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Abstract

In previous works we attempted to compose multivariate densities of con-
tinuous random variables. The paper [5] showed an implementation of It-
erative Proportional Fitting Procedure numerically approximating the mul-
tivariate density from low-dimensional ones. In [2] we defined an operation
of composition for general continuous densities with advantageous properties
in case of certain copula classes. The paper [4] further analyzed properties
of composition in continuous densities and sketched a basic application for
densities from exponential families. This application was illustrated on an
non-trivial example in [3].

The exponential families are closed with respect to the operation of com-
position, i.e. the result of composition remains in the exponential family.
Though up to this moment only rather toy applications were performed, still
it took a non-trivial effort to perform algebraic manipulations with multivari-
ate densities expressed in a ”natural form” of exponential families. Therefore,
it appears to be advantageous to employ some computer algebra system capa-
ble of symbolic manipulations with matrices necessary for the representation
of multivariate distributions.

Keywords: Operator of composition, continuous variable, exponential family,
computer algebra system.

1 Introduction

Modern equipment, electronic sensors and automated approaches of measurement
provide an enormous amounts of data which is almost in every case multivariate and
usually shows high dimensionality. This is the setting in which the curse of dimen-
sionality (see, e.g., [1, 6]) appears to be serious issue. One particular facet of this is



a impossibility, or at least enormous inaccuracy of estimation of high-dimensional
multivariate distributions from the data. A possible way of dealing with these
problems is the employment of some factorization of high-dimensional distribu-
tions and performance of local computations with low-dimensional marginals only.
Well-known are approaches of Bayesian Networks now successfully implemented in
several commercial computational environments (Hugin, Bayesia, etc.). An alge-
braic alternative is represented by compositional models (see Jiroušek[11]).

As we already hinted, it appears to be impossible to estimate multivariate
densities of higher dimensions directly from data. But still it is possible to perform
some analysis of dependence structure among analyzed variables and to estimate
the low-dimensional discrete distributions or continuous densities as basic building
blocks. These building blocks overlap in a way, i.e. the considered marginals have
some common variables and thus the building blocks can be seen as hypergraph
edges, where hypergraph vertices are the particular variables.

Since we present a practical application of scheme sketched in previous pub-
lications ([4] and [3]), the methodology is connecting several different fields from
theory of compositional models developed under the framework of classical prob-
ability theory (see Jiroušek[11, 4]), theoretical description of exponential families
and its useful properties [13], employment of algorithms from theory of maximum
likelihood estimation of multivariate normal distribution [7] with an implementa-
tion in R package mvnmle [9] and a Python based computer algebra system SymPy
with implementation [10] under statistical computational environment of R [15].

The presented paper shows all necessary theoretical prerequisites concerning
composition in exponential families together with the way how to implement com-
positional models in a rather user friendly way leaving the boring computations on
a computer algebra system.

2 Compositional Models & Exponential Families

Within the presented paper we consider a finite index set N = {1, . . . , n} together
with a set of random variables {Xi}i∈N with values, or vectors of values, denoted
by the corresponding lowercase letters. The domain of variables will be denoted
by the corresponding bold uppercase letter Xi. In general, variables with a finite
or countable set of possible states are called discrete; other variables are called
continuous. In this paper, we will focus on the later case.

The probability density functions of continuous random variables will be de-
noted by lowercase letters of the Latin alphabet (f, g, h, . . . ), e.g., the abbreviated
notation f(xK) denotes a multidimensional density of variables having indices from
set K ⊆ N . For a probability density function f(xK) and any set of variable indices
L ⊂ K, a marginal probability density f(xL) of f(xK) can be computed for each
xL as follows

f(xL) =

∫
XK\L

f(xK)dxK\L



where obviously the integration runs over the domains of all variables in K \L. We
will also employ an equivalent way to denote the marginal f(xL), namely f↓{L}

which was introduced by Glenn Shafer (see, e.g., [17]).
Having probability density f(xK) and two disjoint subsets L,M ⊆ K we define

the conditional probability density of XL given a value xM = xM for every xL∪M
as

f(xL |xM = xM)f(xM = xM) = f(xL, xM = xM).

Let us note that for f(xM = xM) = 0 the definition is ambiguous, but we do not
need to exclude such cases.

2.1 Composition of Continuous Densities

Let us have two probability density functions f(xK) and g(xK) with the same set
of variables XK . Then f is said to be absolutely continuous with respect to g, or
dominated by g (denoted by f � g) if for each xK ∈ XK it holds

(g(xK) = 0⇒ f(xK) = 0) .

