 1] is a function which assigns a probability value to
each variable in U , and C is a finite set of logical constraints which lie among all
the variables in V .

With such framework, the user provides a probability value for the elements of
set U , but logical constraints can also be written in terms of all the existing events
V . This feature allows to extend an initial assessment to a larger domain without
redefining the whole model.

The constraints in C are written with the usual logical notation, where ¬, ∧ and
∨ denote the negation, disjunction and conjunction connectives, respectively;⇒ the
material implication; = the logical equivalence; > and ⊥ the universal tautology
and contradiction (sure and impossible events), respectively. These constraints
can be used to represent any kind of compound event, for instance that an event is
the conjunction of other two events, or denote the implications or incompatibilities
among the elements of V . Without loss of generality, we suppose that C is expressed
in conjunctive normal form (CNF) that will help in the implementation part of
the correction procedure. Hence C = {c1, . . . , cm} where each element ci of C is a

disjunctive clause, i.e. ci =

( ∨
h∈Hi

Xh

)
∨

( ∨
l∈Li

¬Xl

)
for some Hi, Li ⊆ {1, . . . , n}.

Since we will require that all the logical constraint present in C must be satisfied,
C can be seen as the conjunction of c1, . . . , cm.

Since a probabilistic assessment π is partial, it may or not be coherent, i.e.
consistent with a probability distribution.

The problem of checking the coherence of a probability assessment, called CPA,
has been already studied (see [3, 4] among the many), albeit in a slightly different
form, showing that it is a NP-complete problem, even when the constraints in C
are binary (i.e., each of them involves only two variables).

There exist several approach to solve CPA. Among those, the Mixed Integer
Programming (MIP) based approach has proved to be very effective as reported in



Table 1: Variables of P1

name size type
aij , for i = 1, . . . , n

n(n+ 1) binary
and j = 1, . . . , n+ 1
bij , for i = 1, . . . , n

n(n+ 1) real
and j = 1, . . . , n+ 1

qj , for j = 1, . . . , n+ 1 n+ 1 real
ri for i = 1, . . . , n n real
si for i = 1, . . . , n n real

[6, 7], where their implementation was able to handle coherence testing instances
up to 1000 variables and 1000 disjunctive clauses in average time ranging from
some seconds to some minutes.

When a probability assessment π = (V,U, p,C) is not coherent, then it is possible
to “correct” it in order to obtain a coherent probability assessment π′ which is as
close as possible to π, according to a distance or a pseudo-distance function between
probability assessments.

Definition 1 Given a distance d, a d-correction of a probability assessment π =
(V,U, p,C) is a vector p′ such that the probability assessment
π′ = (V,U, p′,C) is coherent and d(p, p′) is minimized. We denote Cd(π) the sets
of all the d-correction of π.

It is important to notice that for certain choices of d, Cd(π) has just one element,
for instance when d is the Euclidean distance. On the other hand, for some other
choices of d, Cd(π) has more than one element for some probability assessments
π. In this case, the operation of correcting a probability assessment leads to an
imprecise probability model, called “credal set”. Clearly if π is coherent, then
Cd(π) = {p}, for any distance d of Rn.

In this paper we focus on the L1 distance defined as
d1(p, p′) =

∑n
i=1 |p(Xi)− p′(Xi)| and we denote Cd1(π) as C(π).

This distance has two important properties. First of all, the correction can
be easily interpreted as a cost of changing the probability values, in terms of the
sum of the displacements |p(Xi) − p′(Xi)|. Minimization of such displacements
obeys to the basic principle of minimal change in a numerical uncertainty setting.
Secondly, the resulting minimization problem with L1 distance can be solved by
using linear programming with both integer and real variables and this represents
a clear computational advantage compared to other distances which require non
linear (quadratic, logarithmic, etc.) optimizations tools.

In [1] the details of the MIP-based program P1 implementation have been give.
Here we just recall the basic quantities involved in it.



It is well known that if a probability assessmentis coherent, there exists a sparse
probability distribution µ so that p′ can be written as a convex combination of at
most n+ 1 atoms. Let us call α(1), . . . , α(n+1) these atoms.