Consider two sets of continuous variables XL and XM , a probability density
f(xL), and a probability density g(xM ) such that f(xL∩M )� g(xL∩M ). The right
composition is given by

f(xL) . g(xM ) =
f(xL)g(xM )

g(xL∩M )
= f(xL) · g(xM |xL).

For details and important properties of composition in continuous case, please,
refer to [4].

2.2 Exponential Families

The possibility to define the operation of composition for densities of distributions
from exponential families was studied in [4]. The exponential family is an inter-
esting set of probability distributions that can be expressed in a certain form, e.g.,
see [12].

Now, let us recall the most important notions and properties introduced in the
context of compositional model in [4]. Density f(xL) belongs to the exponential
family if it can be expressed in the form

f(xL; θL) = h(xL)eηL(θL)·T (xL)−A(ηL)

where θL is a (real) vector of parameters and h(xL), T (xL), ηL(θL) and A(ηL) are
vector functions.

The function ηL(θL) is a natural parameter (or exponential parameter), T (xL) is
a sufficient statistic, A(ηL) is a log-partition function and h(xL) is a non-negative
base measure. Obviously, the product of ηL(θL) and T (xL) vector functions is



a scalar product. Examples of the most important members of the exponential
family, such as Gaussian, binomial, multinomial, Gamma and Beta distributions
can be found, e.g., in [13].

It can be shown that exponential family is closed with regard to several impor-
tant operations, particularly product, marginalization and conditioning, see, e.g.,
Lemmata 6 and 8 in [12].

If both operands belong to the exponential family, the result of operation of
composition is defined and can be expressed in the above form and thus also belongs
to the exponential family. I.e. for two densities f(xL) and g(xM ) belonging to an
exponential family, i.e. such that f(xL) = hL(xL)eηL·TL(xL)−AL(ηL) and g(xM ) =
hM (xM )eηM ·TM (xM )−AM (ηM ) the composition also belongs to the exponential family.

Let us look at this property in more detail:For disjoint L and M we get the
product of both densities, which obviously also belongs to the exponential family.

If the other possibility realizes, i.e. if L ∩M 6= ∅ then we can express

g(xM ) = hM (xM )eηL∩M ·TL∩M (xL∩M )+ηM\L·TM\L(xM\L)−AM (ηL∩M ,ηM\L).

According to [12] the conditional distribution

g(xM\L |xL∩M = xL∩M) = hL∩Me
ηM\L·TM\L(xM\L)−AL∩M(ηM\L)

where hL∩M and AL∩M are dependent on the values of conditioning variables. It
is now apparent that the product of f(xL) and g(xM\L |xL∩M ) again belongs to
the exponential family since it can be written in the corresponding form, i.e.

(f . g)(xL∪M ) = hLhL∩Me
ηL·TL(xL)+ηM\L·TM\L(xM\L)−AL(ηL)−AL∩M(ηM\L).

2.3 Multivariate Normal Distribution

The non-degenerate multivariate normal distribution has a symmetric and positive
definite covariance matrix Σ. In such case, the multivariate normal distribution
f(xL) with vector of means µL and covariance matrix ΣL has a density given by
formula

f(xL;µL,ΣL) =
1√

(2π)`|ΣL|
exp

(
−1

2
(xL − µL)TΣ−1L (xL − µL)

)

where ` is a dimension (length) of xL vector, symbol T stands for a vector transpose,
|ΣL| is determinant of covariance matrix and Σ−1L is an inverse of covariance matrix.

Thus, multivariate density f(xL;µL,ΣL) has variables and functions according



to definition of exponential family given in the following way

xL = (x1, . . . , x`)
T,

ηL =

(
Σ−1L µL
− 1

2Σ−1L

)
,

TL(xL) =

(
xL
xLx

T
L

)
,

AL(ηL) =
1

2
µT
LΣ−1L µL +

1

2
log |ΣL|,

hL(xL) = (2π)
− `

2 .

2.4 Conditional multivariate density

Let us have a multivariate density g(xM ;µM ,ΣM ) and let us divide index set M
into two disjoint parts such that A = L ∩ M and B = M \ L. Thus, the m-
dimensional vector xM can be partitioned into two parts of dimensions mA and
mB (mA +mB = m) in such a way that

xM =

(
xA
xB

)
and similarly

µM =

(
µA
µB

)
.