The variables of P1 are summarized in Table 3, while its linear constraints are∑
h∈Hi

ah,j +
∑
l∈Li

(1− al,j) ≥ 1 i = 1, . . . ,m j = 1, . . . , n+ 1 (9)

n+1∑
j=1

bij = p(Xi) + (ri − si) i = 1, . . . , n (10)

0 ≤ bij ≤ aij , aij − 1 + qj ≤ bij ≤ qj i = 1, . . . , n j = 1, . . . , n+ 1 (11)
n+1∑
i=1

qj = 1 (12)

ri ≤ 1, si ≤ 1 i = 1, . . . , n (13)

The implicit constraint is that all of the variables must be non-negative, as usual
in linear programming.

The variables aij are binary , i.e. constrained in {0, 1}. Each value aij should
correspond to the atom component α(j)(Xi), for i = 1, . . . , n and j = 1, . . . , n +
1. Indeed, the constraint (9) forces each assignment (a1j , . . . , anj) to satisfy all
the clauses ci ∈ C. The values q1, . . . , qn+1 represent the coefficient of the con-
vex combination which generates p′, which also correspond to the probabilities
µ(α(1)), . . . , µ(α(n+1)). The constraint (11) allows to express the equation

bij = aij · qj for i = 1, . . . , n and j = 1, . . . , n+ 1,

without using the multiplication, otherwise P1 would not be a linear problem.
Indeed, if aij = 0, then bij = 0 too. On the other hand, if aij = 1, then
aij − 1 + qj ≤ bij ≤ qj reduces to qj ≤ bij ≤ qj . In this way, for each i = 1, . . . , n

the sum
∑n+1
j=1 bij corresponds to

∑n+1
j=1 aij · qj . Since aij = 1 if and only if α(j)

satisfies Xi, the sum is also equal to p′(Xi).
The variables ri, si are slack variables, which represent, respectively, the positive

and the negative difference between p(Xi) and p′(Xi), as implied by the constraint
(10). Hence (ri−si) is the correction on the probability of Xi, for each i = 1, . . . , n.

Finally, the objective function to be minimized is

n∑
i=1

(ri + si) (14)

that, being the sum of these corrections, corresponds to the L1-distance between p
and p′, i.e.,

∑n
i=1 |p(Xi)− p′(Xi)|. Note that for each i = 1, . . . , n, it is impossible

that ri > 0 and si > 0, otherwise the objective function would not be minimized.
It is easy to see that any solution of the linear program P1 corresponds to a

L1-correction p′ of p. And vice versa, any L1-correction p′ of p corresponds to a
solution of P1.



The optimal value δ for the objective function corresponds to the minimum
possible correction on p and any coherent probability assessment π′ = (V,U, p′,C)
such that d1(p, p′) = δ is a possible solution i.e., p′ is an element of C(π). Note
that p′ can be simply obtained as p′i = pi + ri − si for i = 1, . . . , n.

In many situations C(π) has more than one element and the MIP problem is
able to find just one solution, which could not be a good representative of all the
elements of C(π), as happens when it is an extreme value. Hence program P1 must
be associated with an other MIP program P2 to generate all the elements of C(π).
In P2 all the constraints and the variables of P1 are reported and it contains a
new real variable z, which is subject to the constraints ri + si ≤ z, for i = 1, . . . , n
(hence z ≥ max

i=1,...,n
(ri + si)), and the new additional constraint

∑n
i=1(ri + si) = δ.

In this way, the P2 objective function to be minimized is simply z.

The corrected assessment π̄ = (V,U, p̄,C) tries to spread the difference δ as
much as possible among all the dimensions, i.e. the variables of U . Hence p̄ is, in
some sense, the most “entropic” point of C(π).

Using p̄, it is possible to find the face F1 of the polytope Q where C(π) lies. The
face F1 is itself a convex set with at most n + 1 atoms as extremal points, which
can be found as a part of the solutions of P2 (i.e., the optimal values of aij).

By looking at the signs of p̄(Xi)− p(Xi), for i = 1, . . . , n, it is also possible to
determine the face F2 of Bπ(δ) which contains C(π). Indeed, F2 is a convex set
with at most n extremal points of the form p+ sign(p̄(Xj)− p(Xj)) · δ · ej .

The whole set of corrections C(π) will result as F1 ∩ F2.

These steps have been implemented in a procedure named Correct that, given
in input any partial assessment π, returns the extremal points of the credal set
C(π) (for details refer again to [1]).

In Sec.2 we have seen that an incoherent assessment could come by the merging
of two separate assessments π1 and π2. Let us show how to produce a new coherent
probability assessment π3 which is a ”compromise” between π1 and π2, keeping as
much as possible the information from both.

Depending if the two assessments are compatible (i.e. they give the same values
to common variables) or not (i.e. there is an explicit contradiction given by different
probabilities to some common variable) there are two different way of defining the
joining of them. We report here just the basic notions, referring again to [1] for all
the details.

In case of compatibility, it is possible to join directly the two original assess-
ments, so that the merging will result as π1 ⊕ π2 = Correct(π1 + π2). Note that,
since such merging procedure is the result of our Correct procedure, its output
could be a credal set, as already outlined in the previous Section.

When the probability assessments to be merged are non compatible it is not
possible to join directly them into a unique assessment. Hence, in addition to pos-
sible initial incoherences present in the separate assessment, we have to tackle with
a sure incoherence in the joint one. Anyhow two different correction procedures are
possible: a “weighted combination” of the two assessments, or a “assignment to



duplicates”. The first approach requires to create a non contradictory probability
assessment derived from π1 and π2, by choosing a weighted average probability
value for each variable in common.

The merging operation between π1 and π2 is then defined as the new assessment
obtained as correction of the weighted average π1 ⊕ω π2 = Correct(π1 +ω π2).

The second approach is to create a probability assessment which maintains both
numerical values and to solve the apparent contradiction by adding a new logical
variable X ′i, for each variable Xi in common. Obviously the logical constraints
¬Xi ∨X ′i and Xi ∨¬X ′i must be added to C∪D to represent the duplicated events
Xi = X ′i.

Indeed, apart from separate initial incoherences of the two initial assessments
π1 and π2, the new assessment so obtained π1 + π2 is obviously incoherent since
the duplicated events with different associated values and the merging operation
of π1 and π2 results as π1 ⊕I π2 = Correct(π1 + π2). Note that, whenever the two
assessments π1 and π2 are compatible, this merging operator π1 ⊕I π2 coincides
with the previous π1⊕π2 since no duplication of variables is needed in such a case.

The main difference between the two merging of incompatible assessments just
described is that⊕I is an unsupervised approach since it tries to automatically solve
the contradictions, while the operator ⊕ω is a supervised approach since it needs
an explicit and “exogenous” conciliation among explicit numerical contradictions
through the choice of the weight ω. These differences can lead to very different final
results. Anyway, the idea behind these two methods is the same, i.e., the merging
of two information sources can be performed in two steps. First, put together all
the information I, and then find the smallest number of corrections on I such that
the new information I ′ is consistent. The choice of which merging operator to
adopt should be based on the availability or not of the weight ω representing the
relevance, or better of the reliability, of the sources of information. If a reliability
grade ω is available, or reasonably assessed, the ⊕ω should be preferred, if not the
⊕I operator avoids the use of unrealistic assumptions.

4 Application of the merging and correction pro-
cedures to the statistical matching problem

We can now describe how the merging an correction procedures defined in the
previous Section can be applied to the statistical matching problem described in
Sec. 2. The preliminary operation is to merge the estimates coming from the two
different sampling schemes S1 and S2. In particular, since incoherences could be
focused only on events conditioned to the same event, we can split the domain E
into sub-domains

EΩ = {Xi}i∈I ; (15)

Ei = {Yj |Xi, Zk|Xi}j∈J,k∈K for i ∈ I (16)



Since, as described in Section 2, variables Y and Z are not jointly observed, on the
domains Ei the two sources of information do not overlap and hence the problem
will be to, eventually, correct the estimates {yj|i, zk|i} obtained through (2) and

(3). A proper merging operation is needed for the estimates {xS1
i }i∈I and {xS2

i }i∈I ,
both on elements of EΩ.