The covariance matrix is partitioned into the corresponding blocks in the following
way

ΣM =

(
ΣAA ΣAB

ΣBA ΣBB

)
having sizes (

m2
A mAmB

mAmB m2
B

)
.

Thus, having the multivariate density g(xM ) ∼ N (µM ,ΣM ) the conditional
multivariate density g(xM\L |xL∩M = a) = g(xB |xA = a) is again a multivariate

density distribution (see, e.g., [8]) and g(xB |xA = a) ∼ N (µB ,ΣB) where

µB = µB + ΣBAΣ−1AA(a− µA)

and
ΣB = ΣBB −ΣBAΣ−1AAΣAB .

We can somewhat surprisingly see, that the known value a influences the mean of
conditional density but not its covariance matrix. Let us note that the formula for
ΣB is known as the Schur complement of ΣAA in ΣM and Σ−1AA is a generalized
inverse (see again [8]).



2.5 Product of Multivariate Densities

Similarly, the product of two multivariate normal densities is again multivariate
normal distribution (must be then renormalized). For two multivariate densities
f(xL) ∼ N (µL,ΣL) and g(xM ) ∼ N (µM ,ΣM ) we get

f(xL)g(xM ) ∼ N (µ,Σ)

where
µ = Σ

(
Σ−1L µL + Σ−1M µM

)
and

Σ =
(
Σ−1L + Σ−1M

)−1
.

The normalizing constant is (see [16]) equal to

(2π)−
`+m

2 |ΣL + ΣM |
1
2 exp

(
−1

2
(µL − µM )

T
(ΣL + ΣM )

−1
(µL − µM )

)
.

3 Partially Symbolic Manipulation with Compo-
sitional Models

As the kind reader already guessed from the formulas in previous section, the gen-
eral case of composition in exponential families involves several matrix operations
with partially numeric and partially symbolic manipulation. Obviously, it is advan-
tageous to perform all computations in an (semi)automated way. We performed all
implementations of compositional models in R software [15] which is very advanta-
geous for its vector and matrix operations together with abundance of statistic and
probabilistic methods available. Therefore, we decided to employ a Python based
computer algebra system SymPy with its R interface rSymPy [10].

First of all, let us describe a simple data set which will be used in the following
application of above described theory. It concerns the levels of 5 characteristics
measured in the folicular fluid of 22 pregnant cows. The five variables (pH, pCO2,
pO2, HCO3, BE(B)) appear to have Gaussian distribution (first three variables
on the 5 percent significance level using Shapiro-Wilk test of normality, two other
variables on 1 per thousand significance level which is cause in both cases by a
pair outliers). Thus, it appears to be a bad idea to approximate a five-dimensional
multivariate Gaussian density with 30 continuous parameters from 110 measure-
ments of 5 variables and it seems to be a good idea to estimate from data several
low-dimensional (two- or three-dimensional) distributions and to compose them.
(Three-dimensional distribution has 12 parameters.)

In this paper, we will not focus on the choice of the most suitable marginals as
building stones. We will choose them in a rather rough and intuitive way based on
the Pearson correlation matrix of the five variables (see Table 1). The proper way
is to use some principles of probabilistic structure learning approaches (see, e.g.,
Zhou [18]).



Table 1: (Pearson) correlation matrix of five analyzed variables.
pH pCO2 pO2 HCO3 BE(B)

pH 1.000 -0.549 0.529 0.647 0.704
pCO2 -0.549 1.000 -0.509 0.280 0.206
pO2 0.529 -0.509 1.000 0.141 0.184
HCO3 0.647 0.280 0.141 1.000 0.997
BE(B) 0.704 0.206 0.184 0.997 1.000
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Figure 1: Two-dimensional Gaussian densities of variables of the first composed
marginal v1 and v2 (left part of figure) and the second composed marginal v1 and
v3 (right part of figure).

In the following text the five parameters will be denoted by v1, . . . , v5 vari-
able symbols. Rather loosely based on the strengthes of the Pearson correlations
of moderate and strong linear dependencies we decided to choose three marginals
f1(v1, v2), f2(v1, v3) and f3(v1, v4, v5). For these marginals we estimate their mul-
tivariate Gaussian densities from data using maximum likelihood estimates speci-
fied in terms of the inverse of the Cholesky factor of the variance-covariance ma-
trix (see [14]) and implemented in R mvnmle package [9]. Two estimated two-
dimensional densities are depicted in Figure 1.

As the first step, we read our sample data set into data data frame and load
the above mentioned libraries of mvnmle and rSymPy. Then we set the simplified
variable names, define the list of marginals to be composed (using a list edges)
and estimate parameters of multivariate distributions using mlest function (see
bellow).



v <− 1 : ncol (data )
names <− paste ( ”v” ,v , sep=”” )
# names : ”pH” ”pCO2” ”pO2” ”HCO3” ”BE.B”
edges <− l i s t (c ( 1 , 2 ) , c ( 1 , 3 ) , c ( 1 , 4 , 5 ) )

# MLE for mu l t i v a r i a t e normal d i s t r i b u t i o n s
mu <− NULL; s i g <− NULL
for ( e in 1 : length ( edges ) ) {

e s t <− mlest (data [ , edges [ [ e ] ] ] )
emu <− e s t$muhat
names(emu) <− names [ edges [ [ e ] ] ]
mu <− c (mu, l i s t (emu) )
e s i g <− e s t$sigmahat
rownames( e s i g ) <− names [ edges [ [ e ] ] ]
colnames ( e s i g ) <− names [ edges [ [ e ] ] ]
s i g <− c ( s ig , l i s t ( e s i g ) )

}

The estimated parameters are stored in the following numbered vectors and ma-
trices mu* and sig*.

> cat ( sympy( ”mu1” ) ) > cat ( sympy( ” s i g 1 ” ) , ”\n” )
[ 7 . 42868181808 ] [ 0 .0012049443106 , −0.0069107030493]
[ 5 . 47636363472 ] [−0.0069107030493 , 0 .1314049638269 ]
> cat ( sympy( ”mu2” ) ) > cat ( sympy( ” s i g 2 ” ) , ”\n” )
[ 7 . 42868181927 ] [ 0 .001204944283 , 0 .0393622676519 ]
[ 13 . 6313637645 ] [ 0 .039362267652 , 4 .5957484887845 ]
> cat ( sympy( ”mu3” ) ) > cat ( sympy( ” s i g 3 ” ) , ”\n” )
[ 7 . 42873958083 ] [ 0 .001204867353 , 0 .045509151565 , 0 .053034419262 ]
[ 26 . 7414588678 ] [ 0 .045509151565 , 4 .216007981078 , 4 .489984753482 ]
[ 2 . 75089979417 ] [ 0 .053034419262 , 4 .489984753481 , 4 .812928862933 ]

For all three distributions (hypergraph edges) we compute ηi stored in e*, Ti
stored in T*, Ai stored in A* and hi stored in h*. Corresponding densities fi are
computed and stored in f*.

for ( e in 1 : length ( edges ) ) {
sympy(paste ( ” ea=( s i g ” , e , ” )∗∗(−1)∗mu” , e , ”” , sep=”” ) )
sympy(paste ( ”eb=−(( s i g ” , e , ” )∗∗(−1))/2” , sep=”” ) )
sympy(paste ( ”e” , e , ”=(ea .T) . c o l j o i n ( eb ) ” , sep=”” ) )

sympy(paste ( ”T” , e , ”=(x” , e , ” .T) . c o l j o i n (x” , e , ”∗x” , e , ” .T) ” , sep=”” ) )
sympy(paste ( ”A” , e , ”=(mu” , e , ” .T∗ ( ( s i g ” , e , ” )∗∗(−1)∗mu” , e , ” )/ 2 ) . det ()+

log ( s i g ” , e , ” . det ( ) )/2” , sep=”” ) )
sympy(paste ( ” l=1∗x” , e , ” . shape [ 0 ] ” , sep=”” ) )
sympy(paste ( ”h” , e , ”=1/ s q r t ( (2∗pi )∗∗ l ) ” , sep=”” ) )

sympy(paste ( ” f ” , e , ”=h” , e , ”∗exp ( e” , e , ” . dot (T” , e , ”)−A” , e , ” ) ” , sep=”” ) )
}

Thus, we defined all three continuous densities f1, . . . , f3 and all vector functions
of an exponential family. We can continue in computation of conditional density
f2(v3 | v1) using the formulae in subsection 2.4, i.e. the corresponding subvectors



µA and µB , submatrices ΣAA, ΣAB , ΣBA and ΣBB and functions defining the
conditional density.