As described in Sec. 3, two different approaches can be used: the “supervised”
procedure if we can assess the ”weight” ω of the relevance or reliability of sources;
or the “unsupervised” one that relies on the duplication of all events Xi and con-
sequent addition of structural constraints that express such duplication.

Schematically, the first approach needs hence to compute at first a componen-
twise“weighted average”

xS1 +ω xS2 = ω{xS1
i }i∈I + (1− ω){xS2

i }i∈I (17)

for a chosen weight ω ∈ [0, 1], and consequently apply the correct procedure to
(V, EΩ,xS1 +ω xS2 ,C) obtaining for the numerical part

lub = xS1 ⊕ω xS2 = Correct(xS1 +ω xS2) (18)

If there is some missing value for {xS1
i }i∈I or for {xS2

i }i∈I it must be put equal to 0
in (17). Remember that the correct procedure could lead to either a single solution
or to a convex set of solutions, hence lub in (18) could be either an actually precise
coherent assessment {xi}i∈I or a proper lower-upper assessment {lubi}i∈I .

Note moreover that, if estimates are taken through frequencies in both samples,
xS1 +ω xS2 in (17) turns out to be directly coherent for any choice of ω ∈ [0, 1] so
that lub = {xi}i∈I = xS1 +ω xS2 . In particular, choosing ω = nA

nA+nB
we obtain

exactly the xi estimates already described in (7). So the common sampling scheme
can be re-interpreted in our method as separate sampling schemes with weights
proportional to the different sample dimensions.

The second approach is to let the correct procedure work without any exogenous
weight of the sources and contemplating simultaneously the two different estimates
{xS1

i }i∈I and {xS2
i }i∈I . The obvious inconsistencies are solved by duplicating the

events in EΩ as E ′Ω = {Ai ≡ Xi, Bi ≡ Xi}i∈I and by adding structural zeros induced
by the duplicates Ai = Bi, for i ∈ I. Hence the correction procedure can be applied
to the concatenated assessment xS1

⊎
xS2 that assigns xS1

i to Ai and xS2
i to Bi,

for any i ∈ I, by obtaining a, generally imprecise, assessment lub = xS1 ⊕I xS2 =
Correct(xS1

⊎
xS2).

As already mentioned, to the other conditioned “strata”
(Ei, {yj|i, zk|i}j∈J,k∈K) the correction procedure can be straightly applied obtain-
ing, generally imprecise, estimates {lubj|i, lubk|i}j∈J,k∈K , for i ∈ I.

At the end, by collecting all the corrections we get a, generally imprecise, co-
herent assessment (V, E , {lubi, lubj|i, lubk|i}i∈I,j∈J,k∈K ,C) as the merging of the
separate estimates based on the two sample schemes S1 and S2.



5 Correction of a statistical matching with miss-
classification

In [8] it is described a variation of the usual statistical matching problem by in-
troducing a missclassification mechanism that could be summarized by saying that
the common variable X is biasedly observed in source A (e.g. if its values are
assessed by not experts in the field) giving rise to a new variable X ∗ with the same
modalities mxi, i ∈ I, while X remains properly observed in the second source B.

In addition, a missclassification mechanism, specified by conditional probabil-
ities PX|X∗

i∗
(Xi), can be fully or partially assessed. Hence the whole assessment

that results from the joining of all the available information will be of the form
π = (V ∗, E∗,p∗,C∗) with

V ∗ = {Xi, X
∗
i∗ Yj , Zk} , E∗ = {Xi, X

∗
i∗ , Yj |X∗i∗ , Zk|Xi, Xi|X∗i∗} ,

p∗ = {xi,x∗i∗ ,yj|i∗ , zk|i,xi|i∗} , (i, i∗) ∈ I ⊆ I × I, j ∈ J, k ∈ K, (19)

while C∗ incorporates the structural zeroes among elements of V ∗.
This brakes the division in the subdomains (15,16) and the possibility to cor-

rect incoherence of the whole assessments with a finite set of corrections on the
subdomains. Anyhow, always in [8], it has been proven that the coherence of the
whole assessments is basically due to the coherence of the subassessment involving
only X ∗ and X , hence with numerical part p∗|I = {xi,xi∗ ,xi|i∗}(i,i∗)∈I , and that,

in the case of absence of structural zeroes between X ∗ and X (i.e. I = I × I), the
conditional probabilities xi|i∗ , i, i