> sympy(paste ( ” s i g c=sigbb−s i gba∗ s i g aa∗∗(−1)∗ s i gab ” ) )
[ 1 ] ” [ 3 . 30988976740274 ] ”
> sympy(paste ( ”conda=Matrix ( [ ” ,paste ( ” [ ” ,paste ( ”v” ,A, sep=”” ) , ” ] ” ,
+ c o l l a p s e=” , ” ) , ” ] ) ” , sep=”” ) )
[ 1 ] ” [ v1 ] ”
> sympy(paste ( ”muc=mub+s igba∗ s i g aa∗∗(−1)∗ ( conda−mua) ” ) )
[ 1 ] ” [−229.043560103312 + 32.6672927676576∗v1 ] ”
> sympy( ”econd=((( s i g c )∗∗(−1)∗muc ) .T) . c o l j o i n (−( s i g c∗∗(−1))/2) ” )

” [−69.1997547347452 + 9.86960142581775∗v1 ] ”
” [ −0.151062432629697] ”

> cat ( sympy( ”Tcond=(xcond .T) . c o l j o i n ( xcond∗xcond .T) ” ) , ”\n” )
” [ v3 ] ”
” [ v3∗∗ 2 ] ”

> sympy( ”Acond=(muc .T∗ ( ( s i g c )∗∗(−1)∗muc)/ 2 ) . det ()+ log ( s i g c . det ( ) )/2” )
[ 1 ] ” 7924.8790914+ log (3 .30988977)/2−2260.5686474∗v1+161.2065797∗v1∗∗2”
> sympy( ”hcond=1/ s q r t ( (2∗pi )∗∗ ( xcond . shape [ 0 ] ) ) ” )
[ 1 ] ”2∗∗(1/2)/(2∗pi∗∗(1/2) ) ”

The conditional density f2(v3 | v1) is then composed from the corresponding
vector functions defining it as a member of exponential family. We arrive at a
three-dimensional distribution f1(v1, v2) . f2(v1, v3) defined by following density
(where numeric values were rounded to two decimal places).

13 .07∗2∗∗(1/2)∗exp(−43420.44+523.94∗v2+11430.68∗v1−69.20∗v3+9.87∗v1∗v3
−62.50∗v1∗v2−0.15∗v3∗∗2−5.45∗v2∗∗2−755.38∗v1∗∗2)/pi∗∗(3/2)

In a similar manner we can compose the result above with a conditional dis-
tribution f3(v4, v5 | v1) computed again using the formulae in subsection 2.4 from
f3(v1, v4, v5). Now, the result of the second composition is a five-dimensional dis-
tribution (f1(v1, v2) . f2(v1, v3)) . f3(v1, v4, v5) defined again by density (rounded
to two decimal places).

94 .25∗2∗∗(1/2)∗exp(−1382025.57+523.94∗v2+36863.95∗v4+252860.96∗v1
−69.20∗v3−37118.13∗v5+9.87∗v1∗v3+3326.13∗v1∗v5+517.50∗v4∗v5−62.50∗v1∗v2
−3297.34∗v1∗v4−257.89∗v4∗∗2−11686.21∗v1∗∗2−259.82∗v5∗∗2−0.15∗v3∗∗2
−5.45∗v2∗∗2)/pi∗∗(5/2)

From the resulting multivariate density we can symbolically express marginals
which were not estimated from the data. This can be particularly useful in cases
when we obtain estimates of the marginal building blocks in the process of compo-
sition from different data sources.

The computation of marginals can be hardly computationally (or algorithmi-
cally) feasible. The package rSymPy did not succeeded in symbolic integration of
marginal (f1(v1, v2) . f2(v1, v3))(v2, v3) but we succeeded in computation of the
corresponding two-dimensional density using online tool of Wolfram Alpha (see
Figure 2). The approximately computed result appears to be again in the form of
Gaussian density, i.e. it belongs to the exponential family as expected according to
the above presented assertions. But it appears that computation of marginals is in
general rather uneasy task which probably can be made feasible if the integration
procedure take advantage of exponential family properties.



Figure 2: Two-dimensional Gaussian density computed as a marginal from the
composition.

4 Conclusions and Possible Continuation

In this paper we presented an application of computer algebra system rSymPy
able to perform operations with parameters of exponential families in order to
(partially) symbolically perform the operation of composition using exponential
families, namely low-dimensional Gaussian densities estimated from data.

Let us mention that the computer algebra system is capable of computation
in arbitrary precision. Moreover, if the parameters of composed distributions are
rational all operations are performed precisely and results is an exact expression
(in a same way as in a toy example in [3]).

The possible future course of development contains the user friendly interface,
setting of proper procedures for (sub)optimal choice of composed marginals and
their estimation and elaboration of procedures leading to the efficient integration
of marginals of compositional models.
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