∗ ∈ I, are constrained by coherence to lay inside
the so called Fréchet-Hoeffding bounds:

max(0,xi + x∗i∗ − 1)

x∗i∗
≤ xi|i∗ ≤

min(xi,x
∗
i∗)

x∗i∗
. (20)

Such bounds imply that the set of coherent values for {xi,xi∗ ,xi|i∗}(i,i∗)∈I is not
convex in general, hence the credal set of a correction of an incoherent assessments
could result not connected and hardly computable. Hence we cannot expect a
procedure that produces the whole credal set of correction C(π). Anyhow, we can
find just one element of such credal set by a particular setting of linear constraints
in a new MIP-based optimization.

More precisely, we change a little bit the notation with respect the MIP pro-
gram P1 described in Sec.3. In fact now the atoms are characterized by the simple
possibility of having the conjunction Xi ∧X∗i∗ , so that the set of constraints asso-
ciated to the subassessment can be simply represented by set of couples of indexes
C∗|I = {(i, i∗) ∈ I × I : Xi ∧ X∗i∗ = ⊥} (in the sequel we will denote with c∗ the

cardinality of C∗|I). Consequently the binary variables can be denoted with aii∗ ,
while the real variables with bii∗ and qii∗ . About the slack variables, we need them
for the potential modification of both the marginal and conditional probabilities,
hence we denote them with ri, si, ri∗ , si∗ , ri|i∗ , si|i∗ , respectively. With such a choice



the constraints of a new MIP program P3 become:∑
(i,i∗)∈C∗|I

(1− aii∗) ≥ c∗ (21)

0 ≤ bii∗ ≤ aii∗ aii∗ − 1 + qii∗ ≤ bii∗ ≤ qii∗ (22)∑
i∗

bii∗ = xi + (ri − si) (23)∑
i

bii∗ = x∗i∗ + (ri∗ − si∗) (24)

bii∗ = xi|i∗xi∗ + xi|i∗(ri∗ − si∗) + xi∗(ri|i∗ − si|i∗) (25)∑
i,i∗∈I

bii∗ = 1 (26)

ri ≤ 1, si ≤ 1, ri∗ ≤ 1 , si∗ ≤ 1, ri|i∗ ≤ 1, si|i∗ ≤ 1, (27)

where the constraint (21) induces the binary variables aii∗ to be 0 for the couples
of indexes in C∗|I ; constraints like (22) are set for all i, i∗ ∈ I and induce equalities

bii∗ = aii∗qii∗ that otherwise will not be linear; constraints like (23) and (24) are
set for all the assessed marginal probabilities xi and x∗i∗ and permit their correction
through the slack variables; constraints like (25) are set for all assessed conditional
probabilities xi|i∗ and constraint the joint distribution with corrected conditional
and marginal values. Note that these last type of constraints are equivalent to set

bii∗ = (xi|i∗ + ri|i∗ − si|i∗)(xi∗ + ri∗ − si∗) (28)

but without developing the cross products among the slack variables since they will
constitute corrections of the joint distribution that, not being assessed, does not
need any correction. This permits us to remain in a linear program.

The objective function to minimize is again the sum of the slack variables∑
i,i∗

ri + si + ri∗ + si∗ + ri|i∗ + si|i∗ (29)

that obviously represents the L1 distance between the assess probability values and
the coherent ones.

Note that whenever the corrected assessment would present some marginal
probability to be zero, all the new probabilities conditioned on such X∗i∗ will result
automatically coherent since, for the structure of the assessment, the various zero
layers (for such a notion refer to [5]) will involve only one such conditioning event
per time, so that the PX|X∗

i∗
(Xi) do not have any particular constraint to satisfy.

At the moment we have developed only the theoretical part of this section,
leaving its practical application to future developments.
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